ON THE FITTING IDEALS OF A COMULTIPLICATION MODULE

S. KARIMZADEH * AND S. HADJIREZAEI

ABSTRACT. Let R be a commutative ring. In this paper we assert some properties of finitely generated comultiplication modules and Fitting ideals of them.

1. Introduction

Let R be a commutative ring with identity and M be a finitely generated R-module. For a set $\{x_1, \ldots, x_n\}$ of generators of M there is an exact sequence $0 \rightarrow N \rightarrow R^n \xrightarrow{\varphi} M \rightarrow 0$ where R^n is a free R-module with the set $\{e_1, \ldots, e_n\}$ of basis, the R-homomorphism φ is defined by $\varphi(e_j) = x_j$ and N is the kernel of φ. Let N be generated by $u_\lambda = a_{1\lambda}e_1 + \ldots + a_{n\lambda}e_n$, with λ in some index set Λ. Let $\text{Fitt}_i(M)$ be the ideal of R generated by the minors of size $n - i$ of the matrix

$$
\begin{pmatrix}
\cdots & a_{1\lambda} & \cdots \\
\vdots & \vdots & \vdots \\
\cdots & a_{n\lambda} & \cdots
\end{pmatrix}.
$$

For $i > n$, $\text{Fitt}_i(M)$ is defined to be R, and for $i < 0$, $\text{Fitt}_i(M)$ is defined to be the zero ideal. It is known that $\text{Fitt}_i(M)$ is an invariant ideal determined by M, that is, it is determined uniquely by M and it does not depend on the choice of the set of generators of M [10]. The ideal $\text{Fitt}_i(M)$ will be called the i-th Fitting ideal of the module M. It follows from the definition of $\text{Fitt}_i(M)$ that $\text{Fitt}_i(M) \subseteq \text{Fitt}_{i+1}(M)$.

MSC(2010): Primary: 13C05; Secondary: 13C99

Keywords: Fitting ideals, comultiplication module, simple module.

Received: 11 January 2015, Accepted: 18 April 2015.

*Corresponding author.
Moreover, it is shown that $\text{Fitt}_0(M) \subseteq \text{Ann}_R(M)$ and $(\text{Ann}_R(M))^n \subseteq \text{Fitt}_0(M)$ (M is generated by n elements) and $\text{Fitt}_i(M)_P = \text{Fitt}_i(M_P)$, for every prime ideal P of R [9]. The most important Fitting ideal of M is the first of the $\text{Fitt}_j(M)$ that is nonzero. We shall denote this Fitting ideal by $I(M)$. Note that if $I(M)$ contains a nonzerodivisor, then $I(M_P) = I(M)_P$ for every prime ideal P of R. Fitting ideals are strong tools to identify properties of modules and sometimes to characterize modules. For example Buchsbaum and Eisenbud have shown in [8] that for a finitely generated R-module M, $I(M) = R$ if and only if M is a projective of constant rank module. A lemma of Lipman asserts that if R is a local ring and $M = R^m/K$ and $I(M)$ is the $(m - q)$th Fitting ideal of M, then $I(M)$ is a regular principal ideal if and only if K is finitely generated free and $M/T(M)$ is free of rank $m - q$ ([14]). Finally it is shown in [11] that if M is a finitely generated module over a Noetherian local UFD (R, P), then $I(M) = P$ if and only if

1. M is isomorphic to $R^n/\langle (a_1, \ldots, a_n)^t \rangle$, where $P = \langle a_1, \ldots, a_n \rangle$ and n is a positive integer if M is torsionfree, and
2. M is isomorphic to $R^n \oplus R/P$, for some positive integer n if M is not torsionfree.

An R-module M is said to be a comultiplication module if for any submodule N of M there exists an ideal I of R such that $N = (0 :_M I)$ [5]. Ansari-Toroghy and Farshadifar have shown in [5] that an R-module M is a comultiplication module if and only if for each submodule N of M, $N = (0 :_M \text{Ann}_R(N))$. An R-module M satisfies the double annihilator conditions (DAC for short) if for each ideal I of R, we have $I = \text{Ann}_R(0 :_M I)$. M is said to be a strong comultiplication module if M is a comultiplication R-module which satisfies the double annihilator conditions [4].

1.1. Comultiplication Module.

Lemma 1.1. Let R be an integral domain. If R is a comultiplication R-module, then R is a field.

Proof. Let I be a nonzero ideal of R. Since R is a domain, $\text{Ann}_R(I) = 0$. Since R is a comultiplication R-module, $I = (0 :_R \text{Ann}_R(I)) = R$. So R is a field. □

Lemma 1.2. Let M be a finitely generated comultiplication R-module. If there exists a submodule N of M such that $\text{Ann}_R(N) = \text{Ann}_R(M)$, then $N = M$.

Proof. [3, Proposition 3.2] □
Theorem 1.3. Let M be a finitely generated comultiplication R-module. If R is an integral domain, then $I(M) = \text{Fitt}_0(M)$ or $M \cong R$.

Proof. Let M be generated by $\{x_1, \ldots, x_n\}$. Consider the exact sequence $0 \rightarrow N \rightarrow R^n \xrightarrow{\varphi} M \rightarrow 0$, where $\varphi(e_j) = x_j$ and $N = \text{Ker}(\varphi)$. Let $r_i \in \text{Ann}_R(x_i)$ for $i = 1, \ldots, n$. Consider the matrix

\[
\begin{bmatrix}
 r_1 & 0 & \cdots & 0 \\
 0 & r_2 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & \cdots & 0 & r_n
\end{bmatrix}
\]

Since each column of this matrix belongs to N, so we have

$\text{Ann}_R(x_1) \ldots \text{Ann}_R(x_n) \subseteq \text{Fitt}_0(M)$. If $\text{Ann}_R(x_1) \ldots \text{Ann}_R(x_n) \neq 0$, then $\text{Fitt}_0(M) = I(M)$. If there is an integer i, $1 \leq i \leq n$, such that $\text{Ann}_R(x_i) = 0$, then $\text{Ann}_R(M) = \cap_{i=1}^n \text{Ann}_R(x_i) = \text{Ann}_R(x_i) = 0$. Thus by Lemma 1.2, $M = Rx_i \cong R$. \hfill \Box

An R-module M is said to be a prime module if $\text{Ann}_R(N) = \text{Ann}_R(M)$, for every non-zero submodule N of M [17].

Proposition 1.4. Let M be a finitely generated comultiplication R-module. If M is a prime module, then M is a simple R-module.

Proof. [3, Proposition 3.18] \hfill \Box

Corollary 1.5. Let M be a finitely generated faithful comultiplication R-module. If R is an integral domain, then R is a field and $M \cong R$.

Proof. [3, Theorem 3.3] \hfill \Box

Proposition 1.6. Let M be a finitely generated comultiplication module over an integral domain R. If $I(M)$ is a prime ideal of R, then M is a simple R-module.

Proof. Let $M = \langle x_1, \ldots, x_n \rangle$. By Theorem 1.3, we have $M \cong R$ or $I(M) = \text{Fitt}_0(M)$. If $M \cong R$, then by Corollary 1.5, R is a field and hence M is simple. If $I(M) = \text{Fitt}_0(M)$, then as the proof of Theorem 1.3, we can conclude that $\text{Ann}_R(x_1) \ldots \text{Ann}_R(x_n) \subseteq \text{Fitt}_0(M)$. So there exists some x_i, $1 \leq i \leq n$, such that $\text{Ann}_R(x_i) \subseteq \text{Fitt}_0(M)$. Since $\text{Ann}_R(x_1) \subseteq \text{Fitt}_0(M) \subseteq \text{Ann}_R(M) \subseteq \text{Ann}_R(x_i)$, $I(M) = \text{Ann}_R(M) = \text{Ann}_R(x_i)$. Thus by Lemma 1.2, $M = Rx_i$. Let N be a nonzero submodule of M and $0 \neq n \in N$. So there exists $a \in R$ such that $n = ax_i$. Suppose that $r \in \text{Ann}_R(N)$, $0 = rn = rax_i$. Thus $ra \in \text{Ann}_R(M)$. Since $\text{Ann}_R(M)$ is a prime ideal of R, $r \in \text{Ann}_R(M)$ or $a \in \text{Ann}_R(M)$. Since n is a nonzero element of N, $r \in \text{Ann}_R(M)$.
Hence $\text{Ann}_R(N) = \text{Ann}_R(M)$. So M is a prime module. Therefore by Proposition 1.4, M is simple.

Proposition 1.7. Every finitely generated comultiplication module over a valuation ring is cyclic.

Proof. Let $M = \langle x_1, ..., x_n \rangle$. Since R is a valuation ring, there exists a positive integer i, $1 \leq i \leq n$, such that $\text{Ann}_R(x_i) \subseteq \text{Ann}_R(x_j)$ for all $1 \leq j \leq n$. Hence $\text{Ann}_R(M) = \text{Ann}_R(x_i)$. Thus by Lemma 1.2, $M = \langle x_i \rangle$.

Lemma 1.8. Let M be a finitely generated comultiplication R-module. If R is a Dedekind domain, then M is cyclic.

Proof. Let $M = \langle x_1, ..., x_n \rangle$ and P be a maximal ideal of R. By [1, Corollary 2.6], M_P is a comultiplication module. Since R_P is a valuation ring, by Proposition 1.7, M_P is a cyclic module. So by [6, Proposition 5], M is a multiplication module. By [1, Corollary 2.2], $R/\text{Ann}_R(M)$ is a semi-local ring. Therefore by [6, Proposition 4], M is a cyclic.

Lemma 1.9. Let M be a finitely generated comultiplication R-module. If $M = \langle x_1, ..., x_n \rangle$ and $\cap_{i=1}^n Rx_i = 0$, then $\text{Fitt}_{n-1}(M) = R$.

Proof. Consider the exact sequence $0 \longrightarrow N \longrightarrow R^n \xrightarrow{\varphi} M \longrightarrow 0$, where $\varphi(e_j) = x_j$ and $N = \text{Ker}(\varphi)$. Let $r_i \in \text{Ann}_R(x_i)$ for $i = 1, ..., n$. Consider the matrix

$$
\begin{bmatrix}
 r_1 & 0 & \cdots & 0 \\
 0 & r_2 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & \cdots & 0 & r_n
\end{bmatrix}
$$

Since each column of this matrix belongs to N, so we have $\Sigma_{i=1}^n \text{Ann}_R(x_i) \subseteq \text{Fitt}_{n-1}(M)$. By [1, lemma 2.3], $\Sigma_{i=1}^n \text{Ann}_R(x_i) = R$. Thus $\text{Fitt}_{n-1}(M) = R$.

Lemma 1.10. Let M be a comultiplication R-module generated by n elements. If M is a decomposable R-module, then $\text{Fitt}_{n-1}(M) = R$.

Proof. Let M be a decomposable R-module. Since M is a finitely generated decomposable module, there exist finitely generated submodules $N_1, ..., N_k$ of M such that $M = \oplus_{i=1}^k N_i$ and $N_i = \langle x_{i_1}, ..., x_{i_{m_i}} \rangle$, for some elements $x_{ij} \in M$, $1 \leq j \leq m_i$, $1 \leq i \leq k$. By [1, Lemma 2.3], $\Sigma_{i=1}^k \text{Ann}_R(N_i) = R$. So $M = \langle x_{11}, ..., x_{1m_1}, x_{21}, ..., x_{kn_k} \rangle$. Put $n = n_1 + ... + n_k$. Therefore $\Sigma_{i,j} \text{Ann}_R(x_{ij}) \subseteq \text{Fitt}_{n-1}(M)$. Since $\Sigma_{i=1}^k \text{Ann}_R(N_i) \subseteq \Sigma_{i,j} \text{Ann}_R(x_{ij})$, $\text{Fitt}_{n-1}(M) = R$. □
Proposition 1.11. Let M be a decomposable comultiplication module. If M is generated by two elements, then $\text{Fitt}_0(M) = \text{Ann}_R(M)$.

Proof. By Lemma 1.10, $\text{Fitt}_n(M) = R$. By [9, Proposition 20.7], $\text{Ann}_R(M)\text{Fitt}_1(M) \subseteq \text{Fitt}_0(M)$. So $\text{Fitt}_0(M) = \text{Ann}_R(M)$. □

Theorem 1.12. Let M be a finitely generated R-module.

(i) If $I(M)$ is a prime ideal of R, then $\text{Ann}_R(M) \subseteq I(M)$.

(ii) If $I(M) = Q_1\ldots Q_n$ such that Q_i are distinct maximal ideals of R, then $\text{Ann}_R(M) \subseteq I(M)$.

(iii) If $\text{Ann}_R(M) = Q^n$, for some maximal ideal Q of R and positive integer n, then $I(M) = R$ or $I(M)$ is a Q-primary ideal of R.

Proof. Let M be generated by n elements.

(i) By [9, Proposition 20.7], $(\text{Ann}_R(M))^n \subseteq \text{Fitt}_0(M) \subseteq I(M)$. So $\text{Ann}_R(M) \subseteq I(M)$.

(ii) We shall show that $\text{Ann}_R(M) \subseteq Q_i$, for all $i = 1,\ldots,n$. Assume that $\text{Ann}_R(M) \nsubseteq Q_i$, for some $i = 1,\ldots,n$. So $\text{Ann}_R(M) + Q_i = R$. Hence there is a $q \in Q_i$ such that $1-q \in \text{Ann}_R(M)$. By [9, Proposition 20.7], $(\text{Ann}_R(M))^n \subseteq \text{Fitt}_0(M) \subseteq I(M)$. So $(1-q)^n \in I(M) \subseteq Q_i$. Therefore $1-q \in Q_i$, a contradiction. Thus $\text{Ann}_R(M) \subseteq Q_1\cap\ldots\cap Q_n = Q_1\ldots Q_n = I(M)$.

(iii) By [9, Proposition 20.7], $(\text{Ann}_R(M))^m = Q^m \subseteq \text{Fitt}_0(M) \subseteq I(M)$. So $Q \subseteq \sqrt{I(M)}$. Since Q is a maximal ideal of R, $\sqrt{I(M)} = Q$ or $\sqrt{I(M)} = R$. This implies that $I(M)$ is a primary ideal or $I(M) = R$. □

Proposition 1.13. Let M be a comultiplication R-module. If M is a decomposable module and $M = \langle x_1,\ldots,x_n \rangle$, then $(\text{Ann}_R(M))^{n-1} \subseteq \text{Fitt}_0(M)$.

Proof. By Lemma 1.10, $\text{Fitt}_{n-1}(M) = R$. Hence by [9, Proposition 20.7], $(\text{Ann}_R(M))^{n-1} \subseteq \text{Fitt}_0(M)$. □

Theorem 1.14. Let M be a finitely generated comultiplication module. If $\text{Ann}_R(M) = Q_1\ldots Q_n$, where Q_i, $1 \leq i \leq n$, are distinct maximal ideals of R, then $M \cong R/Q_1 \oplus \ldots \oplus R/Q_n$.

Proof. Assume that $(0 : Q_j) = 0$, for some $1 \leq j \leq n$. By [1, Lemma 2.1], $Q_j M = M$. So $\prod_{i \neq j} Q_i M = \prod_{i = 1}^n Q_i M = 0$. Hence $\prod_{i \neq j} Q_i \subseteq \text{Ann}_R(M) \subseteq Q_j$ which is a contradiction since Q_1,\ldots,Q_n are distinct maximal ideals of R. Therefore by [1, Lemma 2.1], $(0 :_M Q_i)$ is a simple module for all $i = 1,\ldots,n$. Hence for all $i = 1,\ldots,n$ there exists $x_i \in M$ such that $(0 :_M Q_i) = R x_i$. We shall show that $R x_j \cap \sum_{i \neq j} R x_i = 0$ for all
Assume that \(Rx_j \cap \Sigma_{i=1}^{j} Rx_i \neq 0 \) for some \(j = 1, ..., n \). Since \(Rx_j \) is simple, \(Rx_j \cap \Sigma_{i=1}^{j} Rx_i = Rx_j \). So, \(Rx_j \subseteq \Sigma_{i=1}^{j} Rx_i \) and hence \(Q_j = \text{Ann}_R(Rx_j) \supseteq \text{Ann}_R(\Sigma_{i=1}^{j} Rx_i) \supseteq \Pi_{i=1}^{n} Q_i \). This implies that there exists \(i \neq j, 1 \leq i \leq n \), such that \(Q_i = Q_j \) which is a contradiction since \(Q_1, ..., Q_n \) are distinct maximal ideals of \(R \). Therefore \(N = Rx_1 \oplus ... \oplus Rx_n \) is a submodule of \(M \) and \(\text{Ann}_R(N) = \text{Ann}_R(M) \). Since \(M \) is a comultiplication module, by Lemma 1.2, \(N = M \). Hence \(M = Rx_1 \oplus ... \oplus Rx_n \cong R/Q_1 \oplus ... \oplus R/Q_n \). □

Von Neumann regular ring is a ring \(R \) such that for every \(a \in R \) there exists an element \(b \in R \) such that \(a = aba \).

Proposition 1.15. Let \(M \) be a finitely generated comultiplication \(R \)-module. If \(R \) is a von Neumann regular ring, then \(I(M) = Q_1...Q_n \), where \(Q_i \) are maximal ideals of \(R, 1 \leq i \leq n \).

Proof. By [2, Corollary 1.7], \(M \) is a semisimple module. Hence there exist maximal ideals \(Q_1, ..., Q_n \) of \(R \) such that \(M \cong R/Q_1 \oplus ... \oplus R/Q_n \). So \(I(M) = Q_1...Q_n \). □

Theorem 1.16. Let \(M \) be a finitely generated comultiplication module. If \(\text{Fitt}_0(M) = Q_1...Q_n \), where \(Q_i, 1 \leq i \leq n \), are distinct maximal ideals of \(R \), then \(M \) is a semisimple module.

Proof. Similar to the proof of Theorem 1.14, \((0 :_M Q_i) \) are simple modules for all \(i = 1, ..., n \) and for all \(1 \leq j \leq n \), \(Rx_j \cap \Sigma_{i \neq j} Rx_i = 0 \), where \(Rx_i = (0 :_M Q_i) \) for all \(1 \leq i \leq n \). Put \(N = Rx_1 \oplus ... \oplus Rx_n \). We have \(Q_1...Q_n \subseteq \text{Ann}_R(M) \subseteq \text{Ann}_R(N) = Q_1...Q_n \). Thus by Lemma 1.2, \(M = N \). □

Lemma 1.17. Let \(M \) be a finitely generated module. If \(\text{Ann}_R(M) = \langle e \rangle \), where \(e \) is a non-zero idempotent element of \(R \), then \(I(M) = \text{Ann}_R(M) \).

Proof. Let \(M = \langle x_1, ..., x_n \rangle \). By [9, Proposition 20.7], \((\text{Ann}_R(M))^n \subseteq \text{Fitt}_0(M) \). So \(e = e^n \in \text{Fitt}_0(M) \). Hence \(\text{Fitt}_0(M) = \langle e \rangle \). □

Theorem 1.18. Let \(M \) be a finitely generated comultiplication module. If there is a submodule \(N \) of \(M \) such that \(\text{Ann}_R(N) = \langle e \rangle \), where \(e \) is an idempotent element of \(R \), then \(N \) is a direct summand of \(M \) and \(I(M) \subseteq \langle e \rangle \).

Proof. Assume that \(N \) is a proper submodule of \(M \) and \(\text{Ann}_R(N) = \langle e \rangle \). Put \(K = \{ m \in M : (1-re)m = 0 \text{ for some } r \in R \} \). It is clear that \(K \) is a submodule of \(M \) and \(N \cap K = 0 \). For \(m \in M \) we have
\[m = (1 - e)m + em \text{ and } em \in K, \ (1 - e)m \in N. \text{ So } M = N \oplus K. \]

By \[7, \text{ p.174}, \ I(M) = I(N)I(K) \text{ and by Lemma 1.17, } I(N) = \langle e \rangle, \text{ so } I(M) \subseteq \langle e \rangle. \]

Corollary 1.19. Let \(M \) be a finitely generated strong comultiplication \(R \)-module. If \(e \) is an idempotent element of \(R \), then \(e \in \text{Ann}_R(M) \) or \(1 - e \in \text{Ann}_R(M) \).

Proof. Let \(e \) be an idempotent element of \(R \). If \((0 :_M e) = M \), then \(e \in \text{Ann}_R(M) \). If \((0 :_M e) = 0 \), then \((0 :_M 1 - e) = M \). Hence \(1 - e \in \text{Ann}_R(M) \). If \((0 :_M e) \) is neither \(M \) nor \(0 \), then by Theorem 1.18, \(M = (0 :_M e) \oplus L \) where \(L = \{ m : (1-re)m = 0 \text{ for some } r \in R \} \). If \(m \in L \), then there is some \(r \in R \) such that \(m = rem \). So \(em = r(e)^2m = rem = m \). Hence \(1 - e \in \text{Ann}_R(L) \). Thus \(L \subseteq (0 :_M 1 - e) \). It's clear that \((0 :_M 1 - e) \subseteq L \). Since \(M \) is a strong comultiplication, \(\text{Ann}_R(L) = \langle 1-e \rangle \) and \(\text{Ann}_R(0 :_M e) = \langle e \rangle \). By Theorem 1.18, \(I(M) \subseteq \langle e \rangle \) and \(I(M) \subseteq \langle 1 - e \rangle \). So \(I(M) = 0 \) and it's contradiction. \(\square \)

Proposition 1.20. Let \(M \) be a finitely generated module over a Prüfer domain \(R \) and \(Q \) be a maximal ideal of \(R \). Then \(\text{Ann}_R(M) = Q^n \), for some positive integer \(n \) if and only if \(\text{Fitt}_0(M) = Q^k \), for some \(k \in \mathbb{N} \).

Proof. Let \(M \) be generated by \(m \) elements. By \[9, \text{ Proposition 20.7}, \ Q^{nm} = \text{Ann}_R(M)^m \subseteq \text{Fitt}_0(M) \). So \(\text{Fitt}_0(M) \) is a \(Q \)-primary ideal of \(R \). By \[13, \text{ Proposition 6.9}, \] there exists some \(k \in \mathbb{N} \) such that \(\text{Fitt}_0(M) = Q^k \). Hence \(\text{Fitt}_0(M) = Q^k \). Conversely, suppose that \(\text{Fitt}_0(M) = Q^k \), for some \(k \in \mathbb{N} \). Since \(Q^k = \text{Fitt}_0(M) \subseteq \text{Ann}_R(M) \), \(\text{Ann}_R(M) \) is a \(Q \)-primary ideal of \(R \). Hence By \[13, \text{ Proposition 6.9}, \] there exists some \(n \in \mathbb{N} \) such that \(\text{Ann}_R(M) = Q^n \). \(\square \)

Theorem 1.21. Let \(M \) be a finitely generated comultiplication module over a Prüfer domain \(R \). If \(\text{Fitt}_0(M) = Q^n \), where \(Q \) is a maximal ideal of \(R \) and \(n \) is a positive integer, then \(M \) is cyclic.

Proof. Let \(M = \langle x_1, ..., x_n \rangle \). Since \(Q^n = \text{Fitt}_0(M) \subseteq \text{Ann}_R(M) \subseteq \text{Ann}_R(x_i) \), \(\text{Ann}_R(x_i) \) is a \(Q \)-primary ideal of \(R \). By \[13, \text{ Proposition 6.9}, \] there exist some \(k_i \in \mathbb{N}, \) \(1 \leq i \leq n, \) such that \(\text{Ann}_R(x_i) = Q^{k_i} \). Put \(k = \max\{k_1, ..., k_n\} \). Let \(\text{Ann}_R(x_j) = Q^k \), for some \(1 \leq j \leq n \). So \(\text{Ann}_R(x_j) \subseteq \text{Ann}_R(x_i) \) for all \(1 \leq i \leq n \). Hence \(Rx_i \subseteq Rx_j \), for all \(1 \leq i \leq n \). This implies that \(M = Rx_j \). \(\square \)

Theorem 1.22. Let \(M \) be a finitely generated comultiplication module. Then \(R/\text{Fitt}_0(M) \) is a semilocal ring.

Proof. Let \(M \) be generated by \(n \) elements. By \[9, \text{ Proposition 20.7}, \] \(\text{Ann}_R(M)^n \subseteq \text{Fitt}_0(M) \). If \(Q \) is a maximal ideal of \(R \) such that
Fitt_0(M) \subseteq Q$, then $\text{Ann}_R(M) \subseteq Q$. Since $R/\text{Ann}_R(M)$ is a semilocal ring, $R/Fitt_0(M)$ is a semilocal ring. \hfill \square

Corollary 1.23. Let M be a finitely generated comultiplicatin module. If R is not a semilocal ring, then $I(M) = \text{Fit}t_0(M)$.

Acknowledgments

The authors are thankful to the referees for their helpful comments which improved the paper.

REFERENCES

S. Karimzadeh
Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O.Box 7718897111, Rafsanjan, Iran.
Email: karimzadeh@vru.ac.ir

S. Hadjirezaei
Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O.Box 7718897111, Rafsanjan, Iran.
Email: s.hajirezaei@vru.ac.ir