^{1}Islamic Azad university, Khorramabad Branch, Khorramabad

^{2}Lorestan University

Abstract

For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $\Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $\Gamma (R) \cong \Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this paper we extend this fact for certain noncommutative rings, for example, reduced rings, right (left) self-injective rings and one-sided Artinian rings. The necessary and sufficient conditions for two reduced right Goldie rings to have isomorphic zero-divisor graphs is given. Also, we extend some known results about the zero-divisor graphs from the commutative to noncommutative setting: in particular, complemented and uniquely complemented graphs.