Journal of Algebra and Related Topics

Vol. 4, No 1, (2016), pp 39-50

ON ZERO-DIVISOR GRAPHS OF QUOTIENT RINGS AND COMPLEMENTED ZERO-DIVISOR GRAPHS

P. KARIMI BEIRANVAND* AND R. BEYRANVAND

Abstract

For an arbitrary ring R, the zero-divisor graph of R, denoted by $\Gamma(R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of R in which any two vertices x and y are adjacent if and only if either $x y=0$ or $y x=0$. It is well-known that for any commutative ring $R, \Gamma(R) \cong \Gamma(T(R))$ where $T(R)$ is the (total) quotient ring of R. In this paper we extend this fact for certain noncommutative rings, for example, reduced rings, right (left) self-injective rings and one-sided Artinian rings. The necessary and sufficient conditions for two reduced right Goldie rings to have isomorphic zero-divisor graphs is given. Also, we extend some known results about the zero-divisor graphs from the commutative to noncommutative setting: in particular, complemented and uniquely complemented graphs.

1. Introduction

Throughout the paper, R denotes a ring with identity element (not necessarily commutative) and a zero-divisor in R is an element of R which is either a left or a right zero-divisor. We denote the set of all zero-divisors of R and the set of all regular elements of R by $Z(R)$ and C_{R}, respectively. Also, the set of all minimal prime ideals of R is denoted by $\operatorname{minSpec}(R)$. The zero-divisor graph of R, denoted by $\Gamma(R)$, is an undirected simple graph with the vertex set $Z(R)^{*}=Z(R) \backslash\{0\}$ in which any two distinct vertices x and y are adjacent if and only if either $x y=0$ or $y x=0$. The notion of zero-divisor graph of a commutative

[^0]ring with identity element was first introduced by I. Beck in [6] and has been studied by many authors (see for example [1, 2, 3, 5, 11]). In [10], Redmond has extended this notion to noncommutative rings and showed that for any ring R, the graph $\Gamma(R)$ is connected and its diameter is at most 3. Moreover if $\Gamma(R)$ contains a cycle, then the girth of $\Gamma(R)$ is at most 4 .

A multiplicative set $S \subseteq R$ is called a right Ore set if for any $a \in R$ and $s \in S, a S \cap s R \neq \emptyset$. We say that R is a right Ore ring if C_{R} is a right Ore set. For a right Ore ring R, we define a relation " \sim " on $R \times C_{R}$ as follow:
$\left(a_{1}, s_{1}\right) \sim\left(a_{2}, s_{2}\right)$ if and only if there exist $b_{1}, b_{2} \in R$ such that $s_{1} b_{1}=$ $s_{2} b_{2} \in C_{R}$ and $a_{1} b_{1}=a_{2} b_{2} \in R$. It can be seen that the relation " \sim " is an equivalence relation and so we write a / s or $a s^{-1}$ for the equivalence class (a, s). The set of all equivalence classes is denoted by $R C_{R}^{-1}$. For any $a_{1} / s_{1}, a_{2} / s_{2} \in R C_{R}^{-1}$, there exist $s, s^{\prime} \in C_{R}$ and $r, r^{\prime} \in R$ such that $s_{1} s=s_{2} r \in C_{R}$ and $a_{2} s^{\prime}=s_{1} r^{\prime}$. Thus we define $a_{1} / s_{1}+a_{2} / s_{2}=$ $\left(a_{1} s+a_{2} r\right) / t$, where $t=s_{1} s=s_{2} r$ and $\left(a_{1} / s_{1}\right)\left(a_{2} / s_{2}\right)=a_{1} r^{\prime} / s_{2} s^{\prime}$. It is well-known that the addition and the multiplication defined on $R C_{R}^{-1}$ are binary operations and under these operations $R C_{R}^{-1}$ becomes a ring (for more details see [8, p. 301-302]). The ring $R C_{R}^{-1}$ is usually called the (classical) right quotient ring of R.

In Section 1, we prove that for any reduced right Ore ring $R, \Gamma(R)$ and $\Gamma\left(R C_{R}^{-1}\right)$ are isomorphic (Theorem 2.2). Also it is shown that if R is a von Neumann regular ring, a right (left) self-injective ring or a right (left) Artinian ring, then $\Gamma(R)$ and $\Gamma\left(R C_{R}^{-1}\right)$ are isomorphic. We show that if R is a reduced right Goldie ring, then $\Gamma(R) \cong$ $\Gamma\left(D_{1} \times D_{2} \times \cdots \times D_{n}\right)$ for suitable division rings $D_{1}, D_{2}, \ldots, D_{n}$ and integer number n (Proposition 2.4). In Section 2, first complemented and uniquely complemented are introduced and then we give some results about them. For example, it is shown that for any reduced ring $R, \Gamma(R)$ is complemented if and only if $\Gamma(R)$ is uniquely complemented (Proposition 3.3). Also we prove that for any reduced right Ore ring R, if $R C_{R}^{-1}$ is von Neumann regular, then $\Gamma(R)$ is uniquely complemented and while $\Gamma(R)$ is complemented, then every prime ideal of $R C_{R}^{-1}$ is maximal (Proposition 3.6). Next we show that for an Artinian ring R with $\operatorname{Nil}_{*}(R)$ nonzero:
(1) If $\Gamma(R)$ is complemented, then either $|R|=8,|R|=9$, or $|R|>9$ and $\operatorname{Nil}_{*}(R)=\{0, x\}$, for some $0 \neq x \in R$.
(2) If $\Gamma(R)$ is uniquely complemented and $|R|>9$, then any complement of the nonzero nilpotent element of R is an end (Theorem 3.7).

2. Zero-Divisor graphs of quotient rings

Remark 2.1. For a reduced right Ore ring R, the right quotient ring $R C_{R}^{-1}$ is also reduced. To see this, suppose that $x y=0$, where $x, y \in R$. First we show that $x s^{-1} y=0$, for any $s \in C_{R}$. Since R is a right Ore ring, there exist $r_{1} \in R$ and $s_{1} \in C_{R}$ such that $s r_{1}=y s_{1}$ and so $y=s r_{1} s_{1}^{-1}$. Thus $0=x y=x s r_{1} s_{1}{ }^{-1}$ and hence $x s r_{1}=0$. Since R is reduced, we have $r_{1} x s=0$. It follows that $r_{1} x=0$, and so $x r_{1}=0$. Thus $0=x r_{1} s_{1}^{-1}=x s^{-1} y$. Now suppose that $x s^{-1} y t^{-1}=0$, where $x, y \in R$ and $s, t \in C_{R}$. Then $x s^{-1} y=0$ and so $x r_{1} s_{1}{ }^{-1}=0$ (note that $s^{-1} y=r_{1} s_{1}^{-1}$). Thus $x r_{1}=0=r_{1} x$ because R is reduced. By the first part of the proof, $0=r_{1}\left(t s_{1}\right)^{-1} x=r_{1} s_{1}{ }^{-1} t^{-1} x$. Therefore $s^{-1} y t^{-1} x=0$ and so $y t^{-1} x s^{-1}=0$. Thus $R C_{R}^{-1}$ is reduced.

Let G be an undirected simple graph. As in [9], for every two vertices a and b of G, we define $a \leq b$ if a and b are not adjacent and each vertex of G adjacent to b is also adjacent to a. We write $a \sim b$ if both $a \leq b$ and $b \leq a$. It is easy to see that \sim is an equivalence relation on G. We denote the equivalence class of a vertex x of G by $[x]$. Note that for any ring R with $a, b \in Z(R)^{*}$, we have $a \sim b$ in $\Gamma(R)$ if and only if $\left(\operatorname{ann}_{l}(a) \cup \operatorname{ann}_{r}(a)\right) \backslash\{a\}=\left(\operatorname{ann}_{l}(b) \cup \operatorname{ann}_{r}(b)\right) \backslash\{b\}$. If R is a right Ore ring and $A \subseteq R$, then the set $\left\{a / s \mid a \in A, s \in C_{R}\right\}$ is denoted by $A_{C_{R}}$.
In [4], the authors proved that for any commutative ring $R, \Gamma(R) \cong$ $\Gamma(T(R))$ where $T(R)$ is the quotient ring of R. Here, by the same method as [4], we extend this fact to the reduced right Ore rings.

Theorem 2.2. Let R be a reduced right Ore ring with right quotient ring $R C_{R}^{-1}$. Then the graphs $\Gamma(R)$ and $\Gamma\left(R C_{R}^{-1}\right)$ are isomorphic.

Proof. Let $S=C_{R}$ and $T=R S^{-1}$. Denote the equivalence relations defined above on $Z(R)^{*}$ and $Z(T)^{*}$ by \sim_{R} and \sim_{T}, respectively, and denote their respective equivalence classes by $[a]_{R}$ and $[a]_{T}$. Since R and $R S^{-1}$ are reduced, we note that $\operatorname{ann}_{T}(x / s)=\operatorname{ann}_{R}(x)_{S}$ and $\operatorname{ann}_{T}(x / s) \cap R=\operatorname{ann}_{R}(x)$; thus $x / s \sim_{T} x / t, x \sim_{R} y \Leftrightarrow x / s \sim_{T} y / s$, $\left([x]_{R}\right)_{S}=[x / 1]_{T}$ and $[x / s]_{T} \cap R=[x]_{R}$ for all $x, y \in Z(R)^{*}$ and $s, t \in S$. Since $Z(T)=Z(R)_{S}$, by the above comments, we have $Z(R)^{*}=\bigcup_{\alpha \in A}\left[a_{\alpha}\right]_{R}$ and $Z(T)^{*}=\bigcup_{\alpha \in A}\left[a_{\alpha} / 1\right]_{T}$ (both disjoint unions) for some $\left\{a_{\alpha}\right\}_{\alpha \in A} \subseteq R$.
We next show that $|[a]|_{R}=|[a / 1]|_{T}$ for each $a \in Z(R)^{*}$. First assume that $[a]_{R}$ is finite. Then it is clear $[a]_{R} \subseteq[a / 1]_{T}$. For the inverse inclusion, let $x \in[a / 1]_{T}$. Then $x=b / s$ with $b \in[a]_{R}$ and $s \in S$. Since $\left\{b s^{n} \mid n \geq 1\right\} \subseteq[a]_{R}$ is finite, $b=b s^{i}$ for some
integer $i>1$, and hence $b / s=b s^{i} / s=b s^{i-1} \in[a]_{R}$. Now suppose that $[a]_{R}$ is infinite. Clearly $\left|[a]_{R}\right| \leq\left|[a / 1]_{T}\right|$. Define an equivalence relation \approx on S by $s \approx t$ if and only if $s a=t a$. Then $s \approx t$ if and only if $s b=t b$ for all $b \in[a]_{R}$. It is easily verified that the map $[a]_{R} \times S / \approx \longrightarrow[a / 1]_{T}$, given by $(b,[s]) \rightarrow b / s$, is welldefined and surjective. Thus $\left|[a / 1]_{T}\right| \leq\left|[a]_{R}\right||S / \approx|$. Also the map $S / \approx \longrightarrow[a]_{R}$, given by $[s] \rightarrow s a$, is clearly well-defined and injective. Hence $|S / \approx| \leq\left|[a]_{R}\right|$, and so $\left|[a / 1]_{T}\right| \leq\left|[a]_{R}\right|^{2}=\left|[a]_{R}\right|$ since $\left|[a]_{R}\right|$ is infinite. Thus $\left|[a]_{R}\right|=\left|[a / 1]_{T}\right|$. Therefore there is a bijection $\phi_{\alpha}:\left[a_{\alpha}\right] \longrightarrow\left[a_{\alpha} / 1\right]$ for each $\alpha \in A$. Define $\phi: Z(R)^{*} \longrightarrow Z(T)^{*}$ by $\phi(x)=\phi_{\alpha}(x)$ if $x \in\left[a_{\alpha}\right]$. Thus we need only show that x and y are adjacent in $\Gamma(R)$ if and only if $\phi(x)$ and $\phi(y)$ are adjacent in $\Gamma(T)$; i.e., $x y=0$ if and only if $\phi(x) \phi(y)=0$. Let $x \in[a]_{R}, y \in[b]_{R}, w \in[a / 1]_{T}$ and $z \in[b / 1]_{T}$. It is sufficient to show that $x y=0$ if and only if $z w=0$. Note that $\operatorname{ann}_{T}(x)=\operatorname{ann}_{T}(a)=\operatorname{ann}_{T}(w)$ and $\operatorname{ann}_{T}(y)=\operatorname{ann}_{T}(b)=$ $\operatorname{ann}_{T}(z)$. Thus $x y=0 \Leftrightarrow y \in \operatorname{ann}_{T}(x)=\operatorname{ann}_{T}(w) \Leftrightarrow y w=0 \Leftrightarrow w \in$ $\operatorname{ann}_{T}(y)=\operatorname{ann}_{T}(z) \Leftrightarrow w z=0$. Hence $\Gamma(R)$ and $\Gamma(T(R))$ are isomorphic as graphs.

Let R be a ring. We denote the group of unit elements of R by $U(R)$. By [8, Proposition 11.4], the right quotient ring of R exists and $R \cong R C_{R}^{-1}$ if and only if $C_{R}=U(R)$. In this case, we say that R is a classical ring and it is clear that $\Gamma(R) \cong \Gamma\left(R C_{R}^{-1}\right)$. Recall that R is von Neumann regular if for each $x \in R$, there exists $y \in R$ such that $x=x y x$. In the following we give some examples of noncommutative rings R for which $\Gamma(R) \cong \Gamma\left(R C_{R}^{-1}\right)$.

Example 2.3. (a) For any von Neumann regular ring R, we have $\Gamma(R) \cong \Gamma\left(R C_{R}^{-1}\right)$. To see this, let $q \in C_{R}$. Then there exists $q^{\prime} \in R$ such that $q=q q^{\prime} q$. So $q\left(1-q^{\prime} q\right)=0=\left(1-q q^{\prime}\right) q$. Since q is regular, $q q^{\prime}=q^{\prime} q=1$ and hence $q \in U(R)$. Thus $C_{R}=U(R)$ and this implies that R is a classical ring. Therefore $\Gamma(R) \cong \Gamma\left(R C_{R}^{-1}\right)$.
(b) Let R be a ring in which for any $q \in R$, the chain $q R \supseteq q^{2} R \supseteq \ldots$ stabilizes. Then R is a classical ring. Indeed, if $q \in C_{R}$, then by hypothesis, there exists $n \geq 1$ such that $q^{n} R=q^{n+1} R$. Thus $q^{n}=$ $q^{n+1} q^{\prime}$, for some $q^{\prime} \in R$. Since q is regular, $q q^{\prime}=1$. Also $q(1-$ $\left.q^{\prime} q\right)=0$ and hence $q^{\prime} q=1$. Thus $C_{R}=U(R)$ and we conclude that $\Gamma(R) \cong \Gamma\left(R C_{R}^{-1}\right)$. In particular if R is a right (left) Artinian ring, then $\Gamma(R) \cong \Gamma\left(R C_{R}^{-1}\right)$.
(c) Let V be a vector space over a division ring K. Then $R=\operatorname{End}\left(V_{R}\right)$ is a classical ring. To see this, we note that V is a semisimple K-module
and by [7, Proposition 4.27], R is a von Neumann regular ring. Now the assertion is obtained from (a).
(d) Every left (right) self-injective ring is a classical ring. Suppose that R is a left self-injective ring and a is a regular element in R. We show that $a \in U(R)$. Define R-monomorphism $f: R \rightarrow R$ by $f(r)=r a$. Since R is self-injective, there exists R-homomorphism $g: R \rightarrow R$ such that $g f=1$. Now $a=1(a)=g f(a)=g\left(a^{2}\right)=a^{2} g(1)$. Since a is a regular element, we have $1=a g(1)$. Thus $a=a g(1) a$ and hence $1=g(1) a$ because again a is regular. Therefore $a \in U(R)$ and so R is a classical ring. This implies that $\Gamma(R) \cong \Gamma\left(R C_{R}^{-1}\right)$.
(e) Let R be a right Ore ring such that $R C_{R}^{-1}$ is a Noetherian right R module. Then $\Gamma(R) \cong \Gamma\left(R C_{R}^{-1}\right)$. Clearly, the natural homomorphism $\phi: R \longrightarrow R C_{R}^{-1}$, given by $\phi(r)=r / 1$, is injective. We show that ϕ is an isomorphism. Let $r s^{-1} \in R C_{R}^{-1}$. Then the chain $s^{-1} R \subseteq s^{-2} R \subseteq \ldots$ stabilizes because $R C_{R}^{-1}$ is Noetherian as right R-module. Thus there exists $n \geq 1$ such that $s^{-n} R=s^{-n-1} R$, and so $s^{-n-1}=s^{-n} r_{1}$ for some $r_{1} \in R$. Hence $s^{-1}=r_{1} \in R$ and so $\phi\left(r r_{1}\right)=r r_{1}=r s^{-1}$. This implies that ϕ is epimorphism; thus $\Gamma(R) \cong \Gamma\left(R C_{R}^{-1}\right)$.

Proposition 2.4. Let R be a reduced right Goldie ring. Then $\Gamma(R) \cong$ $\Gamma\left(D_{1} \times D_{2} \times \cdots \times D_{n}\right)$ for suitable division rings $D_{1}, D_{2}, \ldots, D_{n}$ and integer number n.
Proof. By Goldie's Theorem [8, Theorem 11.13], $R C_{R}^{-1}$ is a semisimple ring. Also by Remark 2.1, $R C_{R}^{-1}$ is reduced. Using the WeddernbornArtin Theorem, we conclude that $R C_{R}^{-1} \cong D_{1} \times D_{2} \times \cdots \times D_{n}$ for suitable division rings $D_{1}, D_{2}, \ldots, D_{n}$ and integer number n. Now by Theorem 2.2, $\Gamma(R) \cong \Gamma\left(D_{1} \times D_{2} \times \cdots \times D_{n}\right)$.

Let x be a vertex of a graph G . We say that x is a primitive vertex, if it is a minimal element in the ordering \leq.

Theorem 2.5. Let $\left\{A_{i}\right\}_{i \in I}$ and $\left\{B_{j}\right\}_{j \in J}$ be two families of domains and let $A=\prod_{i \in I} A_{i}$ and $B=\prod_{j \in J} B_{j}$. Then $\Gamma(A) \cong \Gamma(B)$ if and only if there exists a bijection $\psi: I \rightarrow J$ such that $\left|A_{i}\right|=\left|B_{\psi(i)}\right|$ for each $i \in I$.

Proof. One direction of the proof is clear. For the other direction, suppose that $\phi: \Gamma(A) \rightarrow \Gamma(B)$ is an isomorphism. We note that each primitive vertex in $\Gamma(A)$ has exactly one nonzero component. Let $x=\left(x_{i}\right)_{i \in I}$ be a primitive vertex in $\Gamma(A)$. Then there is $i_{0} \in I$ such that $x_{i_{0}} \neq 0$ and $x_{i}=0$ for each $i_{0} \neq i \in I$. Thus the set $\{[z] \mid z$ is a
primitive vertex of $\Gamma(A)\}$ has cardinality $|I|$. Similarly, the set $\{[z] \mid z$ is a primitive vertex of $\Gamma(B)\}$ has cardinality $|J|$. One can easily see that z is a primitive vertex of $\Gamma(A)$ if and only if $\phi(z)$ is a primitive vertex of $\Gamma(B)$. Also $[z]=\left[z^{\prime}\right]$ if and only if $[\phi(z)]=\left[\phi\left(z^{\prime}\right)\right]$. Thus we have $|I|=|J|$. On the other hand, $z \in[x]$ if and only if $\phi(z) \in[\phi(x)]$ and hence $|[x]|=|[\phi(x)]|$. Moreover $|[x]|=\left|A_{i_{0}}\right|$ and $|[\phi(x)]|=\left|B_{j}\right|$ for some $j \in J$. Clearly ϕ induces the required bijection ψ.

Corollary 2.6. Let A and B be two reduced right Goldie rings which are not domains. Then $\Gamma(A) \cong \Gamma(B)$ if and only if there exists a bijection $\phi: \operatorname{minSpec}(A) \rightarrow \operatorname{minSpec}(B)$ such that $|A / P|=|B / \phi(P)|$ for each $P \in \operatorname{minSpec}(A)$.

Proof. Set $T(A)=A C_{A}^{-1}$ and $T(B)=B C_{B}^{-1}$. Since A and B are reduced right Goldie rings, by [8, Proposition 11.22], we may assume that $\operatorname{minSpec}(A)=\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}, \operatorname{minSpec}(B)=\left\{Q_{1}, Q_{2}, \ldots, Q_{n}\right\}$ and $T(A) \cong K_{1} \times \ldots \times K_{m}, T(B) \cong L_{1} \times \ldots \times L_{n}$, where division rings K_{i} and L_{j} are the quotient rings of A / P_{i} and B / Q_{j}, respectively for $1 \leq i \leq m$ and $1 \leq j \leq n$. By Theorem 2.2, $\Gamma(A) \cong \Gamma\left(K_{1} \times K_{2} \times \cdots \times K_{m}\right)$ and $\Gamma(B) \cong \Gamma\left(L_{1} \times L_{2} \times \cdots \times L_{n}\right)$. Now suppose that $\Gamma(A) \cong \Gamma(B)$. By Theorem 2.5, we conclude that $m=n$ and there exists a permutation ρ of $\{1, \ldots, n\}$ such that $\left|A / P_{i}\right|=\left|K_{i}\right|=\left|L_{\rho(i)}\right|=\left|B / Q_{\rho(i)}\right|$ for $1 \leq i \leq n$. It is clear that ρ induces the required bijection ϕ. Conversely, if there exists such a bijection ϕ, then by Theorem 2.5, $\Gamma\left(K_{1} \times \ldots \times K_{m}\right) \cong \Gamma\left(L_{1} \times \ldots \times L_{n}\right)$ and hence $\Gamma(A) \cong \Gamma(B)$.

3. Complemented zero-divisor graphs

Let G be an undirected simple graph. As in [9], for distinct vertices a and b of G, we say that a and b are orthogonal, written by $a \perp b$, if a and b are adjacent and there is no vertex c of G which is adjacent to both a and b, i.e., the edge $a-b$ is not part of any triangle of G. Thus for $a, b \in Z(R)^{*}$, we have $a \perp b$ in $\Gamma(R)$ if and only if $a b=0$ or $b a=0$ and

$$
\left(\operatorname{ann}_{l}(a) \cup \operatorname{ann}_{r}(a)\right) \cap\left(\operatorname{ann}_{l}(b) \cup \operatorname{ann}_{r}(b)\right) \subseteq\{0, a, b\} .
$$

Finally, we say that G is a complemented graph if for each vertex a of G, there exists a vertex b of G (called a complement of a) such that $a \perp b$, and that G is uniquely complemented if it is complemented and whenever $a \perp b$ and $a \perp c$, then $b \sim c$.

In this section, we first show that for any reduced ring $R, \Gamma(R)$ is complemented if and only if $\Gamma(R)$ is uniquely complemented. Next we prove that if R is a reduced and von Neumann regular ring, then $\Gamma(R)$ is complemented. In the end of this section, we show that if R is not
reduced, then under certain conditions, $\Gamma(R)$ is complemented or $\Gamma(R)$ is uniquely complemented. In order to show these results, we need the following two lemmas which translate the above graph-theoretic concepts into ring-theoretic terms.
Lemma 3.1. Consider the following statements for a ring R and $a, b \in$ $Z(R)^{*}$.
(1) $a \sim b$.
(2) $a R=b R$.
(3) $\operatorname{ann}_{l}(a)=\operatorname{ann}_{l}(b)$.
(a) If R is reduced, then (1) and (3) are equivalent.
(b) If R is a reduced von Neumann regular ring, then all three statements are equivalent.
Proof. (a). If R is reduced, then $\operatorname{ann}_{l}(x)=\operatorname{ann}_{r}(x)$ for each $x \in Z(R)^{*}$. Thus we have $a \sim b$ if and only if $\operatorname{ann}_{l}(a)=\operatorname{ann}_{l}(b)$.
(b). Since R is a reduced ring, it is enough to show that (2) and (3) are equivalent. $(2) \Rightarrow(3)$ is clear. To show $(3) \Rightarrow(2)$, let $a=a c a$ for some $c \in R$. Thus $a(1-c a)=0$ and so $1-c a \in \operatorname{ann}_{r}(a)=$ $\operatorname{ann}_{l}(a)$. Since $\operatorname{ann}_{l}(a)=\operatorname{ann}_{l}(b)$, we have $(1-c a) b=0$ and hence $b(1-c a)=0$. Therefore $b=b c a \in R a$. This implies that $R b \subseteq R a$. Similarly, $R a \subseteq R b$ and so $R a=R b$.
Lemma 3.2. Let R be a reduced ring and $a, b \in Z(R)^{*}$. Then the following statements are equivalent.
(1) $a \perp b$.
(2) $a b=0$ and $a+b$ is a regular element of R.

Proof. (1) \Rightarrow (2). Since $a \perp b$ and R is reduced, we have $a b=0$. Suppose that $(a+b) c=0$ for some $c \in Z(R)^{*}$. Let $y=a c=-b c$. Then $b y=a y=0$. Since $a \perp b$, we conclude that $y \in\{0, a, b\}$. If $y=a$, then $a^{2}=a y=0$ which a contradiction. Similarly, $y=b$ implies that $b^{2}=0$, again a contradiction. Hence $y=0$ and so $a c=b c=0$. It follows that $c \in\{0, a, b\}$ because $a \perp b$. If $c=a$, then $a^{2}=0$, a contradiction. Similarly, $c \neq b$ and hence $a+b$ is regular.
$(2) \Rightarrow(1)$. Suppose that $c a=c b=0$ for some $c \in Z(R)^{*}$. Then $c(a+b)=0$, a contradiction because $a+b$ is regular. Since $a b=0$, we have $a \perp b$.
Proposition 3.3. Let R be a reduced ring and $a, b, c \in Z(R)^{*}$. If $a \perp b$ and $a \perp c$, then $b \sim c$. Consequently, $\Gamma(R)$ is uniquely complemented if and only if $\Gamma(R)$ is complemented.
Proof. Since $a \perp b$ and $a \perp c$, we have $a b=a c=0$. We first show that $b c \neq 0$. If $b c=0$, then $c \in\{0, a, b\}$ because $a c=0$ and $a \perp b$.

By our assumption, $c=a$ or $c=b$. If $c=a$, then $a c=a^{2}=0$ and hence $a=0$, a contradiction. Similarly $c \neq b$. Thus $b c \neq 0$. Now suppose that $d b=0$ for some $d \in Z(R)^{*}$. Then $0=(a c) d=a(c d)$ and $0=(d b) c=c(d b)=(c d) b$. It follows that $c d \in\{0, a, b\}$ because $a \perp b$. If $c d \neq 0$, then $c d=a$ or $c d=b$ and hence $a^{2}=0$ or $b^{2}=0$, which a contradiction. Therefore $c d=0$ and so $c \leq b$. Similarly $b \leq c$, and thus $b \sim c$.

Remark 3.4. Let R be a reduced von Neumann regular ring. Then for any $a \in Z(R)^{*}$, we have $a=u e$ where $u \in U(R)$ and $e \in R$ is idempotent. To see this, let $a \in R$. Since R is von Neumann regular, there exists $b \in R$ such that $a=a b a$. Then $a(1-b a)=0$ and hence $(1-b a) a=0$ because R is reduced. Thus $a=b a^{2}$. Similarly, $a=$ $a^{2} b$. We set $x=b^{2} a, e=a x$ and $u=(1-e+a)$. Then $e^{2}=$ axax $=a b^{2} a a b^{2} a=a b^{2} a^{2} b^{2} a=a b^{2} a^{2} b b a=a b^{2} a b a=a b^{2} a=e$. Also, since $a=a^{2} b^{2} a$, and $0=a b^{2}-a^{2} b^{2} a b^{2}=a\left(b^{2}-a b^{2} a b^{2}\right)$, we have $\left(b^{2}-a b^{2} a b^{2}\right) a=0$ and so $b^{2} a=a b^{2} a b^{2} a$. This implies that $u(1-$ $e+x)=(1-e+a)(1-e+x)=1$. On the other hand, $a b^{2} a^{2}=a$ and $a^{2} b^{2}-a b=0$. Hence $a\left(a b^{2}-b\right)=0=\left(a b^{2}-b\right) a=0$ and so $a b^{2} a=b a=b^{2} a^{2}$. Also $a b^{2}-a b a b^{2}=0$ implies that $a\left(b^{2}-b a b^{2}\right)=0$ and hence $\left(b^{2}-b a b^{2}\right) a=0$. Thus $b^{2} a=b a b^{2} a=b^{2} a^{2} b^{2} a$. Now, we conclude that $(1-e+x) u=(1-e+x)(1-e+a)=1$.

Corollary 3.5. If R is a reduced von Neumann regular ring, then $\Gamma(R)$ is a uniquely complemented graph.

Proof. By Remark 3.4, for any $a \in Z(R)^{*}$, there exist $u \in U(R)$ and idempotent $e \in R$ such that $a=u e$. Clearly, $a(1-e)=0$. Suppose that $a x=0$ and $(1-e) x=0$, for some $x \in R$. Then $x=e x$ and hence $u x=u e x=0$. Since $u \in U(R)$, we conclude that $x=0$. Thus $a \perp(1-e)$.

Proposition 3.6. Let R be a reduced right Ore ring. Then:
(a) If $R C_{R}^{-1}$ is von Neumann regular, then $\Gamma(R)$ is uniquely complemented.
(b) If $\Gamma(R)$ is complemented, then every prime ideal of $R C_{R}^{-1}$ is maximal.

Proof. (a). Since R is reduced, by Theorem 2.2, $\Gamma(R) \cong \Gamma\left(R C_{R}^{-1}\right)$. Also by Corollary 3.5, $\Gamma\left(R C_{R}^{-1}\right)$ is uniquely complemented. Thus $\Gamma(R)$ is uniquely complemented.
(b). Let P and Q be two prime ideals of $R C_{R}^{-1}$ such that $P \varsubsetneqq Q$. Thus there exists $x s^{-1} \in Q$ such that $x s^{-1} \notin P$. Then $x \in Z(R)^{*}$ because $P \neq R$. Since $\Gamma(R)$ is complemented, there exists $y \in Z(R)^{*}$ such that
$x \perp y$. Now by Lemma 3.2, $x y=0$ and $x+y$ is a regular element. Also since R is reduced, we have $x R C_{R}^{-1} y=0$ and so $x R C_{R}^{-1} y \subseteq P$. This implies that $y \in P$ because P is prime and $x \notin P$. Thus $x+y \in Q$ and hence $Q=R C_{R}^{-1}$, a contradiction. It follows that every prime ideal of $R C_{R}^{-1}$ is maximal.

Recall that a vertex of a graph is called an end if there is only one other vertex adjacent to it. We say that a ring R is an Artinian ring if R is both a left and a right Artinian ring. Let R be a ring. The prime radical of R, denoted by $\operatorname{Nil}_{*}(R)$, is the intersection of all prime ideals in R and the Jacobson radical of R, denoted by $\operatorname{Rad}(R)$, is the intersection of all maximal right ideals of R. We conclude the paper with the following theorem which gives the necessary conditions for an Artinian ring R with $\operatorname{Nil}_{*}(R) \neq 0$, such that $\Gamma(R)$ is a complemented or uniquely complemented graph.

Theorem 3.7. Let R be an Artinian ring with $\operatorname{Nil}_{*}(R)$ nonzero. (a) If $\Gamma(R)$ is complemented, then either $|R|=8,|R|=9$, or $|R|>9$ and $\operatorname{Nil}_{*}(R)=\{0, x\}$ for some $0 \neq x \in R$.
(b) If $\Gamma(R)$ is uniquely complemented and $|R|>9$, then any complement of the nonzero nilpotent element of R is an end.

Proof. (a). Suppose that $\Gamma(R)$ is complemented and let $a \in \operatorname{Nil}_{*}(R)$ have index of nilpotence $n \geq 3$. Let $y \in Z(R)^{*}$ be a complement of a. Then $a^{n-1} y=0=a^{n-1} a$; so $y=a^{n-1}$, because $a \perp y$. Thus $a \perp a^{n-1}$ and this implies that $\operatorname{ann}_{l}(a) \cup \operatorname{ann}_{r}(a)=\left\{0, a^{n-1}\right\}$. Similarly, $a^{i} \perp a^{n-1}$ for each $1 \leq i \leq n-2$. Suppose that $n>3$. Then $a^{n-2}+a^{n-1}$ kills both a^{n-2} and a^{n-1}, a contradiction, because $a^{n-2} \perp a^{n-1}$ and $a^{n-2}+a^{n-1} \notin\left\{0, a^{n-2}, a^{n-1}\right\}$. Thus if R has a nilpotent element with index $n \geq 3$, then $n=3$. In this case, $R a^{2}=\left\{0, a^{2}\right\}$ because any $z \in R a^{2}$ kills both a and a^{2} and $a \perp a^{2}$. Also if $z a^{2}=0$, then $z a \in$ $\operatorname{ann}_{l}(a)=\left\{0, a^{2}\right\}$ and so either $z a=0$ or $z a=a^{2}$. If $z a=0$, then $z=0$ or $z=a^{2}$ while if $z a=a^{2}$, then $(z-a) a=0$ and hence $z=a$ or $z=a+a^{2}$. Therefore $\operatorname{ann}_{l}\left(a^{2}\right)=\left\{0, a, a^{2}, a+a^{2}\right\}$. Thus the $R-$ epimorphism $r \longrightarrow r a^{2}$, from R onto $R a^{2}$ implies that R is a local ring with $|R|=8, \operatorname{Nil}_{*}(R)=\operatorname{ann}_{l}\left(a^{2}\right)$ its maximal ideal and $\Gamma(R)$ is a star graph with center a^{2} and two edges.

Now suppose that each nonzero nilpotent element of R has index of nilpotence 2. Let $y \in \operatorname{Nil}_{*}(R)$ have complement $z \in Z(R)^{*}$ and assume that $2 y \neq 0$. Without loss of generality, we can assume that $y z=0$. Note that $(r y) y=0=(r y) z$ for all $r \in R$. Thus $R y \subseteq\{0, y, z\}$. Then necessarily $2 y=z$ since $2 y \in R y \subseteq\{0, y, z\}$. Also $\operatorname{ann}_{r}(y)=\{0, y, 2 y\}$ since $y \perp 2 y$. Thus $R y=\{0, y, 2 y\}$; so we have $|R|=9$. In this case,
R is local with maximal ideal $\operatorname{Nil}_{*}(R)=\operatorname{ann}_{r}(y)$ and $\Gamma(R)$ is a star graph with one edge.

Next suppose that each nonzero nilpotent element of R has index nilpotence 2 and $|R| \neq 9$. By above, we must have $2 y=0$. We show that $\operatorname{Nil}_{*}(R)=\{0, y\}$. Suppose that z is another nonzero nilpotent element of R; so $z^{2}=0$. Then $y+z \in \operatorname{Nil}_{*}(R)$ and hence $(y+z)^{2}=0$. Suppose that y^{\prime} and z^{\prime} are complements of y and z, respectively. Then we have $y y^{\prime}=0$ or $y^{\prime} y=0$ and $z z^{\prime}=0$ or $z^{\prime} z=0$. We proceed by cases.
Case 1. $y y^{\prime}=0$ and $z z^{\prime}=0$. Since $y \perp y^{\prime}$ and $z \perp z^{\prime}, R y \subseteq\left\{0, y, y^{\prime}\right\}$ and $R z \subseteq\left\{0, z, z^{\prime}\right\}$. We claim that $y z=z y=0$. Note that $y z \in R z \subseteq$ $\left\{0, z, z^{\prime}\right\}$. If $y z \neq 0$, then either $y z=z$ or $y z=z^{\prime}$. If $y z=z$, then $0=y(y z)=y z$, a contradiction. Thus $y z=z^{\prime}$. It follows that $z^{\prime} \in$ $\operatorname{Nil}_{*}(R)$ and so $z^{\prime 2}=0$. Since $z \perp z^{\prime}$ and $z\left(z+z^{\prime}\right)=\left(z+z^{\prime}\right) z^{\prime}=0$, we conclude that $z+z^{\prime}=0$; so $z^{\prime}=-z=z$, a contradiction (by the definition of complement). Thus $y z=0$. Similarly, $z y=0$. Let w be a complement of $y+z$. Then $w(y+z)=0$ or $(y+z) w=0$. We note that $w \neq y$. For if $w=y$, then $(y+z) z=0$ and $w z=0$ and hence $z \in\{0, w, y+z\}=\{0, y, y+z\}$, a contradiction. Similarly, $w \neq z$. We claim that $(y+z) w=0$. Otherwise $w(y+z)=0$. Then $w y=w z \in R y \cap R z$. Thus $w y=w z=0$ or $w y=w z=y^{\prime}=z^{\prime}$. If $w y=0$, then since $(y+z) y=0$ and $(y+z) \perp w$, we conclude that $y \in\{0, y+z, w\}$, a contradiction. If $w y=w z=y^{\prime}=z^{\prime}$, then $y^{\prime} \in$ $\mathrm{Nil}_{*}(R)$ which again is a contradiction (similar to what was described above for $\left.z^{\prime} \in \operatorname{Nil}_{*}(R)\right)$. Thus $(y+z) w=0$. On the other hand, $z^{\prime} y \in R y \subseteq\left\{0, y, y^{\prime}\right\}$. If $z^{\prime} y=0$, then since $y z=0$ and $z \perp z^{\prime}$, we have $y \in\left\{0, z, z^{\prime}\right\}$ and hence $y=z^{\prime}$. Thus $z^{\prime} \in \operatorname{Nil}_{*}(R)$, a contradiction. If $z^{\prime} y=y^{\prime}$, then $y^{\prime} \in \operatorname{Nil}_{*}(R)$ which again is a contradiction. Thus $z^{\prime} y=y$. Similarly, $y^{\prime} z=z$. Also $y^{\prime} y \in R y \subseteq\left\{0, y, y^{\prime}\right\}$. We claim that $y^{\prime} y=y$. If $y^{\prime} y=y^{\prime}$, then $y^{\prime} \in \operatorname{Nil}_{*}(R)$, a contradiction. If $y^{\prime} y=0$, then $y^{\prime}(y+z)=y^{\prime} z=z \in\{0, y+z, w\}$ which is a contradiction (because $z w=0$ and $(y+z) z=0)$. Thus $y^{\prime} y=y$ and so $y^{\prime 2} \neq 0$. Since R is an Artinian ring, every right zero-divisor of R is a left zero-divisor. Thus $y^{\prime} t=0$ for some nonzero $t \in R$. Now $t y \in R y$ and so $t y=0, t y=y$ or $t y=y^{\prime}$. If $t y=0$, then since $y^{\prime} t=0$ and $y \perp y^{\prime}$, we have $t \in\left\{0, y, y^{\prime}\right\}$. Then $0=y^{\prime} t=y^{\prime 2}$ or $0=y^{\prime} t=y^{\prime} y=y$, which is a contradiction. Thus ty $=y$ or $t y=y^{\prime}$ and we conclude that $0=y^{\prime} t y=y^{\prime} y=y$ or $0=y^{\prime} t y=y^{\prime 2}$, a contradiction.
Case 2. $y^{\prime} y=0$ and $z z^{\prime}=0$. Then $y R \subseteq\left\{0, y, y^{\prime}\right\}$ and $R z \subseteq\left\{0, z, z^{\prime}\right\}$ and so $y y^{\prime} \in\left\{0, y, y^{\prime}\right\}$. If $y y^{\prime}=y^{\prime}$, then $y^{\prime} \in \operatorname{Nil}_{*}(R)$, a contradiction. If $y y^{\prime}=0$, then by Case 1 , we are done. Thus we have $y y^{\prime}=y$. Now since
R is an Artinian ring and $y^{\prime} y=0, t y^{\prime}=0$ for some nonzero $t \in R$. On the other hand, $y t \in\left\{0, y, y^{\prime}\right\}$. If $y t=0$, then $t \in\left\{0, y, y^{\prime}\right\}$ (because $t y^{\prime}=0$ and $\left.y \perp y^{\prime}\right)$. Therefore either $t=y$ or $t=y^{\prime}$. This implies that $0=t y^{\prime}=y y^{\prime}=y$ or $0=t y^{\prime}=y^{\prime 2}$, again a contradiction. Thus we have $y t=y$ or $y t=y^{\prime}$. Then $0=y t y^{\prime}=y y^{\prime}=y$ or $0=y^{\prime} y t=y^{\prime 2}$, a contradiction.
Case 3. $y^{\prime} y=0$ and $z^{\prime} z=0$. It is similar to Case 1.
Case 4. $y y^{\prime}=0$ and $z^{\prime} z=0$. It is similar to Case 2.
(b). Suppose that $\Gamma(R)$ is uniquely complemented and $|R|>9$. Let $0 \neq x \in \operatorname{Nil}_{*}(R)$. By part (a), $\operatorname{Nil}_{*}(R)=\{0, x\}$. Let y be a complement of x. Then $x y=0$ or $y x=0$. Without loss of generality, we may assume that $x y=0$. Clearly $x(x+y)=0$, since $x^{2}=0$. We claim that $x \perp(x+y)$. Suppose $w \in Z(R)^{*}$ such that $x-w$ and $(x+y)-w$ are two edges of $\Gamma(R)$. Now we proceed by cases.
Case 1. $x w=0$ and $(x+y) w=0$. Then $y w=0$ and since $x w=0$ and $x \perp y$, we conclude that $w \in\{0, x, y\}$. If $w=y$, then $y^{2}=0$ and hence $x(x+y)=0$ and $(x+y) y=0$. This contradicts that $x \perp y$. Thus $w=x$ and we are done.
Case 2. $w x=0$ and $(x+y) w=0$. Then $x w=y w$ (note that $x=-x$) and since $x w \in\{0, x\}$, either $x w=0$ or $x w=x$. If $x w=0$, then $x w=y w=0$ and similar to Case $1, w=x$. Thus suppose that $x w=y w=x$. Since $x y=0$ and R is an Artinian ring, $y t=0$ for some $t \in Z(R)^{*}$. Now if $t x=0$, then $t \in\{0, x, y\}$ (note that $x \perp y$) and we deduce $t=x\left(\right.$ since $\left.y^{2} \neq 0\right)$. If $t x=x$, then $0=y t x=y x$. Thus in any case, we have $y x=0$. On the other hand, $(w y) x=0$ and $y(w y)=0$ and hence $w y \in\{0, x, y\}$. Now we continue the proof by subcases;

Subcase 1. $w y=0$. Then since $w x=0$ and $x \perp y$ and $w \in\{0, x, y\}$; so $w=x$ and we are done.

Subcases 2. $w y=y$. Then $(w-1) y=0$ and also $x(w-1)=0$. Thus $(w-1) \in\{0, x, y\}$. Clearly $w \neq 1$. If $w-1=x$, then $w=$ $1+x$ is invertible (note that $x \in \operatorname{Rad}(R)=\operatorname{Nil}_{*}(R)$), a contradiction. Therefore $w-1=y$ and this implies that $0=w x=x+y x=x$, which again is a contradiction.

Subcases 3. $w y=x$. Then $0=w x=w(y w)=(w y) w=x w=x$, a contradiction.
Case 3. $x w=0$ and $w(x+y)=0$. It is similar to Case 2 .
Case 4. $w x=0$ and $w(x+y)=0$. It is similar to Case 1 .
Thus in any case, we conclude that $x \perp(x+y)$. Since $\Gamma(R)$ is uniquely complemented and $x \perp y$, we have that $(x+y) \sim y$. Suppose that there exists $z \in Z(R)^{*} \backslash\{x\}$ such that $z y=0$ or $y z=0$. Without loss of generality, we can assume that $z y=0$. Then since $(x+y) \sim y$, we
have $z(x+y)=0$ or $(x+y) z=0$. If $z(x+y)=0$, Then $z x=0$, a contradiction. Thus $(x+y) z=0$. Then $x z+y z=0$ and since $x z \neq 0$, we have $x+y z=0$. Now $z x=z y z=0$, which again is a contradiction. Thus no such z can exist; so y is an end.

Acknowledgments. This work was partially supported by Islamic Azad University, Khorramabad Branch, Khorramabad, Iran.

References

1. M. Afkhami and K. Khashyarmanesh, On the cozero-divisor graphs of commutative rings, App. Mathematics, 4 (2013), 979-985.
2. S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra, 274 (2004), 847-855.
3. S. Akbari and A. Mohammadian, Zero-divisor graphs of noncommutative rings, J. Algebra, 296 (2006), 462-479.
4. D. F. Anderson, R. Levy and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra, 180 (2003), 221-241.
5. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
6. I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208-226.
7. T. Y. Lam, A first course in noncommutative rings, New York: Springer-Verlag, 1991.
8. T. Y. Lam, Lectures on modules and rings, Graduate Texts in Math, New York-Heidelberg- Berlin: Springer-Verlag, 1999.
9. R. Levy and J. Shapiro, The zero-divisor graph of von Neumann regular rings, Comm. Algebra, 30 (2002), 745-750.
10. S. P. Redmond, The zero-divisor graph of a noncommutative ring, Internat J. Commutative Rings, (4) 1 (2002), 203-211.
11. T. Tamizh Chelvam and S. Nithya, A note on the zero-divisor graph of a lattice, Transactions on Combinatorics, (3) 3 (2014), 51-59.

Reza Beyranvand

Department of Mathematics, Lorestan University, P. O. Box: 465, Khorramabad, Iran.
Email: beyranvand.r@lu.ac.ir
Parvin Karimi Beiranvand
Department of Mathematics, Islamic Azad university, Khorramabad Branch, Khorramabad 68178-16645, Iran.
Email: karimi.pa@fs.lu.ac.ir

[^0]: MSC(2010): Primary: 16U20, Secondary: 16N40, 16N60.
 Keywords: Quotient ring, zero-divisor graph, reduced ring, complemented graph. Received: 4 March 2016, Accepted: 8 June 2016.
 *Corresponding author.

