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G-WEIGHTS AND p-LOCAL RANK

P. MANUEL DOMINGUEZ WADE

Abstract. Let k be field of characteristic p, and let G be any
finite group with splitting field k. Assume that B is a p-block of
G. In this paper, we introduce the notion of radical B-chain CB ,
and we show that the p-local rank of B is equals the length of CB .
Moreover, we prove that the vertex of a simple kG-module S is
radical if and only if it has the same vertex of the unique direct
summand, up to isomorphism, of the Sylow permutation module
whose radical quotient is isomorphic to S. Finally, we prove the
vertices of certain direct summands of the Sylow permutation mod-
ule are bounds for the vertices of simple kG-modules.

1. Introduction

Let k be field of characteristic p, and G a finite group with splitting
field k. The p-subgroup Q of G is a radical p-subgroup if Op(NG(Q)) =
Q. Assume that B is a p- block of G.

Given a p-subgroup chain

C : P0 < P1 < · · · < Pn

of G, define |C| = n, the i-th subchain Ci : P0 < P1 < · · · < Pi, and

N(C) = NG(C) = NC(P0) ∩NG(P1) ∩ · · · ∩NG(Pn).

The chain C is radical if it satisfies the following two conditions:

(a): P0 = Op(G),
(b): Pi = Op(N(Ci)) for 1 ≤ i ≤ n.
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Denote by R = R(G) the set of all radical p-chains of G. Let B be a
p-block and let D be a defect group of B. The p-local rank of B is the
number

plr(B) = max{|C| : C ∈ R, C : P0 < P1 < · · · < Pn ≤ D}.
In this paper, we introduce the notion of radical B-chain CB, and we
show that the p-local rank of B is equals the length of CB. Other
question that we study in this paper correspond to the radical vertices
of simple modules. In [4] it is proved that vertices of simple kG-modules
for p-solvable groups G are radical. However, when the group is not
p-solvable this is not necessarily the case. There are at present very few
examples known of simple modules whose vertices are not radical, and
our purpose here is to restrict the places to search for further examples,
whilst generalizing the results of [4]. We prove that the vertex of a
simple kG-module S is radical if and only if it has the same vertex
of the unique G-weight, up to isomorphism, whose radical quotient is
isomorphic to S. In [9] it is proved that if Q is the vertex of a simple
kG-module S which belongs to a block B, then we can write

Z(D) ≤ Q ≤ D,

where D is the defect group of B. This result can be interpreted as
giving “ bounds” for the vertices of simple kG-modules. Finally, in the
present paper, we show that the vertices of the G-weights are better
bounds for the vertices of the simple modules.

2. Preliminary Results

In this section, we study the connection between the isomorphism
type of indecomposable projective kG-modules of kG and the iso-
morphism type of indecomposable kG-modules direct summands of
IndGQ(k), being Q a p-subgroup of G.

Let G be a finite group with splitting field k, and let Q be a p-
subgroup of G. Assume that n = |G : Q| and let X+ = {x1, . . . , xn} be
a full set of representatives in G of the cosets in G/Q. Then IndGQ(k)
is isomorphic to kGQ+ as left kG-module, where Q+ = {

∑
x∈X+ αx ∈

kG}.
Set X = {xi − xiy, y ∈ Q − 1}. Then IQ(G) denotes the left ideal

generated by X in kG. We claim that

rankk(IQ(G)) = |G : Q|(|Q| − 1).

Thus, we have
kG/IQ(G) ∼= kGQ+, (2.1)

as k-modules.
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It is well known, that

kG =
r⊕
j=1

P
dimSj

Sj
, (2.2)

where PSj
is the projective cover of the simple kG-module Sj and r is

the number of conjugacy classes of p-regular elements of G.
From (2.2), the following holds

kGQ+ =
r⊕
j=1

MQ
j , (2.3)

where MQ
j = P

dimSj

Sj
/P

dimSj

Sj
IQ(G).

The following lemmas are easy but useful to our results.

Lemma 2.1. Let G be a finite group with splitting field k of charac-
teristic p, and let S be a simple kG-module with projective cover PS.
Assume that U is an indecomposable kG-module. Then Soc(U) is a
simple kG-module.

Proof. Since U is an indecomposable kG-module Rad(U) is the unique
maximal proper submodule of U , therefore U/Rad(U) is simple. By
assumption, we also may assert that U/Rad(U) ∼= Soc(U). So we are
done. �

Lemma 2.2. Let G be a finite group with splitting field k of character-
istic p, and let U be an indecomposable kG-module finitely generated.
If Rad(U) 6= 0, then Soc(U) ⊆ Rad(U).

Proof. By assumption, we may write U/Rad(U) ∼= Soc(U). Moreover,
from Nakayamas lemma, we may assert that U −→ U/Rad(U) is an es-
sential epimorphism. Since U is an indecomposable kG-module Rad(U)
is the unique maximal proper submodule of U , hence, we may assert
that U/Rad(U) is simple. So we are done. �

Lemma 2.3. Let G be a finite group with splitting field k of charac-
teristic p. Fixed P ∈ Sylp(G). We denote the Jacobson radical of kG
by J(G). Then J(G) ⊆ IP (G) if and only if kG/IP (G) is semisimple.

Proof. Since every direct summand of kG/IP (G) is annihilated by IP (G),
the result follows.

The converse implication is trivial. �

The following result is very useful for our main result.

Lemma 2.4. Let G be a finite group with splitting field k of char-
acteristic p, and let Op(G) be the largest normal p-subgroup of G. If
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Op(G) 6= 1 then there exists at least one simple projective k[G/Op(G)]-
module with vertex Op(G).

Proof. Let us write Q for Op(G). It is well-known that IQ(G) 6= 0 is a
nilpotent ideal of kG. Furthermore, we have

kGQ+ ∼= k[G/Q], (2.4)

as kG-modules. We claim that kG is the projective cover of k[G/Q].
Assume that α : kG −→ k[G/Q] is an essential epimorphism. Let
S1, . . . , Sr be a complete list of simple kG-modules with projective
covers PS1 , . . . , PSr , respectively. From Lemma 2.2, we may assert
that SocPSi

⊆ RadPSi
for all i ∈ {1, . . . , r}. Therefore kG/J(G) ∼=

SockG ∼= Sock[G/Q] with Soc(kG) ∼= Soc(J(G)). Since α is an essen-
tial epimorphism and α(Soc(J(G)
)) ∼= Soc(J(G/Q)), we deduce that Soc(k[G/Q]) 6⊂ Soc(J(G/Q)). This
imply that there is at last a α(PSi

) such that Rad(α(PSi
)) = 0. Thus,

from (2.4), the result follows. �

Many of the properties of the kG-modules with trivial source was
studied by several authors. In particular, Okuyama’s obtained the
following result (See [14]).

Lemma 2.5. Let S be a simple kG-module with vertex Q and trivial
source. Then the Green correspondent f(S) of S is a simple projective
k[NG(Q)/Q]-module.

Other extremely important result, in such sense, was achieved by
Alperin’s (See [2]).

Lemma 2.6. Let P be a Sylow p-subgroup of G. If W is a weight of G
and U its Green correspondent, then U is a direct summand of kGP+.

3. G-Weights and its Main Properties

We will now give a description of the direct summands of a Sylow
permutation module. Firstly, we will show the conditions under which
MP

j is a projective kG-module.

Theorem 3.1. Let G be a finite group with splitting field k of char-
acteristic p, and let S be a simple kG-module. Set P ∈ Sylp(G) fixed.
Then MP

j is a projective kG-module if and only if PSj
is a block of

defect zero.

Proof. Let J(G) be the Jacobson radical of kG. We to check two cases.
Case (1): J(G) ⊆ IP (G).
In this case, by Lemma 2.3, the assertion follows.
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Case (2): J(G) 6⊆ IP (G).
Assume that MP

j
∼= P l

Sj
is a projective kG-module, where l is the

multiplicity of PSj
as direct summand of MP

j . We show that PSj
is a

simple kG-module.
Since IP (G) is left ideal of kG, from (2.2), it follows that

IP (G) = P dimS1
S1

IP (G)⊕ · · · ⊕ P dimSr
Sr

IP (G). (3.1)

By assumption, we have P l
Sj
IP (G) = 0. Therefore, we deduce that

P
dimSj

Sj
IP (G) is a projective kG-module, where the multiplicity of PSj

is equal to dim(Sj)− l, i.e., we have

P
dimSj

Sj
IP (G) = P

dim(Sj)−l
Sj

.

Thus, we may assert that PSj
IP (G) is a right indecomposable IP (G)-

module such that

(PSj
IP (G))dimSj = P

dim(Sj)−l
Sj

. (3.2)

We assume that α = dim(PSj
IP (G)) and β = dim(PSj

). According to
(3.2), we way write the following equality:

α dim(Sj) = β(dim(Sj)− l). (3.3)

From (3.3), it follows that

α

dim(Sj)− l
=

β

dimSj
. (3.4)

We now claim that the equality (3.4) is true if and only if
α

dim(Sj)− l
=

β

dimSj
= 1. Hence, the following holds dimSj = dimPSj

. This com-

pletes the proof of this implication.
Conversely, combining the Lemmas 2.5 and 2.6, we deduce that PSj

is a direct summand of MP
j . Since the radical quotient of all direct

summand of MP
j is PSj

the result follows. �

Remark 3.2. We observe that, according to last theorem, the kG-
module MP

j can be decompose as a direct sum of copy of a block
defect zero or a direct sum where at least a direct summand is an
indecomposable not projective kG-module.

Let Q be a p-subgroup of G such that Q = Op(NG(Q)). Such sub-
groups are called p-radical subgroups. We want to remark that the
p-radical subgroups play an important role in the study of the global
and local properties of finite groups. In this context the following result
is very interesting.
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Theorem 3.3. Let G be a finite group with splitting field k of char-
acteristic p, and let P ∈ Sylp(G) fixed. Then every indecomposable
kG-module direct summand of kGP+ has a radical vertex.

Proof. Let NG(P ) be the normalizer of P . According to the Green
correspondence every indecomposable kG-module direct summand of

kGP+ ∼= IndGNG(P )Ind
NG(P )
P (k) has vertex P or a vertex of the form

P ∩ P g, g ∈ G−NG(P ). Observe that if P is a normal subgroup of G
then kGP+ is semisimple, so every indecomposable kG-module direct
summand of kGP+ is a simple kG-module with vertex P . Therefore,
we now consider the case where P is not a normal subgroup of G.
Assume that U is an indecomposable kG-module with vertex Q ≤ P ,
being U | kGP+. We to check two cases.

• Case (1): Q = 1.
If Q = P ∩ P g = 1 then Op(G) = 1. Since Op(G) is a radical

p-subgroup, the result follows.
• Case (2): 1 < Q < P .

In this case Q = P
⋂
P g, for some g ∈ G − NG(P ). Let

NP (Q) be the normalizer of Q in the Sylow p-subgroup P . We
claim that P

⋂
NG(Q) = NP (Q) and P g

⋂
NG(Q) = N g

P (Q)
are Sylow p-subgroups of NG(Q). Since NP (Q) and N g

P (Q) are
conjugated in NG(Q), we deduce that Q is a tame intersection of
NG(Q)-conjugate Sylow p-subgroups of G. Thus, we can write
Q = NP (Q) ∩N g

P (Q) with g ∈ NG(Q). Hence, we have

Op(NG(Q)) ≤ Q. (3.5)

Since Q is a normal p-subgroup, we can write

Q ≤ Op(NG(Q)). (3.6)

Combining (3.5) and (3.6), it follows that Q = Op(NG(Q)).

�

In the rest of this paper, we will assume the notations and termi-
nologies used in the last section.

Theorem 3.4. Let G be a finite group, k be a splitting field for G and
P ∈ Sylp(G) . If MP

j has an indecomposable non-projective kG-module
as direct summand, then it is unique, up to isomorphism.

Proof. By the Krull-Schmidt theorem, each left kG-module MP
j can

be decomposed, of unique manner, as a direct sum of indecomposable
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kG-modules,i.e., we may write

MP
j =

µ⊕
γ=1

Uγ, (3.7)

where Uγ is an indecomposable kG-module.
We now assume that Uγ is an indecomposable non-projective kG-

module such that Uγ |MP
j . Let PSj

be the projective cover of the simple
kG-module Sj, which is isomorphic to the radical quotient Uγ/Rad(Uγ).
We show that PSj

is the projective cover of Uγ.
By Nakayama’s lemma, we may assert that there exists two essential

epimorphisms h1 : PSj
→ PSj

/Rad(PSj
) and h2 : U → U/Rad(U).

Since PSj
/Rad(PSj

) ∼= Uγ/Rad(Uγ) ∼= Sj and PSj
is projective, we

deduce that there is an essential epimorphism θ1 : PSj
→ Uγ such that

h1 = h2 ◦ θ1. We now show that Uγ is unique, up to isomorphism.
Suppose that Uγ′ is other indecomposable non-projective kG-module

in the decomposition (3.7). Since PSj
is projective cover of Uγ and Uγ′ ,

we deduce that there are two essential epimorphisms θ1 : PSj
→ Uγ

and θ2 : PSj
→ Uγ′ . We define the homomorphism σ : Uγ → Uγ′ given

by σ(θ1(a)) = θ2(a), a ∈ PSj
. Let Ω(Uγ) and Ω(Uγ′) be the Heller

operators of Uγ and Uγ′ , respectively. Then, we can write

Ω(Uγ) ∩ Ω(Uγ′) = 0. (3.8)

Since θ1 and θ2 are essential epimorphisms, we have

σ(Uγ) = Uγ′ .

We show that σ is injective. Clearly, we may see that

kerσ = {θ1(a) ∈ Uγ : a ∈ Ω(Uγ′)}.
Therefore, from (3.8), we may assert that kerσ ∼= Ω(Uγ′). Thus, we
have

PSj
/Ω(Uγ′) ∼= Uγ/ kerσ ∼= Uγ′ . (3.9)

From (3.9), we deduce that PSj
∼= Uγ or ker σ = 0. By assumption, we

have PSj
6∼= Uγ, therefore ker σ = 0. Hence Uγ ∼= Uγ′ , which is what we

need to prove. �

We now introduce the notion of G-weight.

Definition 3.5. A G-weight for G is a pair (Q,U), where U is an
indecomposable kG-module direct summand of kGP+ with vertex Q,
which is simple or non-projective kG-module.

Remark 3.6. Strictly speaking, we can say that the pair (Q,US) is the
G-weight, but we may also refer to the kG-module US as a G-weight.
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In terms of G-weights, the following result is a consequence immedi-
ate of Theorem 3.4.

Corollary 3.7. Let G be a finite group with splitting field k of char-
acteristic p. Then the direct summands of kGP+ are G-weights or
non-simple projective kG-modules.

Proof. If MP
j is projective then MP

j can be write as a direct sum of

copies of a simple projective kG-module by Theorem 3.1. If MP
j is

not projective then, by Theorem 3.4, we may assert that MP
j can be

decomposed as a direct sum, whose direct summands are copies of a
G-weight U or copies of the projective cover of U . So we are done. �

Remark 3.8. We observe that if PS is the projective cover of the simple
kG-module S, then PSIP (G) is equal to 0, PS or Ω(US), where US is a
G-weight such that US/Rad(US) ∼= S. If J(G) ⊆ IP (G) then PSIP (G)
is equal to 0 or Ω(S).

It is well known that the number of non-isomorphic simple kG-
modules equals the number of conjugacy classes of p-regular elements
of G. The following result establish that the G-weights also satisfy this
condition.

Theorem 3.9. Let G be a finite group with splitting field k of char-
acteristic p. Then the number of non-isomorphic G-weights equals the
number of conjugacy classes of p-regular elements of G.

Proof. From (2.3), we have

kGP+ =
r⊕
j=1

MP
j ,

where r is the number of conjugacy classes of p-regular elements of G
and MP

j is a left kG-module such that

MP
j
∼= P

dimSj

Sj
/P

dimSj

Sj
IP (G),

for some simple kG-module Sj.
We check two cases.
Case (1): MP

j is projective.

According to Theorem 3.1, we have MP
j =

⊕
PSj

, being PSj
a block

of defect zero. Therefore, by assumption, we may assert that (PSj
, 1)

is a G-weight.
Case (2): MP

j is non-projective.

By Theorem 3.4, we may assert that MP
j has a unique direct sum-

mand U (up to isomorphism), which is an indecomposable non-projective
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kG-module with vertex Q. Thus, (Q,U) is a unique G-weight, which
proves what we want. �

Finally, in this section, we give some conditions that can be used in
the classification of the p-radical subgroups of any finite group.

Theorem 3.10. Let G be a finite group with splitting field k of char-
acteristic p, and let Q 6= 1 be a p-subgroup of G. Then Q is p-radical
if and only if it is a vertex of a G-weight.

Proof. By assumption, we can write Q = Op(NG(Q)). Thus, accord-
ing to Lemma 2.4, we may assert that there exist at least one simple
projective kNG(Q)/Q-module W with vertex Q. We denote the Green
correspondent of W by U . Combining Lemma 2.6 and Corollary 3.7,
we deduce that U is a G-weight, which is our assertion.

The converse implication follows by Theorem 3.3. �

4. G-weight and p-Local Rank

Let G be a finite group with splitting field k of characteristic p,
and let B be a p-block of G with defect group D. We denote the set
of all the vertices of the G-weights that belongs to B by V(B). Set
V (D) = {Op(G)} ∪ V(B)}. We define the radical p-chain

CB : P0 < P1 < · · · < Pn,

where Pi ∈ V (D)(for all i(0 < i < n)), Pn = D and |CB| = |V(B)|. In
this case, we say that CB is a GB-weight chain of B. We claim that
the GB-weight chain of B is unique up to conjugacy.

The next following result is an extremely important toll for handling
the radical vertex of indecomposable modules.

Theorem 4.1. Let G be a finite group with splitting field k of char-
acteristic p, and let B be a a p-block of G with defect group D. Then
plr(B) = |CB|.

Proof. We denote the Brauer correspondent of B by b. We distinguish
two cases.

Case I: D = 1.
In such case B is block of defect zero, so the result follows by as-

sumption.
Case II: D 6= 1.
Suppose that Q̃ ≤ D is a radical p-subgroup of G. Firstly, we show

that there is a weight with vertex Q̃ which belongs to b. By assumption,
we can write

NG(Q̃) ≥ NG(D) (4.1)
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Since Q̃ is radical, we have Q̃ = Op(NG(Q̃)). Thus, applying the

Lemma 2.4, we may assert that there is at least one simple NG(Q̃)-
module W with vertex Q̃ and trivial source. Therefore (Q̃,W ) is a
weight of G. From (4.1), we deduce that (Q̃,W ) belongs to b. We now
prove that the Green correspondent of W is a G-weight. We denote the
weight Green correspondent of W by U . According to Lemma 2.6, we
may assert that U is a direct summand of kGP+, being P ∈ Sylp(G).
Since U is not a projective kG-module, we deduce that U is a G-weight
by Corollary 3.7. We have bW = W , which implies that BU = U by
first main theorem. So we are done.

�

In this context we obtained the following result for simple modules.

Theorem 4.2. Let S be a simple kG-module with vertex QS and G-
weight (Q,US). Then QS is radical if and only if QS = Q.

Proof. By assumption, we can write

k[NG(QS)]Q+
S
∼= k[NG(QS)]/QS, (4.2)

as kNG(QS)-modules. Let SQS be the fixed point module under the
action of QS on S. We claim that IQS

(NG(QS)) is an annihilator of
SQS . This, assets that SQS is a direct summand of k[NG(QS)]Q+

S .
Hence, from (4.2), we may deduce that SQS is an indecomposable pro-
jective k[NG(QS)]/QS-module which has vertex QS and trivial source.
We denote the Green correspondent of US by f(US). By Theorem
3.3, we may asset that Q is a radical p-subgroup. Therefore, since
k[NG(Q)]Q+ ∼= k[NG(Q)]/Q, we can assert that f(US) is an inde-
composable projective k[NG(Q)]/Q-module with vertex Q and triv-
ial source. Let SQ be the fixed point module under the action of Q
on S. Since IQ(NG(Q)) is an annihilator of SQ, we can deduce that
SQ is an indecomposable k[NG(Q)]-module with vertex Q and trivial
source. From Lemma 2.1, it follows that SQ is a direct summand of
ResGNG(Q)(US). Therefore

SQ = f(US) (4.3)

holds.
By assumption, the last theorem implies that it suffice to check only

two cases.
Case I: Q ≤ QS.
By assumption, we can write

SQS ≤ SQ. (4.4)
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From Lemma 2.1, we may assert that SQS is the unique direct summand
of ResGNG(QS)

(US) with vertex QS and trivial source. Hence, combining

(4.3) and (4.4), we can see immediately that SQ = SQS . This implies
that the equality Q = QS holds.

Case II: QS ≤ Q.
In this case we have

SQ ≤ SQS . (4.5)

Since SQS is the unique direct summand of ResGNG(QS)
(US), with vertex

QS and trivial source, and NG(Q) ≤ NQS
, we conclude that the result

follows combining (4.3) and (4.5).
The converse implication follows applying again the Theorem 3.3.

�

In the following result, we show that the vertices of the G-weights
are bounds for the vertices of simple kG-modules.

Theorem 4.3. Let S be a simple kG-module with vertex QS and G-
weight (Q,US). Then we have

Z(Q) ≤ QS ≤ Q.

Proof. Suppose that QS is not a radical p-subgroup. We show that
QS < Q. Assume that US belongs to the p-block B of G. We write
b for the Brauer correspondent of B. Moreover, we denote the Green
correspondent of S by f(S). Since S is the radical quotient of US, we
deduce that f(S) lies in b by Brauer morphism. Let D be a defect
group of B. It is well known that

NG(D) ≤ NG(Q). (4.6)

Thus, we claim that b is a p-block of NG(Q). By Theorem 3.3, we
can write Op(NG(Q)) = Q. This implies that b lies in k[CNG(Q)(Q)]
and is the sum of NG(Q)-orbit of blocks of CNG(Q)(Q). Hence, we
may assert that f(S) is a kNG(Q)-module. Moreover, we also have
NG(QS) ≤ NG(Q). Thus, by assumption, we can write

QS < Q. (4.7)

According to Theorem 4.2, we may assert that if QS is radical then we
have

QS = Q. (4.8)

Therefore, combining (4.7) and (4.8) we obtain the inequality

QS ≤ Q, (4.9)

as general case. Now, from (4.9), it follows that Z(Q) ≤ Z(QS). Hence
Z(Q) ≤ QS. So we are done. �
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Remark 4.4. Observe that if Q is an abelian group then QS is radical.
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