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0-SPORADIC PRIME IDEALS AND SUPERFICIAL
ELEMENTS

K. A. ESSAN, A. ABDOULAYE, D. KAMANO *, AND E.D. AKEKE

ABSTRACT. Let A be a Noetherian ring, I be an ideal of A and
o be a semi-prime operation, different from the identity map on
the set of all ideals of A. Results of Essan proved that the sets of
associated prime ideals of o(I™), which denoted by Ass(A/o(I™),
stabilize to A,(I). We give some properties of the sets SZ(I) =
Ass(A/o(I™)\ A, (I), with n small, which are the sets of o-sporadic
prime divisors of I. We also give some relationships between o (fr)-
superficial elements and asymptotic prime o-divisors, where o(fr)
is the o-closure of the I-adic filtration f;y = (I"™),en.

1. INTRODUCTION

Let A be a commutative Noetherian ring and I be a regular ideal of
A. A prime ideal P C A is an associated prime of [ if there exists an
element x in A such that P = (I :4 x). The set of associated primes of
I, denoted Ass(A/I), is the set of all prime ideals associated to 1. A
well-known result of Brodmann [2] proved that the sets of associated
prime ideals of I™, which denote by Ass(A/I™), stabilize to A*(I), that
is, there exists a positive integer ng such that Ass(A/I™) = Ass(A/I™)
for all n > ng. For small n it may happen that there are prime ideals P
with P € Ass(A/I™)\ A*(I). Such a prime is called a sporadic prime
divisor of I. In [7], MacAdam gave some properties of sporadic prime
of regular ideals.
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Now let us assume that I is an ideal of A, which is not necessar-
ily regular. Let o be a semi-prime operation on the set Z(A) of all
ideals of A, with o # idza). A result of Essan [3] proves that the
sequence (Ass(A/o(I™))nen+ stabilize to a set denoted A,([), that is
Ass(AJo(I™) = A, (I) for all large n. For small n it may happen that
there are prime ideals P with P € Ass(A/o(I")) — As(I). Such a
prime is called a o-sporadic prime divisor of I. For all integer n > 1,
we put 87(I) = Ass(A/o(I")) — A,(I) and S°(I) = U, _,.S(I), that
is §7(I) is the set of all o-sporadic prime of I. Moreover, Essan [/]
proves that the sequence (Ass(A/(1"),)) with (I")y = o(I¥™) 14
o(I*¥), k> 0is an increasing sequence.

In section 3, we are interested in the o-sporadic prime of an ideal I of a
ring A. We prove that for all integer n > 1, S3(I) C Ass((I"),/c(I™))
(cf. Theorem 3.4). We will also prove a generalization of [J], Lemma
2.5. and a generalization of [9], 4.15.

In section 4, we suppose that (A, M) is a Noetherian local ring with
infinite residue field. We put o(f;) = (6(I™))nen, which is the o-
closure of the I-adic filtration f; = (I")pen. An element x € [
is said to be o(f;)-superficial if there exists an integer ng such that
(c(I™) 14 z) No(I™) = o(I™), for all n > ng. Let I be an M-
primary ideal of the ring A. We prove that if x € [ is a o(f)-
superficial element, then for all n > 1 we have (i) ((I"*!), : z) =
(I")y, (ii) (x) N (I"™), = z(I"), (Proposition 4.2). Tt follows that
o(I*) : x = o(I*) and o(I™™) : I = o(I"), for all k& > pL(A),
with pf(A) = min{n|(I'), = o(I') for all i > n} (Corollary 4.3 and
Theorem 4.6).

neN*?

2. PRELIMINARY

Throughout this paper the letter A will denote a commutative ring
with identity.
(1) A filtration on the ring A is a sequence f = (I,,)nen of ideals of A
such that Iy = A, I,,.1 C I, and 1,1, C I, , for all n, m € N.

Definition 2.1. [7]
Let Z(A) be the set of all ideals of a ring A. We consider the following
properties of a map o : Z(A) — Z(A):

(a) I Co(l) forall I € Z(A)

(b) if I C J then o(I) Co(J) for all I,J € Z(A)

(¢) o(o() = a()
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(d) o()a(J) S o(1J),

(e) o(bI) =bo(I) for all regular element b € I

Then o is a semi-prime operation on Z(A) if (a) — (d) hold for all
I,J € Z(A); it is a prime operation if (a) — (e) hold for all I, .J € Z(A)
and any regular element b of A.

It follows from (d) of Definition 2.1 that o(o(I)o(J)) = o(I.J) for all
I,J eZ(A).
(2) If f = (I)nen is a filtration on the ring A and o is a semi-prime
operation on Z(A) then o(f) = (U(["))nEN is a filtration on A.
(3) Let I be an ideal of A. A filtration f = (I,,),en on A is said to be
I-good if 1.1, C I,4; for all n > 0 and there exists ng € N such that
VYn >ng, [.I, = I,41. It follows that I"I,,, = I,,y4n, V1 > 1.
(4) Let (A, M) be a Noetherian local ring with infinite residue field
A/M and f = (I,)neny be an I-good filtration on A. An element
x € [ is said to be f-superficial if there is an integer ng such that
([n+1 ‘A w) N I,, = I, for all n > ny.

3. 0-SPORADIC PRIME OF AN IDEAL

Throughout this section A is a Noetherian ring, I is a nonzero ideal
in A and o is a semi-prime operation on Z(A).

Let S C A be a multiplicative set, that is, suppose that 14 € S and
xy € Storallz,y € S. Anideal I of A is said to be satured with respect
to S (or S-satured) in A if for all (a,s) € A x S such that as € I we
have a € I. Let us put I, = {a € A/ab € I for some b € S}. Then
I is a S-satured ideal of A. It is the intersection of all S-satured
ideal of A containing I. It is obvious that Iy, = Uses(I @ s) and [ is a
S-satured ideal in A if and only if I = I,.

Let S~A be the ring of fractions of A with respect to S. We put

Ie:{gES_lA/(IE[,SES},
s
which is called the extension of the ideal I to S™'A. For any ideal J
of S71A we put
JC:{aGA/%GJ}.
This is called the contracted ideal of J.
In these notations, the inclusions I C I¢¢ and J C J follows imme-

diately from the definitions. From the first inclusion we get [¢ C [°°,
but substituting J = I in the second gives 1°*“ C [¢, and hence

[°“ = 1°, and similary J““ = J¢
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Remark 3.1. Let I be an ideal of the ring A. Then we have I, = I°.

Indeed, let a € I°°. We have % € I°. There exist b € [ and s € S

a b
such that — = —, that is, there exists u € S such that u(as — b) = 0,

s
hence usa = ub with ub € I and us € S. It follows that a € I, and

1°¢ C I4. Conversely let a € 4. There exists s € S such that as € I,

1 1
hence = € I°. Since - € S1A , we have % = —? € I¢, thus a € I*

S S
and I, C I, therefore I, = 1.

Proposition 3.2. The map o : Z(A) — Z(A), [ — o(I) = Iy is a
semi-prime operation on Z(A).

Proof. (i) (a), (b), (c¢) of Definition 2.1 follow immediately from the
definition of S-satured ideal.

(i) Let I, J € Z(A) such that I C J. For all a € Iy, there exists s € S
such that as € I. Since I C J, as € J, hence a € Jy;. This proves
that Isat g Jsat'

(iii) Let I,J € Z(A). For all a € I, and b € Jgq there exist s,u € S
such that as € I and bu € J. It follows that absu € I.J, with su € S,
hence ab € (I.J)sr and ILyi Jsar S (1) sas- O

Lemma 3.3. Let P be a prime ideal of the ring A and Ap = S™1A
with S = A\P. Then the map op : Z(Ap) — Z(Ap), [Ap —> L;uAp
(where I € Z(A)) is a semi-prime operation on Z(Ap).

Proof. We put o(I) = Iy for all ideal I of A. Let us first prove that op
is well-defined. Indeed, let I, J € Z(A) such that [Ap = JAp, that is
I¢ = J¢. Then we have ¢ = J¢, so that I, = Jsar, hence o(I) = o(J)
and we have o(I)Ap = o(J)(Ap), thus op(IAp) = op(JAp).

We now prove that op is a semi-prime operation on Z(Ap).

(a) Let IAp € Z(Ap). Since I C (1), we have [Ap C o(I)Ap.

(b) Let TAp € Z(Ap). Since o is a semi-prime operation, we have
OP[JP(IAP)] = UP[O'(])AP] = O'(O'(I))Ap = O'(])Ap

(c) Let TAp, JAp € Z(Ap) such that [Ap C JAp, that is I¢ C J°.
Then 7¢¢ C J¢. By remark 3.1, Iy C Jyu, that is o(1) C o(J). We
have o(I)Ap C o(J)Ap, therefore op(I1Ap) C op(JAp).

(d) JP(IAP)UP(JAP) = O'(I)APO'(J)AP = U(I)O(J)Ap g J([J)AP =
UP([JAP) :O'P(IAPJAP). O

Theorem 3.4. Let A be a Noetherian ring and o be a semi-prime
operation on Z(A). Suppose that for P € Spec(A), there is a semi-
prime operation 6p on L(Ap) such that 6p(IAp) = o(I)Ap, VI €
Z(A). Then
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(i) I, 1s o-closed.

(ii) Letn and q be large enough integers such that for a nonzero ideal
Iin A, we have (I*), = o(I"*) : (1) and o(17Y) : [ = o(19)
for all k > 1. Then (I"), = o(I™) and Ass(A/(I"),) =
Ay ().

(ili) For every integer n > 1, S(I) C Ass((I™),/o(I™)).

Proof. (i) It is sufficient to prove that o(l,) C I,. We have [, =
o(I") : o(I™), since n is large enough. It follows that

o(l,) = olo(I") : c(I™)] C o(c(I"™)) : o(ac(I™) = o(I™) : ¢ (I™)

and o(I""1) : o(I") = I, (cf. [4], Proposition 3.3), hence o(I,) C I,.
Since o is a semi-prime operation on Z(A), I, C o(I,), thus I, = o(I,).
(ii) Let n and ¢ be large enough integers such that for an ideal I of A,
I # {0}, we have (I*), = o(I"**) : o(I") and o(17T) : [ = o(17), for
all k > 1. Tt is obvious that (I"?), = o(I"*t") : ¢(I") = o(I"F9) .
o(I™). We put J = I", then (J%), = o(J9) : o(J). Tt follows that
o(J)(J), C o(J1). Since J C o(J), we have J(J?), C o(J9) and
(J9, C o(J7) . J = o(J?), as q is large enough, thus (I"?), C o(I").
By [1], Proposition 3.2, I C (I™), for all m > 1, hence o(I™) C
a((I™)y) = (I"), (we refer to (i)). It follows that o(1™) C (I™),, for
all m > 1, in particular, o(1") C (I"),. Therefore (I"?), = o(I™)
and Ass(A/(I™),) = Ass(A/a (1)) = A, (I).

(iii) Let P € S5(I) = Ass(A/a(I™)) \ As(1).

(a) Suppose that A is a local ring with maximal ideal P. There is
x ¢ o(I™) such that P = o(I") : z. Let us assume that (I"), : x is a
proper ideal of A. We have

P=c(I"):zC(I")y:xCP

hence (I"), : x = P and P € Ass(A/(I"),). Since (Ass(A/(I")5))nen-
is an increasing sequence and stabilizes to A, (I) (cf. [1]), P € A,(I).
This contradicts the fact that P € S7(I), thus (I"), : ©* = A and
z € (I"),. It follows that P € Ass((I"),/o(I™)).

(b) Suppose that A is not a local ring with maximal ideal P. It is well-
known that Ap is a local ring with maximal ideal PAp. We have PAp €
Ass[Ap/o(I")Ap] and PAp ¢ Ass[Ap/o(I*¥)Ap], k> 0. That is,
PAP S ASS[Ap/a'P([nAp)] and PAP ¢ ASS[Ap/a'p([kAp)], k>
0. Hence, PAP € ASS[Ap/a'P([nAp)]\ASS[AP/&p([kApﬂ, k> 0. By
(a), we obtain PAp € Ass[(I"Ap)sp/op(I"Ap)]. We have

(InAp)[TP = &p([nJrkAP) ‘Ap &p(IkAP> = O'(In+k)Ap ‘Ap O'(Ik>AP
= [o(I"™*) 4 (1M Ap, k>0
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The first equality follows immediately from the definition. Let us prove
the second equality. Indeed, let w € [o(I"**) :4 o(I*)]Ap. There exist

a € o(I™F) 14 o(I%) and s € S = A\P such that w = 2 For every
s

v € o(I*)Ap there is y € o(I¥) and t € S such that v = % We have
wo=2Y = Oz_ty with ay € o(I"**) and st € S, hence wv € a(I"™)Ap,
s

s
therefore w € o(I"t*)Ap 14, o(I*)Ap and
[c(I"*) 0 o(IF)]Ap C o(I"™)Ap :4, o(I)Ap.
Conversely, let & € o(I"™)Ap 14, o(I*)Ap and (%,,%) be a fi-
s

nite system of generators of o(/¥)Ap. For all i = 1,...,r we have
ayi ay; .

_yT = o(I"*)Ap. Hence there exists u; € S such that
s s

way; € o(I™F). We put u = wug..u,. For all i = 1,...,7 we

have uay; € o(I"™*), thus au € o(I"*) 14 o(I¥), it follows that
% = % € [o(I"™™) 14 o(I"Ap and o(I"™™MAp 14, o(I"Ap C
[o(I"T%) : 4 o(I*)]Ap so that we get
o(I"™)Ap :a, c(IF)Ap = [c(I"F) 14 o(IF)]Ap.

Consequently,

Ass[(I"Ap)sp [Gp(I" Ap)] = Ass[lo(I"™) 1a o (1%)]Ap/[o(I")] Ap).
Since PAp € Ass[(I"Ap)sp/op(I"Ap)], it follows that

PAp € Ass[[o(I™) 14 o(IF) /o (I™)]Ap] = Ass[[(I™)s/o(I™)) Ap],
hence P € Ass[(I"),/o(I™)] and SZ(I) C Ass[(I™),/o(I™)]. O
Remark 3.5. By Lemma 3.3, if 0 = sat then 6p exists for every P €
Spec(A).

The following proposition is a generalization of [9], Lemma 2.5.

Proposition 3.6. Let H be an ideal containing I,V = {Py, Ps, ..., P, }
be a finite set of associated prime ideals of I such that every P; is isoled
in V. Suppose that o(I)Ag & o(H)Ag for every Q € V. Let P €V
and op be a semi-prime operation on L(Ap) such that op(KAp) =
o(K)Ap for all K € Z(A). Weput J=0(l)+ P,...P,o(H). Then

(i) V C Ass(A/a(J)),

(i) If Q € S7(J) and Q contains no P € V then Q € S{(H).
Proof. Let P € V, P is a minimal and maximal element in V. We have

JAp = o(I)Ap + PApo(H)Ap. Since o(I)Ap & o(H)Ap, we have
JAp G o(H)Ap = op(HAp). We also have op(JAp) & op(HAp) and
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o(J)Ap & o(H)Ap, since op is a semi-prime operation on Z(Ap). It
follows that o(J)Ap : 0(H)Ap is a proper ideal of the local ring Ap.
We have PApo(H)Ap C o(l)Ap + PApo(H)Ap = JAp, therefore
PAP g O’(J)AP : O'(H)AP and PAP = O'(J)Ap : O'(H)Ap, since PAP
is the maximal ideal of Ap. Hence PAp € Ass(Ap/o(J)Ap) and
P € Ass(A/a(J)). This proves that V C Ass(A/o(J)).

ii) Suppose @ € S7(J) and @ contains no P € V. Since PAg = Ag,
we have JAg = o(I)Ag + 0(H)Ag. It follows that o(H)Ag C JAg
and o(H)Ag C o(J)Ag. We have JAg = o(I)Ag + o(H)Ag and
o(l)Aq C o(H)Ag, therefore JAg C 0(H)Ag = 0g(HAg). It follows
that o(J)Ag C 0(H)Ag and o(J)Ag = 0(H)Ag. Since Q € §7(J) =
Ass(A/o(J))\As(J), we have QAq € Ass(Aq/o(J)Ag)\As, (JAg) =
Ass(Ag/o(H)Ag) \ Asy(HAg), hence Q € Ass(Ajo(H)) \ As(H) =
SY(H).

Theorem 3.7. Let I be a nonzero ideal of the ring A.

(i) For all k > 1, (I*), C (I*71),.

(ii) ((I”)U)neN is a filtration on the ring A.

(iii) Let n > 1 be an integer, J be an ideal of A such that J C
(I")o. If P € Ass(A/o(J)) then P € Ass((I")y/0(J)). In
particular, Ass((I"),/o(J)) C Ass((I" "), /0(J)).

(iv) Let n > 1 be an integer. If J C (I"™), then for every integer
0 <k <n, we have Ass(A/o(J)) = Ass((I¥)s/0(J)).

C

Proof. (i) Let k € N* and = € (I*),, we have zo(I") C o(I™"") C
o(I"*=1) for n large enough, hence z € (I*71),.

(i) It is obvious that (IY), = A, = A. We also have (I"), C (I"™1),
(we refer to (i)) and (I?), (1), C (IP*9), (cf. [1], Proposition 3.2).
(iii) It is clear for n = 1. Assume that n > 1. If P € Ass(A/o(J))
then there exists © € A\ o(J) such that P = o(J) : z. It follows that
P C o(J) and € o(J) : P. Since I C P, we have zo(l) C o(J)
and x € o(J) : o(I). We also have J C (I"),, so that o(J) C (I"),,
since (I™), is o-closed. Therefore x € (I"), : o(I) = (I"™'), ([1],
Proposition 3.4), hence P = o(J) : z withz € (I"™1), and x ¢ o(J). It
follows that P € Ass((I""),/o(J)), in particular Ass((I")s/c(J)) C
Ass((I"™1)s/o(J)) (we refer to (i)).

(iv) By (i) and (iii), we have Ass(A/o(J)) C Ass((I")s/0(J)) C
.. C Ass(I,/o(J)) C Ass(A/a(J])). O

Theorem 3.7, (¢ii) is a generalization of [J], 4.15.2

O

Proposition 3.8. Let A be a commutative ring with identity and o be
a semi-prime operation on Z(A). Let I and J be ideals of A. Assume
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that there exists a reqular element u of A such that ul = J. For all
n € N* we have Ass(A/o(I")) C Ass(A/a(J"™)).

Proof. Let P € Ass(A/o(I™)). There exists € A\ o(I") such that
P =o(I"): x. For every a € o(I") : x, we have ax € o(I"™). Therefore
azu” € u"o(I") = o((ul)") = o(J") and a € o(J") : zu™. Conversely,
if b € o(J") : zu™ then bzu" € o(J") = u"c(I™). Since u is a
regular element, u" is a regular element. It follows that bz € o(I™),
hence b € o(I™) : x. We have o(I") : x = o(J") : zu”, therefore
P=o(I"):xz=0(J"): zu" and P € Ass(A/o(J")). O]

Corollary 3.9. Let A be an Artinian ring and o be a prime operation
on Z(A). Let x be a reqular element of a (reqular) ideal I such that
the principal ideal (x) is a reduction of 1. Then there exists an integer
r > 0 such that

(i) for alln € N*, Ass(A/o(I"™)) C Ass(A/a(IT+DM)),

(i) Se(I) C Ass((I™Y), /o (I™)).

Proof. (i) Follows from Proposition 3.8.

(ii) By Theorem 3.4, (iii) we have S7(I) C Ass((I"),/o(I")) for
all » € N*. Since I" C (I"),, it follows from Theorem 3.7, (ii7)
that Ass((I"),/o(I")) C Ass((I"""),/o(I")). Since zI” = I", it
follows from Proposition 3.8 that Ass(A/o(I")) C Ass(A/a(I™)).
Now we show that Ass((I"™'),/o(I")) C Ass((I"™1),/o(I"™)). Let
P e Ass((I"™"),/a(I")). There exists y € (I"™'), \ o(I") such that
P =o(I") :y. Since (o(I") : y)nen is a decreasing sequence of ideals
of the Artinian ring A, o(I") : y = o(I") : y for r large enough. Tt
follows that P € Ass((I"'),/o(I"*1)), hence Ass((I"'),/o(I")) C
Ass((I" 1), /o (I™1)). O

Proposition 3.10. ([1], Prop. 4) For alln € N*, there is an ideal Jy)
of the ring A such that 8J(I) = Ass(Jwy/o(I™)).

Proof. We refer to [1], Chap.4, Proposition 4. O

Proposition 3.11. Let k, m € N such that k < m. There exist
Jey, Jm) € Z(A) such that Ass(J(’“)mJ<m>) C 8.

o(I™)
NI (m)
o(I™)

Proof. We use the fact that C Jmy/o(I™). O

4. o(fr)-SUPERFICIAL ELEMENTS OF AN IDEAL

Throughout this section (A, M) is a Noetherian local ring with infi-
nite residue field K = % and [ is an M-primary ideal of the ring A.
Let o be a semi-prime operation on Z(A). We put a(fr) = (6(I"))nen,
which is the o-closure of the [-adic filtration f; = (I"),en.
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Definition 4.1. An element x € [ is said to be o(fr)-superficial if
there exists an integer ng such that (c(I"*!) :4 z) No(I™) = o(I™),
for all n > ny.

Proposition 4.2. Let © € I be a o(f;)-superficial. For alln > 1 we
have

(1) ((I")e ) = (I")s,

(i) (z) NI, = z(I™),.
Proof. Suppose that x € I is a o(f;)-superficial element.
(i) By [4], Proposition 3.2, we have z(I"), C I(I"), C (I"*!), for
all n > 1, hence z(I"), € (I"*), and (I"), C ((I"™), : z), for
all n > 1. Conversely, let a € ((I"™), : z), then az € (I"*), =
o(I"Fk) » o(I%), VE > 0. It follows that ac(I*) C (o(I"HF) : ),
Vk > 0. Since x € I is a o(fr)-superficial element, there exists an
integer ko such that (o(I™™) 14 z) No(I¥) = o(I™), for all m > k.
For k large enough, we obtain ac(I*) C (o(I""***) : ) and ac(I*) C
o(I*). Therefore ac(I*) C (o(I"™*) : ) No(I?) = o(I"*) with
n+k > kg, thus a € o(I"*) : o(I*) = (I"),, Vk > 0. This proves
that ((I"™), : z) = (I"),, for all n > 1.
(ii) Let n € N* and y € (z) N (I"™!),. There exists a € A such
y = ax. Since y = ar € (I"*Y),, a € (I"™), : z. By (i), we have
a € (I"), and ax € x(I"),, hence (z) N (I"*1), C x(I"),. Conversely,
we have xz(I"), C I(I"), C I,(I"), C (I"™),, it follows that z(I"), C
(z) N (I™),. Hence (x) N (I"h), = z(I™),. O

By Theorem 3.4, (ii), there exist large enough integers n such that
(I")y = o(I™). Set p!(A) = min{n|(I), = o(I')for alli > n}. The
fact that such an integer p!(A) may exist follows from [3], 2.6.

Corollary 4.3. If z € I is a o(f1)-superficial, then o(I'™) : x = o(I?)
for all i > pL(A).

Proof. Let x € I be a o(f)-superficial element. By Proposition 4.2,
(I : = (I"),, Vi > 1. For all i > pl(A), (I'), = o(I?). Tt follows
that o (') : o = o(I?) for all i > pl(A). O
Lemma 4.4. Letn € N*. Ifx € I is a %—r@gular element then
o(I"TF) : 2% = o(I") s @ for all k > 1.

Proof. Let n, k € N*. If a € o(I™") : 2 then az* € o(I"F) C
o(I™™). It follows that z(az*™' + o(I"*!)) = 0 and since z € I
is a ﬁ—regular element, ax*~! € o(I"*'). By iterating we get
ar € o(I"™) et a € o(I™) : x. Conversely, if a € o(I™™) : z then
ar® € I*lo(I"tY) C o(I™™*) and a € o(I"FF) : 2" O
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Lemma 4.5. Let n > pL(A). If x € I is both a o(f)-superficial and a
W-'r’egular element then o(I"**) : 2% = o(I™) for all k > 1.

Proof. Follows from Corollary 4.3 and Lemma 4.4. OJ

In [3], Lemma 1, the author proved that if A is a Noetherian ring and
k > 1 such that [ is an ideal of A containing a W—regular element

then there exists an integer mgy > k such that o(I™*) : [ = g(I™).
He also proves Theorem 5 [3], assuming that condition (E,) o(I™"!):
I =0(I") ¥Yn> 0 (these are the Ratliff-Rush ideals if o = Id).

Theorem 4.6. If x € I is a o(fr)-superficial element, then o(I") :
I =o(I"), for all n > pL(A).

Proof. If I = xA and x is o(f)-superficial element, then o(I"™!) : [ =
o(I"™) = o(I") for all n > pl(A). Suppose that I # xA and
x € I is a o(f)-superficial element. Let n > pL(A) be an integer
and a € o(I"™) : I | then al C o(I™) and ax € o(I™™), hence
a€o(I") :x=c(I") by Corollary 4.3. Tt follows that o(I"™1) : I C
o(I™), pour tout n > pL(A). Conversely, let n > 1 be an integer. If a €
o(I™), then al C Io(I") C o(I)o(I") C o(I™), thus a € o(I™) :
and o(I") C o(I™1) . I. Tt follows that o(I"*) : I = o(I™) for all
n > pi(A). O
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