Journal of Algebra and Related Topics Vol. 6, No 2, (2018), pp 1-14

CLASSICAL ZARISKI TOPOLOGY ON PRIME SPECTRUM OF LATTICE MODULES

V. BORKAR, P. GIRASE *, AND N. PHADATARE

ABSTRACT. Let M be a lattice module over a C-lattice L. Let $Spec^{p}(M)$ be the collection of all prime elements of M. In this article, we consider a topology on $Spec^{p}(M)$, called the classical Zariski topology and investigate the topological properties of $Spec^{p}(M)$ and the algebraic properties of M. We investigate this topological space from the point of view of spectral spaces. By Hochster's characterization of a spectral space, we show that for each lattice module M with finite spectrum, $Spec^{p}(M)$ is a spectral space. Also we introduce finer patch topology is a compact space and every irreducible closed subset of $Spec^{p}(M)$ (with classical Zariski topology) has a generic point and $Spec^{p}(M)$ is a spectral space, for a lattice module M which has ascending chain condition on prime radical elements.

1. INTRODUCTION

A lattice L is said to be *complete*, if for any subset S of L, we have $\forall S, \land S \in L$. A complete lattice L is said to be a *multiplicative lattice*, if there is defined a binary operation "." called multiplication on L satisfying the following conditions:

- (1) a.b = b.a, for all $a, b \in L$;
- (2) a.(b.c) = (a.b).c, for all $a, b, c \in L$;
- (3) $a.(\vee_{\alpha}b_{\alpha}) = \vee_{\alpha}(a.b_{\alpha}), \text{ for all } a, b_{\alpha} \in L;$

 $[\]operatorname{MSC}(2010)\colon$ Primary: 06D10; Secondary: 06E10, 06F10.

Keywords: prime element, Prime spectrum, classical Zariski topology, finer patch topology. Received: 17 August 2018, Accepted: 30 October 2018.

^{*}Corresponding author .

(4) a.1 = a, for all $a \in L$.

Henceforth, a.b will be simply denoted by ab.

For $a, b \in L$, we write $(a : b) = \bigvee \{x \in L | bx \leq a\}$. An element a in L is called compact if $a \leq \bigvee_{\alpha \in I} b_{\alpha}$ (I is an indexed set) implies $a \leq b_{\alpha_1} \lor b_{\alpha_2} \lor \cdots \lor b_{\alpha_n}$ for some subset $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ of I. By a C-lattice, we mean a multiplicative lattice L, with least element 0_L and greatest element 1_L which is compact as well as multiplicative identity, that is generated under joins by a multiplicatively closed subset C of compact elements of L.

An element $a \in L$ is said to be *proper*, if a < 1. A proper element p of a multiplicative lattice L is said to be *prime* if $ab \leq p$ implies $a \leq p$ or $b \leq p$ for $a, b \in L$. The collection of all prime elements of L is denoted by Spec(L).

The Zariski topology on the set Spec(L) of all prime elements in multiplicative lattices is being studied in [20] by Thakare, Manjarekar and Maeda and in [21], by Thakare and Manjarekar as a generalization of the Zariski topology of a commutative ring with unity.

A proper element m of a multiplicative lattice L is said to be *maximal* if for every $x \in L$ with $m < x \leq 1_L$ implies $x = 1_L$.

A complete lattice M is said to be a *lattice module* over the multiplicative lattice L, or L-module, if there is a multiplication between elements of M and L, denoted by $aN \in M$, for $a \in L$ and $N \in M$, which satisfies the following properties:

- (1) (ab)N = a(bN);
- (2) $(\vee_{\alpha}a_{\alpha})(\vee_{\beta}N_{\beta}) = (\vee_{\alpha\beta}a_{\alpha}N_{\beta});$
- $(3) \ 1_L N = N;$
- (4) $0_L N = 0_M$; for all $a, b, a_\alpha \in L$, and for all $N, N_\beta \in M$.

Let M be a lattice module over a C-lattice L. The greatest element of M will be denoted by 1_M and the smallest element will be denoted by 0_M . For $N \in M, b \in L$, denote $(N : b) = \vee \{K \in M | bK \leq N\}$ and for $A, B \in M, (A : B) = \vee \{x \in L | Bx \leq A\}$. An element $N \in M$ is said to be compact if $N \leq \bigvee_{\alpha \in I} A_\alpha$ (I is an indexed set) implies $N \leq A_{\alpha_1} \vee A_{\alpha_2} \vee \cdots \vee A_{\alpha_n}$ for some subset $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ of I.

An element $N \in M$ is said to be proper if $N < 1_M$. A proper element N of a lattice module M is said to be prime if $aX \leq N$ implies $X \leq N$ or $a1_M \leq N$, i.e., $a \leq (N : 1_M)$ for every $a \in L$ and $X \in M$. The prime spectrum of a lattice module M is the set of all prime elements of M and it is denoted by $Spec^p(M)$. In [6], Sachin Ballal and Vilas Kharat studied the Zariski topology over $Spec^p(M)$ as a generalization of the results carried out in [[20], [21]]. Also in [11], Fethi Callialp

 $\mathbf{2}$

et. al. studied the Zariski topology on $Spec^{p}(M)$ over multiplicative lattice L.

A non-zero element $N \in M$ is said to be *second*, if for $a \in L$, either aN = N or $aN = 0_M$. The Zariski topology on the second spectrum of lattice modules is studied by Narayan Phadatare et. al. in [19]. An element $N < 1_M$ of M is said to be *maximal* if $N \leq B$ implies either N = B or $B = 1_M, B \in M$. A non-zero element $K \neq 1_M$ of M is said to be *minimal* if $0_M \leq N < K$ implies $N = 0_M, N \in M$. If 1_M is compact, then M has a maximal element by [18] and every maximal element is a prime element by [2].

Let M be a lattice module over a C-lattice L and $Spec^{p}(M)$ be the prime spectrum of M. For any element N of M, $D(N) = \{P \in Spec^{p}(M) | N \leq P\}$. Note that $D(0_{M}) = Spec^{p}(M)$ and $D(1_{M})$ is an empty set. It is easy to see that for any family of elements K_{i} $(i \in I)$ of M, $\bigcap_{i \in I} D(K_{i}) = D(\bigvee_{i \in I} K_{i})$ and $D(N) \cup D(K) \subseteq D(N \wedge K)$. Thus if $\tau(M)$ denotes the collection of all subsets D(N) of $Spec^{p}(M)$, then $\tau(M)$ contains the empty set and $Spec^{p}(M)$ and $\tau(M)$ is closed under arbitrary intersections. In general $\tau(M)$ is not closed under finite unions. A lattice module M is called a top lattice module, if $\tau(M)$ is closed under finite unions. In this case, $\tau(M)$ is called the quasi Zariski topology [11].

M. Behboodi and M. R. Haddadi introduced and studied the classical Zariski topology on the set of all prime submodules of modules as a generalization of the Zariski topology of rings in [7] and [8]. H. Ansari-Toroghy et. al. studied various topological properties of set of all prime submodules of a module over a commutative ring in [3] and the second classical Zariski topology on the second spectrum of modules over a commutative ring is introduced and studied by H. Ansari-Toroghy et. al. in [4]. In this paper, we generalize the concepts of submodules studied in [7] and [8] to the lattice modules.

Let M be a lattice module over a C-lattice L. For each element N of M, we define $E(N) = Spec^{p}(M) - D(N)$ and $\mathcal{E}(M) = \{E(N)|N \in M\}$, then we define topology $\psi(M)$ on $Spec^{p}(M)$ by the subbasis $\mathcal{E}(M)$ and call it the Classical Zariski topology of M. In fact $\psi(M)$ to be the collection U of all unions of finite intersections of elements of $\mathcal{E}(M)$ (see [16]).

Further all these concepts and for more information on multiplicative lattices, lattice modules and topology, the reader may refer ([1],[2],[9],[14]).

2. Classical Zariski topology

Let M be a lattice module over a C-lattice L. An element P of M is called maximal prime if P is a prime element of M and there is no prime element Q of M such that $P \leq Q$.

Proposition 2.1. Let M be a lattice module over a C-lattice L. Then the following statements are equivalent:

- (1) For any elements $N_1, N_2 \in M$, $D(N_1) = D(N_2)$ implies that $N_1 = N_2$.
- (2) Every proper element of M is a meet of prime elements.

Proof. 1) \implies 2) Suppose that N_1 is a proper element of M. Then $D(N_1) \neq \phi$, because if $D(N_1) = \phi = D(1_M)$ and therefore $N_1 = 1_M$ by part (1), a contradiction. Now let $N_2 = \wedge_{P \in D(N_1)} P$. Clearly, by definition $D(N_1) = D(N_2)$ and therefore by part (1), $N_1 = N_2$. Hence $N_1 = N_2 = \wedge_{P \in D(N_1)} P$ is a meet of prime elements.

2) \implies 1) Assume that for $N_1, N_2 \in M$, $D(N_1) = D(N_2)$. By (2), $N_1 = \wedge_{P \in D(N_1)} P$ and $N_2 = \wedge_{P \in D(N_2)} P$. Since $D(N_1) = D(N_2)$, $N_1 = \wedge_{P \in D(N_1)} P = \wedge_{P \in D(N_2)} P = N_2$, as required.

Let X be a topological space and x and y be points in X. We say that x and y can be separated if each lies in an open set which does not contain the other point. X is a T_1 -space if any two distinct points in X can be separated. A topological space X is a T_1 -space if and only if all points of X are closed in X(i.e. given any x in X, the singleton set $\{x\}$ is a closed set). Also X is a Hausdorff space if any two distinct points of X can be separated by neighborhoods. This is why Hausdorff spaces are also called T_2 -spaces or separated spaces.

For a lattice module M, $dim^{p}(M)$ denote the supremum of the length of chains of prime elements of M. Note that, if $Spec^{p}(M) = \phi$, then $dim^{p}(M) = -1$.

We obtain a characterization of $Spec^{p}(M)$ to be T_{1} -space in the following result.

Theorem 2.2. Let M be a lattice module over a C-lattice L. Then $Spec^{p}(M)$ is a T_{1} -space if and only if $dim^{p}(M) \leq 0$.

Proof. Suppose that $Spec^{p}(M)$ is a T_{1} -space. If $Spec^{p}(M) = \phi$, then $dim^{p}(M) = -1$. If $Spec^{p}(M) \neq \phi$, then $\{P\}$ is a closed set in $Spec^{p}(M)$ for $P \in Spec^{p}(M)$. Now, assume that $P \leq Q$, for P, Q in $Spec^{p}(M)$. Since $\{P\}$ is closed set, $\{P\} = \bigcap_{k \in J} (\bigcup_{l=1}^{n_{k}} D(N_{kl})), N_{kl} \in M$ and J is an index set, $n_{k} \in \mathbb{N}$. Therefore, for each $k \in J$, $P \in \bigcup_{l=1}^{n_{k}} D(N_{kl})$ and hence there exists $1 \leq s \leq n_{k}$ such that $P \in D(N_{ks})$ and so $N_{ks} \leq P$. Now $P \leq Q$ and $N_{ks} \leq P$ implies that $N_{ks} \leq Q$, therefore $Q \in D(N_{ks})$

for all $k \in J$ and $1 \leq s \leq n_k$. It follows that, $Q \in \bigcup_{l=1}^{n_k} D(N_{kl})$ for each $k \in J$. Thus $Q \in \bigcap_{k \in J} (\bigcup_{l=1}^{n_k} D(N_{kl})) = \{P\}$. This implies that every prime element of M is maximal. Consequently, $\dim^p(M) \leq 0$.

Conversely, assume that $dim^p(M) \leq 0$. If $dim^p(M) = -1$, then $Spec^p(M) = \phi$, *i.e.* $Spec^p(M)$ is a trivial space and hence it is T_1 -space. If $dim^p(M) = 0$, then $Spec^p(M) \neq \phi$ and every prime element is maximal. Thus for each $P \in Spec^p(M)$, we have, $D(P) = \{P\}$ and so $\{P\}$ is a closed set in $Spec^p(M)$. Consequently, $Spec^p(M)$ is a T_1 -space. \Box

Proposition 2.3. Let M be a lattice module over a C-lattice L, then the following statements are equivalent:

- (1) Every proper element of M is a meet of maximal elements and $dim^{p}(M) = 0.$
- (2) $Spec^{p}(M)$ is a T_{1} -space and $D(N_{1}) = D(N_{2})$ implies that $N_{1} = N_{2}$ for any $N_{1}, N_{2} \in M$.

Proof. 1) \implies 2) Since every proper element of M is a meet of maximal elements of M and every maximal element is prime, therefore by Proposition 2.1, $D(N_1) = D(N_2)$ implies that $N_1 = N_2$ for any $N_1, N_2 \in M$. Also, since $dim^p(M) = 0$, by Theorem 2.2, $Spec^p(M)$ is a T_1 -space. 2) \implies 1) Assume that $Spec^p(M)$ is a T_1 -space and $D(N_1) = D(N_2)$ implies that $N_1 = N_2$ for any $N_1, N_2 \in M$. Therefore every proper element is a meet of prime elements, by Proposition 2.1 and every prime element is maximal, because $Spec^p(M)$ is a T_1 -space. Hence every proper element is meet of maximal elements and $dim^p(M) = 0$. \Box

The cofinite topology (or finite complement topology) is a topology which can be defined on every set X. It has precisely the empty set and all cofinite subsets of X as open sets. As a consequence, in the cofinite topology, the only closed subsets are finite sets or the whole of X [5].

Now, we have characterization of $Spec^{p}(M)$ to be the cofinite topology.

Theorem 2.4. Let M be a lattice module over a C-lattice L. Then the following statements are equivalent:

- (1) $Spec^{p}(M)$ is the cofinite topology.
- (2) $\dim^p(M) \leq 0$ and for each element N of M either $D(N) = Spec^p(M)$ or D(N) is finite.

Proof. 1) \implies 2) Suppose that $Spec^{p}(M)$ is the cofinite topology. Since every cofinite topology satisfies the T_1 -axiom, by Theorem 2.2, we have, $dim^{p}(M) \leq 0$. Suppose that there exists an element Nof M such that it is contained in infinite number of prime elements of M, *i.e.*, $|D(N)| = \infty$ and $D(N) \neq Spec^{p}(M)$. Then E(N) = $Spec^{p}(M) - D(N)$ is an open set in $Spec^{p}(M)$ with infinite complement, a contradiction.

2) \implies 1) Suppose that $dim^p(M) \leq 0$ and for each element N of M either $D(N) = Spec^p(M)$ or D(N) is finite. Then the complement of every open set in $Spec^p(M)$ is of the form $\bigcap_{k \in J} (\bigcup_{l=1}^{n_k} D(N_{kl}))$, where $N_{kl} \in M$. This implies that every closed set in $Spec^p(M)$ is either finite or $Spec^p(M)$. Consequently, $Spec^p(M)$ is the cofinite topology. \Box

Theorem 2.5. Let M be a lattice module over a C-lattice L with $|Spec^{p}(M)| \geq 2$. If $Spec^{p}(M)$ is a Hausdorff space, then $dim^{p}(M) = 0$ and there exists elements $N_{1}, N_{2} \cdots N_{k}$ of M such that $D(N_{i}) \neq Spec^{p}(M)$, for all i and $D(N_{1}) \cup D(N_{2}) \cup \cdots \cup D(N_{k}) = Spec^{p}(M)$.

Proof. Suppose that $Spec^{p}(M)$ is a Hausdorff space and $|Spec^{p}(M)| \geq 2$. Let $P, Q \in Spec^{p}(M)$, such that $P \neq Q$. Then there exist open sets $\cup_{k \in J} (\bigcap_{l=1}^{n_{k}} E(N_{kl})), \bigcup_{p \in J'} (\bigcap_{q=1}^{n_{p}} E(N_{pq})), N_{kl}, N_{pq} \in M, n_{k}, n_{p} \in \mathbb{N}, J, J'$ are an index set such that $P \in \bigcup_{k \in J} (\bigcap_{l=1}^{n_{k}} E(N_{kl})),$ and $Q \in \bigcup_{p \in J'} (\bigcap_{q=1}^{n_{p}} E(N_{pq}))$ and $[\bigcup_{k \in J} (\bigcap_{l=1}^{n_{k}} E(N_{kl}))] \cap [\bigcup_{p \in J'} (\bigcap_{q=1}^{n_{p}} E(N_{pq}))] = \phi$. Therefore there exists $s \in J, t \in J'$ such that $P \in \bigcap_{l=1}^{n_{s}} E(N_{sl}),$ and $Q \in \bigcap_{q=1}^{n_{t}} E(N_{tq})$ and $[\bigcap_{l=1}^{n_{s}} E(N_{sl})] \cap [\bigcap_{q=1}^{n_{t}} E(N_{tq})] = \phi$. This implies that $P \nleq Q, Q \nleq P$ and $[\bigcup_{l=1}^{n_{s}} D(N_{sl})] \cup [\bigcup_{q=1}^{n_{t}} D(N_{tq})] = Spec^{p}(M)$. Consequently, $dim^{p}(M) = 0$ and $Spec^{p}(M) = \bigcup_{i=1}^{k} D(N_{i})$.

3. Classical Zariski Topology and Spectral Spaces

Let M be a lattice module over a C-lattice L and let $Spec^{p}(M)$ be equipped with the classical Zariski topology. Let $Y \subseteq Spec^{p}(M)$, then Cl(Y) denotes the closure of Y in $Spec^{p}(M)$ and meet of all elements of Y denoted by $\Upsilon(Y)$. Note that if $Y = \phi$, then $\Upsilon(Y) = 1_{M}$.

A topological space X is called irreducible if $X \neq \phi$ and every finite intersection of non-empty open sets of X is non-empty. A non-empty subset Y of a topological space X is called an irreducible set if the subspace Y of X is irreducible, i.e., if $Y \subseteq Y_1 \cup Y_2$, then $Y \subseteq Y_1$ or $Y \subseteq Y_2$, where Y_1 and Y_2 are closed subsets of X.

Let Y be a closed subset of a topological space. An element $y \in Y$ is called a generic point of Y if $Y = Cl(\{y\})$. Note that, a generic point of the irreducible closed subset Y of a topological space is unique if the topological space is T_0 -space.

Lemma 3.1. Let M be a lattice module over a C-lattice L and let Y be a finite non-empty subset of $Spec^{p}(M)$. Then $Cl(Y) = \bigcup_{P \in Y} D(P)$.

Proof. Suppose that $Y \subseteq Spec^{p}(M)$. Clearly $Y \subseteq \bigcup_{P \in Y} D(P)$. Now, let B be any closed subset of $Spec^{p}(M)$ such that $Y \subseteq B$. Thus $B = \bigcap_{k \in J} (\bigcup_{l=1}^{n_{k}} D(N_{kl}))$, for some $N_{kl} \in M, k \in J, n_{k} \in \mathbb{N}$. Let $Q \in$ $\bigcup_{P \in Y} D(P). \text{ Then there exists } P' \in Y \text{ such that } Q \in D(P') \text{ and so } P' \leq Q. \text{ Now, } P' \in Y \subseteq B, \text{ therefore } P' \in B. \text{ But } B = \bigcap_{k \in J} (\bigcup_{l=1}^{n_k} D(N_{kl})), \text{ therefore for each } k \in J, \text{ there exist } l \in \{1, 2, \cdots, n_k\} \text{ such that } P' \in D(N_{kl}) \text{ and therefore } N_{kl} \leq P' \leq Q. \text{ It follows that } Q \in \bigcap_{k \in J} (\bigcup_{l=1}^{n_k} D(N_{kl})) = B. \text{ Hence } \bigcup_{P \in Y} D(P) \subseteq B. \text{ Thus } \bigcup_{P \in Y} D(P) \text{ is the smallest closed set in } Spec^p(M) \text{ containing } Y. \text{ Consequently, } Cl(Y) = \bigcup_{P \in Y} D(P).$

Corollary 3.2. Let M be a lattice module over a C-lattice L. Then

- (1) $Cl(\{P\}) = D(P)$, for all $P \in Spec^{p}(M)$.
- (2) $Q \in Cl(\{P\})$ if and only if $P \leq Q$ if and only if $D(Q) \subseteq D(P)$, for $Q \in Spec^{p}(M)$.
- (3) The set $\{P\}$ is closed in $Spec^{p}(M)$ if and only if P is a maximal prime element of M.

Proof. 1) By Lemma 3.1, for $Y \subseteq Spec^p(M)$, $Cl(Y) = \bigcup_{P \in Y} D(P)$. Let $Y = \{P\}$, then $\bigcup_{P \in Y} D(P) = D(P)$, hence $Cl(\{P\}) = D(P)$.

2) Suppose that $Q \in Cl(\{P\})$. Then by part (1), $Q \in Cl(\{P\}) = D(P)$, therefore $P \leq Q$. It implies that $D(Q) \subseteq D(P)$. Conversely, suppose that, $D(Q) \subseteq D(P)$. Since $Q \in D(Q) \subseteq D(P)$, we have $P \leq Q$ and $Q \in D(P) = Cl(\{P\})$ by part (1).

3) Suppose that P is a maximal prime element of M. Let $Q \in Cl(\{P\})$, then by part (1), $Q \in Cl(\{P\}) = D(P)$, implies $P \leq Q$. But P is maximal, therefore P = Q and hence $Cl(\{P\}) = \{P\}$. Consequently, $\{P\}$ is closed in $Spec^{p}(M)$.

Conversely, suppose that $\{P\}$ is closed in $Spec^{p}(M)$ and P is not maximal, then there exists Q such that $P \leq Q$, which implies that $Q \in Cl(\{P\})$ by part (2). Since $\{P\}$ is closed, $Q \in Cl(\{P\}) = \{P\}$, hence P = Q. Consequently, P is a maximal prime element of M. \Box

Lemma 3.3. Let M be a lattice module over a C-lattice L and Y be a finite non-empty closed subset of $Spec^{p}(M)$, then $Y = \bigcup_{P \in Y} D(P)$.

Proof. Suppose that Y is a non-empty closed subset of $Spec^{p}(M)$. It is clear that $Y \subseteq \bigcup_{P \in Y} D(P)$. By Corollary 3.2(1), for each $P \in Y$, we have $D(P) = Cl(\{P\}) \subseteq Cl(Y)$ and Cl(Y) = Y. Therefore $\bigcup_{P \in Y} D(P) \subseteq Y$. Consequently, $Y = \bigcup_{P \in Y} D(P)$.

Lemma 3.4. Let M be a lattice module over a C-lattice L. Then for each $P \in Spec^{p}(M)$, D(P) is irreducible.

Proof. Suppose that $D(P) \subseteq X_1 \cup X_2$, where X_1 and X_2 are closed sets of $Spec^p(M)$. Since $P \in D(P)$ and $D(P) \subseteq X_1 \cup X_2$, therefore $P \in X_1 \cup X_2$, which implies that either $P \in X_1$ or $P \in X_2$. Suppose that $P \in X_1$. Since X_1 is closed in $Spec^p(M)$, we have $X_1 = \bigcap_{k \in J} (\bigcup_{l=1}^{n_k} D(N_{kl}))$, for $N_{kl} \in M$ and $k \in J, n_k \in \mathbb{N}$. Thus $P \in \bigcup_{l=1}^{n_k} D(N_{kl})$ for each $k \in J$. It follows that $D(P) \subseteq \bigcup_{l=1}^{n_k} D(N_{kl})$ for each $k \in J$. Hence $D(P) \subseteq \bigcap_{k \in J} (\bigcup_{l=1}^{n_k} D(N_{kl})) = X_1$. Consequently, D(P) is irreducible.

Theorem 3.5. Let M be a lattice module over a C-lattice L and $Y \subseteq Spec^{p}(M)$. Then

- (1) If Y is irreducible, then $\Upsilon(Y)$ is a prime element.
- (2) If $\Upsilon(Y)$ is a prime element and $\Upsilon(Y) \in Cl(Y)$, then Y is *irreducible*.

Proof. 1) Suppose that Y is an irreducible subset of $Spec^{p}(M)$. Clearly, $\Upsilon(Y) = \wedge_{P \in Y} P < 1_{M}$ and $Y \subseteq D(\Upsilon(Y))$. Let $aX \leq \Upsilon(Y)$, for $a \in L, X \in M$. Now for $P \in Y \subseteq D(\Upsilon(Y))$, $\Upsilon(Y) \leq P$ and $aX \leq$ $\Upsilon(Y) \leq P$. Since P is prime, $X \leq P$ or $a1_{M} \leq P$, which implies that $P \in D(X)$ or $P \in D(a1_{M})$. Hence $Y \subseteq D(X) \cup D(a1_{M})$. Since Y is irreducible, either $Y \subseteq D(X)$ or $Y \subseteq D(a1_{M})$. If $Y \subseteq D(X)$, then $X \leq P$, for all $P \in Y$. Therefore $X \leq \Upsilon(Y)$. If $Y \subseteq D(a1_{M})$, then $a1_{M} \leq P$, for all $P \in Y$. Therefore $a1_{M} \leq \Upsilon(Y)$. Consequently, $\Upsilon(Y)$ is a prime element of M.

2) Suppose that $\Upsilon(Y)$ is a prime element of M and $\Upsilon(Y) \in Cl(Y)$. Since $\Upsilon(Y) \leq P$, for each $P \in Y$, we have $D(P) \subseteq D(\Upsilon(Y))$ for each $P \in Y$, by Corollary 3.2(2). Therefore $\cup_{P \in Y} D(P) \subseteq D(\Upsilon(Y))$ and so by Lemma 3.1, $Cl(Y) \subseteq D(\Upsilon(Y))$. Since $\Upsilon(Y)$ is a prime element of M and $\Upsilon(Y) \in Cl(Y)$, we have, $D(\Upsilon(Y)) \subseteq Cl(Y)$. Hence $D(\Upsilon(Y)) = Cl(Y)$. Now, let $Y \subseteq X_1 \cup X_2$, where X_1 and X_2 are closed sets of $Spec^p M$. Then $Cl(Y) \subseteq X_1 \cup X_2$. Since $D(\Upsilon(Y)) = Cl(Y) \subseteq$ $X_1 \cup X_2$ and $D(\Upsilon(Y))$ is irreducible, by Lemma 3.4, we have either $D(\Upsilon(Y)) \subseteq X_1$ or $D(\Upsilon(Y)) \subseteq X_2$. It follows that either $Y \subseteq X_1$ or $Y \subseteq X_2$. Consequently, Y is irreducible. \Box

Definition 3.6. [15] Let M be a lattice module over a C-lattice L and N be an element of M. Then the prime radical of N is defined to be the meet of all prime elements containing N, that is $\sqrt[p]{N} = \wedge \{P \in Spec^p(M) | N \leq P\}$.

Note that, $\sqrt[p]{N} = 1_M$, if there is no prime element containing N. If $N = \sqrt[p]{N}$, then N is called as prime radical element of M.

Corollary 3.7. Let M be a lattice module over a C-lattice L and N be an element of M. Then the subset D(N) of $Spec^{p}(M)$ is irreducible if and only if $\sqrt[p]{N}$ is a prime element.

Proof. Suppose that the subset D(N) of $Spec^{p}(M)$ is irreducible. Then by Theorem 3.5, $\Upsilon(D(N))$ is a prime element. Now, we have $\Upsilon(D(N)) =$ $\wedge \{P \in D(N)\} = \wedge \{P \in Spec^{p}(M) | N \leq P\} = \sqrt[p]{N}$. Hence $\sqrt[p]{N}$ is a prime element.

Conversely, suppose that $\sqrt[p]{N}$ is a prime element. Clearly for each element N of M, $D(N) = D(\sqrt[p]{N})$. Since $\sqrt[p]{N}$ is a prime element, $D(\sqrt[p]{N})$ is irreducible by Lemma 3.4. Hence D(N) is irreducible.

The following Lemma shows that for any lattice module M over a C-lattice L, $Spec^{p}(M)$ is always a T_{0} -space and every finite irreducible closed subset of $Spec^{p}(M)$ has a generic point.

Lemma 3.8. Let M be a lattice module over a C-lattice L. Then

- (1) $Spec^{p}(M)$ is always a T_{0} -space.
- (2) Every $P \in Spec^{p}(M)$ is a generic point of the irreducible closed subset D(P).
- (3) Every finite irreducible closed subset of Spec^p(M) has a generic point.

Proof. 1) Let $P, Q \in Spec^{p}(M)$. Then by Corollary 3.2(1), $Cl(\{P\}) = D(P), Cl(\{Q\}) = D(Q)$ and therefore $Cl(\{P\}) = Cl(\{Q\})$ if and only if D(P) = D(Q) if and only if P = Q, by Corollary 3.2(2). Now, by the fact that a topological space is a T_0 -space if and only if the closures of distinct points are distinct, we conclude that, $Spec^{p}(M)$ is a T_0 -space. 2) By Corollary 3.2(1), it is clear that, for $P \in Spec^{p}(M), D(P) = Cl(\{P\})$. Hence P is a generic point of the irreducible closed subset D(P).

3) Let Y be an irreducible closed subset of $Spec^{p}(M)$ and $Y = \{P_{1}, P_{2}, \dots, P_{k}\}$, where $P_{i} \in Spec^{p}(M)$, $k \in \mathbb{N}$. By Lemma 3.1, $Y = Cl(Y) = D(P_{1}) \cup D(P_{2}) \cup \dots \cup D(P_{k})$. Since Y is irreducible, $Y = D(P_{i})$, for some $i(1 \leq i \leq k)$. Now by (2), P_{i} is a generic point of $D(P_{i}) = Y$. \Box

Definition 3.9. [13] A topological space X is a spectral space if X satisfy the following conditions(Hochster's characterization):

- (1) X is a T_0 -space.
- (2) X is a quasi-compact.
- (3) The quasi-compact open subsets of X are closed under finite intersection and form an open basis.
- (4) Each irreducible closed subset of X has a generic point.

Theorem 3.10. Let M be a lattice module over a C-lattice L with finite prime spectrum. Then $Spec^{p}(M)$ is a spectral space(with Classical Zariski topology).

Proof. Assume that $Spec^{p}(M)$ is finite. Then by Lemma 3.8, $Spec^{p}(M)$ is a T_{0} -space and every irreducible closed subset of $Spec^{p}(M)$ has a generic point. Also, since $Spec^{p}(M)$ is finite, the quasi-compact open subsets of $Spec^{p}(M)$ are closed under finite intersection and form an

open basis (This basis is $\mathbb{B} = \{E(N_1) \cap E(N_2) \cap \cdots \cap E(N_k) | N_i \in M, 1 \leq i \leq k$, for some $k \in \mathbb{N}\}$)[10]. Now by Definition 3.9, we conclude that $Spec^p(M)$ is a spectral space.

4. FINER PATCH TOPOLOGY AND SPECTRAL SPACES

Let X be a topological space. By the patch topology on X, we mean the topology which has as a sub-basis for its closed sets the closed sets and compact open sets of the original space. By a patch we mean a set closed in the patch topology(see [12], [17]).

Definition 4.1. Let M be a lattice module over a C-lattice L and let U(M) be the family of all elements of $Spec^{p}(M)$ of the form $D(N) \cap E(K)$, where $N, K \in M$. Clearly both $Spec^{p}(M) = D(0_{M}) \cap E(1_{M})$ and the empty set $\phi = D(0_{M}) \cap E(0_{M})$ are members of U(M). Let T(M) to be the collection of all unions of finite intersections of elements of U(M). Then T(M) is a topology on $Spec^{p}(M)$ and is called the finer patch topology. In fact U(M) is a sub-basis for the finer patch topology of M.

Note that, finer patch topology on $Spec^{p}(M)$ is finer than classical Zariski topology on $Spec^{p}(M)$.

Theorem 4.2. Let M be a lattice module over a C-lattice L. Then $Spec^{p}(M)$ with the finer patch topology is Hausdorff. Moreover, $Spec^{p}(M)$ with this topology is disconnected if and only if $|Spec^{p}(M)| > 1$.

Proof. Suppose that $P, Q \in Spec^{p}(M)$ and $P \neq Q$. Since $P \neq Q$, either $P \nleq Q$ or $Q \nleq P$. By Definition 4.1, $U_{1} = E(1_{M}) \cap D(P)$ is a finer patch-neighborhood of P and $U_{2} = E(P) \cap D(Q)$ is a finer patch-neighborhood of Q. It is clear that $E(P) \cap D(P) = \phi$ and hence $U_{1} \cap U_{2} = \phi$. Thus $Spec^{p}(M)$ is a Hausdorff space. Now, for each element $N \in M$, E(N) and D(N) are open in finer patch topology, because $D(N) = E(1_{M}) \cap D(N)$ and $E(N) = E(1_{M}) \cap D(0_{M})$. Since E(N) and D(N) are complements of each other, these sets are closed. Therefore $Spec^{p}(M)$ with finer patch topology is disconnected if and only if $|Spec^{p}(M)| > 1$.

Theorem 4.3. Let M be a lattice module over a C-lattice L such that M has ascending chain condition on prime radical elements. Then $Spec^{p}(M)$ with the finer patch topology is a compact space.

Proof. Suppose that M is a lattice module over a C-lattice L such that M has ascending chain condition on prime radical elements. Let A be a family of finer patch-open sets which covers $Spec^{p}(M)$ and suppose that no finite subfamily of A covers $Spec^{p}(M)$. Since $D(\sqrt[p]{0_{M}}) = D(0_{M}) = Spec^{p}(M)$, we may use the ascending chain condition on prime radical

elements to choose an element N maximal with respect to the property that no finite subfamily of A covers D(N) (we may assume $N = \sqrt[p]{N}$ because $D(N) = D(\sqrt[p]{N})$).

Suppose that N is not prime element of M. Then there exists $X \in M$ and $a \in L$, such that $aX \leq N$ and $X \leq N$, $a1_M \leq N$. Thus $N < N \lor X \leq \sqrt[p]{N \lor X}$ and $N < N \lor a1_M \leq \sqrt[p]{N \lor a1_M}$. Hence without loss of generality, there must be a finite subfamily A' of A that covers both $D(N \lor X)$ and $D(N \lor a1_M)$. Let $P \in D(N)$, then $N \leq P$ and so $aX \leq N \leq P$. Since P is prime, $X \leq P$ or $a1_M \leq P$ and hence $N \lor X \leq P$ and $N \lor a1_M \leq P$. Thus either $P \in D(N \lor X)$ or $P \in D(N \lor a1_M)$, therefore $D(N) \subseteq D(N \lor a1_M) \cup D(N \lor X)$. Thus D(N) is covered with the finite subfamily A', which is contradiction. Hence N is prime element of M.

Now choose $U \in A$ such that $N \in U$. Thus N must have a patchneighborhood $\cap_{i=1}^{n}[E(K_i) \cap D(N_i)]$, for some $K_i, N_i \in M, n \in \mathbb{N}$, such that $\cap_{i=1}^{n}[E(K_i) \cap D(N_i)] \subseteq U$. Suppose for each $i(1 \leq i \leq n), P \in$ $E(K_i \vee N) \cap D(N)$. Then $P \in E(K_i \vee N), P \in D(N)$ and so that $K_i \vee N \nleq P$ and $N \leq P$. Thus $K_i \nleq P, i.e., P \in E(K_i)$. On the other hand $N \in D(N_i), i.e., N_i \leq N$, therefore $N_i \leq P$ and $P \in D(N_i)$. Consequently, $N \in [E(K_i \vee N) \cap D(N)] \subseteq [E(K_i) \cap D(N_i)]$ and hence $N \in \bigcap_{i=1}^{n}[E(K_i \vee N) \cap D(N)] \subseteq \bigcap_{i=1}^{n}[E(K_i) \cap D(N_i)] \subseteq U$. Thus $[\bigcap_{i=1}^{n}E(K_i \vee N)] \cap D(N)$, where $N < K_i \vee N$, is a neighborhood of N, with $[\bigcap_{i=1}^{n}E(K_i \vee N)] \cap D(N) \subseteq U$.

Since for each $i(1 \leq i \leq n)$, $N < K_i \lor N$, $D(K_i \lor N)$ is covered by some finite subfamily A'_i of A. But $D(N) - [\bigcup_{i=1}^n D(K_i \lor N)] =$ $D(N) - [\bigcap_{i=1}^n E(K_i \lor N)]^c = [\bigcap_{i=1}^n E(K_i \lor N)] \cap D(N) \subseteq U$ and so D(N)can be covered by $A'_1 \cup A'_2 \cup \cdots \cup A'_n \cup \{U\}$, which is contradiction to our choice of N. Thus there must exist a finite subfamily of A which covers $Spec^p(M)$. Therefore $Spec^p(M)$ is compact in the finer patch topology of M. \Box

Let τ_1 and τ_2 be two topologies on X such that $\tau_1 \subseteq \tau_2$. If X is quasi-compact (i.e. any open cover of it has a finite subcover) in τ_2 , then X is also quasi-compact in τ_1 (see [16]).

Theorem 4.4. Let M be a lattice module over a C-lattice L such that M has ascending chain condition on prime radical elements. Then for each $n \in \mathbb{N}$ and elements $N_i(1 \le i \le n)$ of M, $E(N_1) \cap E(N_2) \cap \cdots \cap E(N_n)$ is a quasi-compact subset of $Spec^p(M)$ with the classical Zariski topology. Consequently, $Spec^p(M)$ is quasi-compact and has a basis of quasi-compact open subsets.

Proof. By Definition 4.1, we have, for each element $N \in M$, $D(N) = D(N) \cap E(1_M)$ as an open subset of $Spec^p(M)$ with finer patch topology and E(N) is complement of D(N), therefore E(N), for each $N \in M$, is a closed subset of $Spec^p(M)$. Thus for each $n \in \mathbb{N}$ and $N_i \in M(1 \le i \le n)$, $E(N_1) \cap E(N_2) \cap \cdots \cap E(N_n)$ is also a closed subset in $Spec^p(M)$ with finer patch topology. By Theorem 4.3, $Spec^p(M)$ is a compact space with finer patch topology and since every closed subset of a compact space is compact, $E(N_1) \cap E(N_2) \cap \cdots \cap E(N_n)$ is compact in $Spec^p(M)$ with finer patch topology and therefore, it is quasi-compact in $Spec^p(M)$ with the classical Zariski topology. Since $Spec^p(M) = E(1_M)$ and $\mathbb{B} = \{E(N_1) \cap E(N_2) \cap \cdots \cap E(N_n) | N_i \in$

Since $Spec^{p}(M) = E(I_{M})$ and $\mathbb{B} = \{E(N_{1}) \cap E(N_{2}) \cap \cdots \cap E(N_{n}) | N_{i} \in M, n \in \mathbb{N}\}$ is a basis for the classical Zariski topology of M, $Spec^{p}(M)$ is quasi-compact and has a basis of quasi-compact open subsets. \Box

Lemma 4.5. Let M be a lattice module over a C-lattice L such that M has ascending chain condition on prime radical elements. Then every irreducible closed subset of $Spec^{p}(M)$ (with the classical Zariski topology) has a generic point.

Proof. Suppose that Y is an irreducible closed subset of $Spec^{p}(M)$. Note that D(N) and E(N) are both open and closed in finer patch topology. Hence for each $P \in Y, D(P)$ is an open subset of $Spec^{p}(M)$. Now, since Y is closed subset of $Spec^{p}(M)$ with classical Zariski topology, the complement of Y is open by this topology, hence complement of Y is open subset with finer patch topology and Y is closed subset of $Spec^{p}(M)$ with finer patch topology. By Theorem 4.3, $Spec^{p}(M)$ is compact and Y is a closed subset of $Spec^{p}(M), Y$ is also compact. We have, by Lemma 3.3, $Y = \bigcup_{P \in Y} D(P)$. Since Y is compact and each D(P) is finer patch-open, there exists a finite subset Y_{1} of Y such that $Y = \bigcup_{P \in Y_{1}} D(P)$. Since Y is irreducible, Y = D(P) for some $P \in Y$. Consequently, P is a generic point for Y.

Corollary 4.6. Let M be a lattice module over a C-lattice L such that M has ascending chain condition on prime radical elements. Then quasi-compact open sets of $Spec^{p}(M)$ (with classical Zariski topology) are closed under finite intersections.

Proof. Let U_1 and U_2 be two quasi-compact open sets of $Spec^p(M)$ and let $U = U_1 \cap U_2$. Each of U_1 and U_2 is a finite union of members of $\mathbb{B} = \{E(N_1) \cap E(N_2) \cap \cdots \cap E(N_n) | N_i \in M, n \in \mathbb{N}\}$. Hence $U = \bigcup_{i=1}^m (\bigcap_{j=1}^{n_i} E(N_j))$. Let Π be any open cover of U. Then Π also covers each $\bigcap_{j=1}^{n_i} E(N_j)$ which is quasi-compact by Theorem 4.4. Hence each $\bigcap_{j=1}^{n_i} E(N_j)$ has a finite subcover of Π and hence U has a finite subcover of Π . Thus U is quasi-compact, as required. \Box **Theorem 4.7.** Let M be a lattice module over a C-lattice L such that M has ascending chain condition on prime radical elements. Then $Spec^{p}(M)$ (with the classical Zariski topology) is a spectral space.

Proof. By Lemma 3.8, $Spec^{p}(M)$ is a T_{0} -space. Since M has ascending chain condition on prime radical elements, $\mathbb{B} = \{E(N_{1}) \cap E(N_{2}) \cap \cdots \cap E(N_{n}) | N_{i} \in M, n \in \mathbb{N}\}$ is a basis for $Spec^{p}(M)$ with the property that each basis element, in particular $E(1_{M}) = Spec^{p}(M)$ is quasicompact by Theorem 4.4. By Corollary 4.6, the quasi-compact open sets are closed under finite intersections. And finally, by Lemma 4.5, each irreducible closed set has a generic point. Therefore, by Definition 3.9, $Spec^{p}(M)$ is a spectral space. \Box

Acknowledgments

The authors would like to thank the referee for his or her valuable comments and suggestions which lead to an improvement of this paper.

References

- F. Alarcon, D.D. Anderson and C. Jayaram, Some results on Abstract commutative Ideal theory, Period. Math. Hung. (1) 30 (1995), 1-26.
- E.A. AL-Khouja, Maximal elements and prime elements in Lattice Modules, Damascus Univ. Basic Sci. 19 (2003), 9-20.
- H. Ansari-Toroghy and R. Ovlyaee-Sarmazdeh, On the Prime spectrum of a module and Zariski topologies, Comm. in Algebra, 38 (2010), 4461-4475.
- H. Ansari-Toroghy, S. Keyvani and F. Farshadifar, *The Zariski topology on the Second spectrum of a module(II)*, Bull. Malays. Math. Sci. Soc. (3) **39** (2015), 1089-1103.
- 5. M. Atiyah and I. MacDonald, *Introduction to commutative Algebra*, Reading:Addison-Wesley.
- S. Ballal and V. Kharat, Zariski topology on Lattice Modules, Asian-Eur. J. Math. (4) 8 (2015), 1550066.
- M. Behboodi and M. R. Haddadi, Classical Zariski topology of modules and spectral spaces I, Int. Electron. J. Algebra, 4 (2008), 104-130.
- 8. M. Behboodi and M. R. Haddadi, *Classical Zariski topology of modules and spectral spaces II*, Int. Electron. J. Algebra, 4 (2008), 131-148.
- 9. N. Bourbaki, Algebre commutative, Chap 1, 2, Hermann, Paris, 1961.
- N. Bourbaki, *Elements of Mathematics, General topology*, Addison-Wesley(translated from french), 1966.
- F. Callialp, G. Ulucak and U. Tekir, On the Zariski topology over an L-Module M, Turk. J. Math. 41 (2017), 326-336.
- K. R. Goodearl and R. B. Warfield, An Introduction to Non-commutative Noetherian Rings (Second Edition), London Math. Soc. Student Texts 16, Cambridge University Press, Cambridge, 2004.

- M. Hochster, Prime ideal structure in commutative rings, Trans. Amer.Math. Soc. 142 (1969), 43-60.
- J. A. Johnson, a-adic completions of Noetherian Lattice Modules, Fund. Math. (3) 66 (1970), 341-371.
- C.S. Manjarekar and U. N. Kandale, *Primary radicals in lattice modules*, Int. J. Advance. in Research and Tech. (8) 2 (2013), 208-214.
- J. R. Munkres, *Topology*, a first course, Prentice-Hall, Inc. Eglewood Cliffs, New Jersey, 1975.
- R. L. McCasland, M. E. Moore and P. F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra, 25 (1997), 79-103.
- H. M. Nakkar and I. A. Al-Khouja, Nakayama's lemma and the principal elements in lattice modules over multiplicative lattices, RJ of Aleppo University, 7 (1985), 1-16.
- N. Phadatare, S. Ballal and V. Kharat, On the Second Spectrum of Lattice Modules, Discuss. Math. Gen. Algebra Appl. 37 (2017), 59-74.
- N. K. Thakare, C. S. Manjarekar and S. Maeda, Abstract spectral theory II:minimal characters and minimal spectrums of multiplicative lattices, Acta Sci. Math. 52 (1988), 53-67.
- N. K. Thakare and C. S. Manjarekar, Abstract spectral theory: Multiplicative lattices in which every character is contained in a unique maximal character, Algebra and Its applications (Marcel Dekker, New York, 1984), 256-276.

Vandeo Borkar

Department of Mathematics, Yeshwant Mahavidyalaya, Nanded, India. Email: borkarvc@gmail.com

Pradip Girase

Department of Mathematics, K. K. M. College, Manwath, Parbhani, India. Email: pgpradipmaths22@gmail.com

Narayan Phadatare

Department of Mathematics, Savitribai Phule Pune University, Pune, India. Email: a9999phadatare@gmail.com