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CLASSICAL ZARISKI TOPOLOGY ON PRIME
SPECTRUM OF LATTICE MODULES

V. BORKAR, P. GIRASE ∗, AND N. PHADATARE

Abstract. Let M be a lattice module over a C-lattice L. Let
Specp(M) be the collection of all prime elements of M . In this
article, we consider a topology on Specp(M), called the classi-
cal Zariski topology and investigate the topological properties of
Specp(M) and the algebraic properties of M . We investigate this
topological space from the point of view of spectral spaces. By
Hochster’s characterization of a spectral space, we show that for
each lattice module M with finite spectrum, Specp(M) is a spec-
tral space. Also we introduce finer patch topology on Specp(M)
and we show that Specp(M) with finer patch topology is a com-
pact space and every irreducible closed subset of Specp(M) (with
classical Zariski topology) has a generic point and Specp(M) is a
spectral space, for a lattice module M which has ascending chain
condition on prime radical elements.

1. Introduction

A lattice L is said to be complete, if for any subset S of L, we have
∨S,∧S ∈ L. A complete lattice L is said to be a multiplicative lattice,
if there is defined a binary operation ”.” called multiplication on L
satisfying the following conditions:
(1) a.b = b.a, for all a, b ∈ L;
(2) a.(b.c) = (a.b).c, for all a, b, c ∈ L;
(3) a.(∨αbα) = ∨α(a.bα), for all a, bα ∈ L;
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(4) a.1 = a, for all a ∈ L.
Henceforth, a.b will be simply denoted by ab.

For a, b ∈ L, we write (a : b) = ∨{x ∈ L|bx ≤ a}. An element
a in L is called compact if a ≤ ∨α∈Ibα (I is an indexed set) implies
a ≤ bα1 ∨ bα2 ∨ · · · ∨ bαn for some subset {α1, α2, · · · , αn} of I. By a
C-lattice, we mean a multiplicative lattice L, with least element 0L and
greatest element 1L which is compact as well as multiplicative identity,
that is generated under joins by a multiplicatively closed subset C of
compact elements of L.

An element a ∈ L is said to be proper, if a < 1. A proper element
p of a multiplicative lattice L is said to be prime if ab ≤ p implies
a ≤ p or b ≤ p for a, b ∈ L. The collection of all prime elements of L is
denoted by Spec(L).

The Zariski topology on the set Spec(L) of all prime elements in
multiplicative lattices is being studied in [20] by Thakare, Manjarekar
and Maeda and in [21], by Thakare and Manjarekar as a generalization
of the Zariski topology of a commutative ring with unity.
A proper element m of a multiplicative lattice L is said to be maximal
if for every x ∈ L with m < x ≤ 1L implies x = 1L.

A complete lattice M is said to be a lattice module over the mul-
tiplicative lattice L, or L-module, if there is a multiplication between
elements of M and L, denoted by aN ∈ M , for a ∈ L and N ∈ M ,
which satisfies the following properties:

(1) (ab)N = a(bN);
(2) (∨αaα)(∨βNβ) = (∨αβaαNβ);
(3) 1LN = N ;
(4) 0LN = 0M ; for all a, b, aα ∈ L, and for all N,Nβ ∈M .

Let M be a lattice module over a C-lattice L. The greatest element
of M will be denoted by 1M and the smallest element will be denoted
by 0M . For N ∈ M, b ∈ L, denote (N : b) = ∨{K ∈ M |bK ≤ N}
and for A,B ∈ M, (A : B) = ∨{x ∈ L|Bx ≤ A}. An element N ∈ M
is said to be compact if N ≤ ∨α∈IAα (I is an indexed set) implies
N ≤ Aα1 ∨ Aα2 ∨ · · · ∨ Aαn for some subset {α1, α2, · · · , αn} of I.

An element N ∈M is said to be proper if N < 1M . A proper element
N of a lattice module M is said to be prime if aX ≤ N implies X ≤ N
or a1M ≤ N , i.e., a ≤ (N : 1M) for every a ∈ L and X ∈ M . The
prime spectrum of a lattice module M is the set of all prime elements
of M and it is denoted by Specp(M). In [6], Sachin Ballal and Vilas
Kharat studied the Zariski topology over Specp(M) as a generalization
of the results carried out in [[20], [21]]. Also in [11], Fethi Callialp
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et. al. studied the Zariski topology on Specp(M) over multiplicative
lattice L.

A non-zero element N ∈ M is said to be second, if for a ∈ L, either
aN = N or aN = 0M . The Zariski topology on the second spectrum
of lattice modules is studied by Narayan Phadatare et. al. in [19] . An
element N < 1M of M is said to be maximal if N ≤ B implies either
N = B or B = 1M , B ∈ M . A non-zero element K 6= 1M of M is
said to be minimal if 0M ≤ N < K implies N = 0M , N ∈ M . If 1M
is compact, then M has a maximal element by [18] and every maximal
element is a prime element by [2].

Let M be a lattice module over a C-lattice L and Specp(M) be
the prime spectrum of M . For any element N of M , D(N) = {P ∈
Specp(M)|N ≤ P}. Note that D(0M) = Specp(M) and D(1M) is
an empty set. It is easy to see that for any family of elements Ki

(i ∈ I) of M , ∩i∈ID(Ki) = D(∨i∈IKi) and D(N)∪D(K) ⊆ D(N ∧K).
Thus if τ(M) denotes the collection of all subsets D(N) of Specp(M),
then τ(M) contains the empty set and Specp(M) and τ(M) is closed
under arbitrary intersections. In general τ(M) is not closed under finite
unions. A lattice module M is called a top lattice module, if τ(M) is
closed under finite unions. In this case, τ(M) is called the quasi Zariski
topology [11].

M. Behboodi and M. R. Haddadi introduced and studied the classical
Zariski topology on the set of all prime submodules of modules as a
generalization of the Zariski topology of rings in [7] and [8]. H. Ansari-
Toroghy et. al. studied various topological properties of set of all prime
submodules of a module over a commutative ring in [3] and the second
classical Zariski topology on the second spectrum of modules over a
commutative ring is introduced and studied by H. Ansari-Toroghy et.
al. in [4]. In this paper, we generalize the concepts of submodules
studied in [7] and [8] to the lattice modules.

Let M be a lattice module over a C-lattice L. For each element N of
M , we define E(N) = Specp(M)−D(N) and E(M) = {E(N)|N ∈M},
then we define topology ψ(M) on Specp(M) by the subbasis E(M) and
call it the Classical Zariski topology of M . In fact ψ(M) to be the
collection U of all unions of finite intersections of elements of E(M)(see
[16]).

Further all these concepts and for more information on multiplicative
lattices, lattice modules and topology, the reader may refer ([1],[2],[9],[14]).
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2. Classical Zariski topology

Let M be a lattice module over a C-lattice L. An element P of M
is called maximal prime if P is a prime element of M and there is no
prime element Q of M such that P ≤ Q.
Proposition 2.1. Let M be a lattice module over a C-lattice L. Then
the following statements are equivalent:

(1) For any elements N1, N2 ∈ M , D(N1) = D(N2) implies that
N1 = N2.

(2) Every proper element of M is a meet of prime elements.

Proof. 1) =⇒ 2) Suppose that N1 is a proper element of M . Then
D(N1) 6= φ, because if D(N1) = φ = D(1M) and therefore N1 = 1M
by part (1), a contradiction. Now let N2 = ∧P∈D(N1)P . Clearly, by
definition D(N1) = D(N2) and therefore by part (1), N1 = N2. Hence
N1 = N2 = ∧P∈D(N1)P is a meet of prime elements.
2) =⇒ 1) Assume that for N1, N2 ∈ M , D(N1) = D(N2). By (2),
N1 = ∧P∈D(N1)P and N2 = ∧P∈D(N2)P . Since D(N1) = D(N2), N1 =
∧P∈D(N1)P = ∧P∈D(N2)P = N2, as required. �

Let X be a topological space and x and y be points in X. We say
that x and y can be separated if each lies in an open set which does not
contain the other point. X is a T1−space if any two distinct points in
X can be separated. A topological space X is a T1−space if and only
if all points of X are closed in X(i.e. given any x in X, the singleton
set {x} is a closed set). Also X is a Hausdorff space if any two distinct
points of X can be separated by neighborhoods. This is why Hausdorff
spaces are also called T2−spaces or separated spaces.
For a lattice module M , dimp(M) denote the supremum of the length
of chains of prime elements of M . Note that, if Specp(M) = φ, then
dimp(M) = −1.
We obtain a characterization of Specp(M) to be T1−space in the fol-
lowing result.

Theorem 2.2. Let M be a lattice module over a C-lattice L. Then
Specp(M) is a T1−space if and only if dimp(M) ≤ 0.

Proof. Suppose that Specp(M) is a T1−space. If Specp(M) = φ, then
dimp(M) = −1. If Specp(M) 6= φ, then {P} is a closed set in Specp(M)
for P ∈ Specp(M). Now, assume that P ≤ Q, for P,Q in Specp(M).
Since {P} is closed set, {P} = ∩k∈J(∪nk

l=1D(Nkl)), Nkl ∈ M and J is
an index set, nk ∈ N. Therefore, for each k ∈ J , P ∈ ∪nk

l=1D(Nkl) and
hence there exists 1 ≤ s ≤ nk such that P ∈ D(Nks) and so Nks ≤ P .
Now P ≤ Q and Nks ≤ P implies that Nks ≤ Q, therefore Q ∈ D(Nks)
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for all k ∈ J and 1 ≤ s ≤ nk. It follows that, Q ∈ ∪nk
l=1D(Nkl) for each

k ∈ J . Thus Q ∈ ∩k∈J(∪nk
l=1D(Nkl)) = {P}. This implies that every

prime element of M is maximal. Consequently, dimp(M) ≤ 0.
Conversely, assume that dimp(M) ≤ 0. If dimp(M) = −1, then
Specp(M) = φ, i.e. Specp(M) is a trivial space and hence it is T1−space.
If dimp(M) = 0, then Specp(M) 6= φ and every prime element is maxi-
mal. Thus for each P ∈ Specp(M), we have, D(P ) = {P} and so {P} is
a closed set in Specp(M). Consequently, Specp(M) is a T1−space. �

Proposition 2.3. Let M be a lattice module over a C-lattice L, then
the following statements are equivalent:

(1) Every proper element of M is a meet of maximal elements and
dimp(M) = 0.

(2) Specp(M) is a T1−space and D(N1) = D(N2) implies that N1 =
N2 for any N1, N2 ∈M .

Proof. 1) =⇒ 2) Since every proper element of M is a meet of maximal
elements of M and every maximal element is prime, therefore by Propo-
sition 2.1, D(N1) = D(N2) implies that N1 = N2 for any N1, N2 ∈ M .
Also, since dimp(M) = 0, by Theorem 2.2, Specp(M) is a T1−space.
2) =⇒ 1) Assume that Specp(M) is a T1−space and D(N1) = D(N2)
implies that N1 = N2 for any N1, N2 ∈M . Therefore every proper ele-
ment is a meet of prime elements, by Proposition 2.1 and every prime
element is maximal, because Specp(M) is a T1−space. Hence every
proper element is meet of maximal elements and dimp(M) = 0. �

The cofinite topology(or finite complement topology) is a topology
which can be defined on every set X. It has precisely the empty set
and all cofinite subsets of X as open sets. As a consequence, in the
cofinite topology, the only closed subsets are finite sets or the whole of
X [5].
Now, we have characterization of Specp(M) to be the cofinite topology.

Theorem 2.4. Let M be a lattice module over a C-lattice L. Then the
following statements are equivalent:

(1) Specp(M) is the cofinite topology.
(2) dimp(M) ≤ 0 and for each element N of M either D(N) =

Specp(M) or D(N) is finite.

Proof. 1) =⇒ 2) Suppose that Specp(M) is the cofinite topology.
Since every cofinite topology satisfies the T1−axiom, by Theorem 2.2,
we have, dimp(M) ≤ 0. Suppose that there exists an element N
of M such that it is contained in infinite number of prime elements
of M , i.e., |D(N)| = ∞ and D(N) 6= Specp(M). Then E(N) =
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Specp(M) − D(N) is an open set in Specp(M) with infinite comple-
ment, a contradiction.
2) =⇒ 1) Suppose that dimp(M) ≤ 0 and for each element N of M
either D(N) = Specp(M) or D(N) is finite. Then the complement
of every open set in Specp(M) is of the form ∩k∈J(∪nk

l=1D(Nkl)), where
Nkl ∈M . This implies that every closed set in Specp(M) is either finite
or Specp(M). Consequently, Specp(M) is the cofinite topology. �

Theorem 2.5. Let M be a lattice module over a C-lattice L with
|Specp(M)| ≥ 2. If Specp(M) is a Hausdorff space, then dimp(M) =
0 and there exists elements N1, N2 · · ·Nk of M such that D(Ni) 6=
Specp(M), for all i and D(N1) ∪D(N2) ∪ · · · ∪D(Nk) = Specp(M).

Proof. Suppose that Specp(M) is a Hausdorff space and |Specp(M)| ≥
2. Let P,Q ∈ Specp(M), such that P 6= Q. Then there exist open
sets ∪k∈J(∩nk

l=1E(Nkl)), ∪p∈J ′ (∩np

q=1E(Npq)), Nkl, Npq ∈ M , nk, np ∈ N,

J, J
′

are an index set such that P ∈ ∪k∈J(∩nk
l=1E(Nkl)), and Q ∈

∪p∈J ′ (∩np

q=1E(Npq)) and [∪k∈J(∩nk
l=1E(Nkl))]∩ [∪p∈J ′ (∩np

q=1E(Npq))] = φ.

Therefore there exists s ∈ J, t ∈ J
′

such that P ∈ ∩ns
l=1E(Nsl), and

Q ∈ ∩nt
q=1E(Ntq) and [∩ns

l=1E(Nsl)] ∩ [∩nt
q=1E(Ntq)] = φ. This implies

that P � Q,Q � P and [∪ns
l=1D(Nsl)] ∪ [∪nt

q=1D(Ntq)] = Specp(M).

Consequently, dimp(M) = 0 and Specp(M) = ∪ki=1D(Ni). �

3. Classical Zariski Topology and Spectral Spaces

Let M be a lattice module over a C-lattice L and let Specp(M) be
equipped with the classical Zariski topology. Let Y ⊆ Specp(M), then
Cl(Y ) denotes the closure of Y in Specp(M) and meet of all elements
of Y denoted by Υ(Y ). Note that if Y = φ, then Υ(Y ) = 1M .

A topological space X is called irreducible if X 6= φ and every finite
intersection of non-empty open sets of X is non-empty. A non-empty
subset Y of a topological space X is called an irreducible set if the
subspace Y of X is irreducible, i.e., if Y ⊆ Y1 ∪ Y2, then Y ⊆ Y1 or
Y ⊆ Y2, where Y1 and Y2 are closed subsets of X.

Let Y be a closed subset of a topological space. An element y ∈ Y is
called a generic point of Y if Y = Cl({y}). Note that, a generic point
of the irreducible closed subset Y of a topological space is unique if the
topological space is T0−space.
Lemma 3.1. Let M be a lattice module over a C-lattice L and let Y
be a finite non-empty subset of Specp(M). Then Cl(Y ) = ∪P∈YD(P ).

Proof. Suppose that Y ⊆ Specp(M). Clearly Y ⊆ ∪P∈YD(P ). Now,
let B be any closed subset of Specp(M) such that Y ⊆ B. Thus
B = ∩k∈J(∪nk

l=1D(Nkl)), for some Nkl ∈ M,k ∈ J, nk ∈ N. Let Q ∈
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∪P∈YD(P ). Then there exists P
′ ∈ Y such thatQ ∈ D(P

′
) and so P

′ ≤
Q. Now, P

′ ∈ Y ⊆ B, therefore P
′ ∈ B. But B = ∩k∈J(∪nk

l=1D(Nkl)),
therefore for each k ∈ J , there exist l ∈ {1, 2, · · · , nk} such that
P

′ ∈ D(Nkl) and therefore Nkl ≤ P
′ ≤ Q. It follows that Q ∈

∩k∈J(∪nk
l=1D(Nkl)) = B. Hence ∪P∈YD(P ) ⊆ B. Thus ∪P∈YD(P )

is the smallest closed set in Specp(M) containing Y . Consequently,
Cl(Y ) = ∪P∈YD(P ). �

Corollary 3.2. Let M be a lattice module over a C-lattice L. Then

(1) Cl({P}) = D(P ), for all P ∈ Specp(M).
(2) Q ∈ Cl({P}) if and only if P ≤ Q if and only if D(Q) ⊆ D(P ),

for Q ∈ Specp(M).
(3) The set {P} is closed in Specp(M) if and only if P is a maximal

prime element of M .

Proof. 1) By Lemma 3.1, for Y ⊆ Specp(M), Cl(Y ) = ∪P∈YD(P ). Let
Y = {P}, then ∪P∈YD(P ) = D(P ), hence Cl({P}) = D(P ).
2) Suppose that Q ∈ Cl({P}). Then by part (1), Q ∈ Cl({P}) =
D(P ), therefore P ≤ Q. It implies that D(Q) ⊆ D(P ). Conversely,
suppose that, D(Q) ⊆ D(P ). Since Q ∈ D(Q) ⊆ D(P ), we have
P ≤ Q and Q ∈ D(P ) = Cl({P}) by part (1).
3) Suppose that P is a maximal prime element of M . Let Q ∈ Cl({P}),
then by part (1), Q ∈ Cl({P}) = D(P ), implies P ≤ Q. But P is max-
imal, therefore P = Q and hence Cl({P}) = {P}. Consequently, {P}
is closed in Specp(M).
Conversely, suppose that {P} is closed in Specp(M) and P is not
maximal, then there exists Q such that P ≤ Q, which implies that
Q ∈ Cl({P}) by part (2). Since {P} is closed, Q ∈ Cl({P}) = {P},
hence P = Q. Consequently, P is a maximal prime element of M . �

Lemma 3.3. Let M be a lattice module over a C-lattice L and Y be a
finite non-empty closed subset of Specp(M), then Y = ∪P∈YD(P ).

Proof. Suppose that Y is a non-empty closed subset of Specp(M). It is
clear that Y ⊆ ∪P∈YD(P ). By Corollary 3.2(1), for each P ∈ Y ,
we have D(P ) = Cl({P}) ⊆ Cl(Y ) and Cl(Y ) = Y . Therefore
∪P∈YD(P ) ⊆ Y . Consequently, Y = ∪P∈YD(P ). �

Lemma 3.4. Let M be a lattice module over a C-lattice L. Then for
each P ∈ Specp(M), D(P ) is irreducible.

Proof. Suppose that D(P ) ⊆ X1∪X2, where X1 and X2 are closed sets
of Specp(M). Since P ∈ D(P ) andD(P ) ⊆ X1∪X2, therefore P ∈ X1∪
X2, which implies that either P ∈ X1 or P ∈ X2. Suppose that P ∈ X1.
Since X1 is closed in Specp(M), we have X1 = ∩k∈J(∪nk

l=1D(Nkl)), for
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Nkl ∈ M and k ∈ J, nk ∈ N. Thus P ∈ ∪nk
l=1D(Nkl) for each k ∈ J .

It follows that D(P ) ⊆ ∪nk
l=1D(Nkl) for each k ∈ J . Hence D(P ) ⊆

∩k∈J(∪nk
l=1D(Nkl)) = X1. Consequently, D(P ) is irreducible. �

Theorem 3.5. Let M be a lattice module over a C-lattice L and Y ⊆
Specp(M). Then

(1) If Y is irreducible, then Υ(Y ) is a prime element.
(2) If Υ(Y ) is a prime element and Υ(Y ) ∈ Cl(Y ), then Y is

irreducible.

Proof. 1) Suppose that Y is an irreducible subset of Specp(M). Clearly,
Υ(Y ) = ∧P∈Y P < 1M and Y ⊆ D(Υ(Y )). Let aX ≤ Υ(Y ), for
a ∈ L,X ∈ M . Now for P ∈ Y ⊆ D(Υ(Y )), Υ(Y ) ≤ P and aX ≤
Υ(Y ) ≤ P . Since P is prime, X ≤ P or a1M ≤ P , which implies that
P ∈ D(X) or P ∈ D(a1M). Hence Y ⊆ D(X) ∪ D(a1M). Since Y
is irreducible, either Y ⊆ D(X) or Y ⊆ D(a1M). If Y ⊆ D(X), then
X ≤ P , for all P ∈ Y . Therefore X ≤ Υ(Y ). If Y ⊆ D(a1M), then
a1M ≤ P , for all P ∈ Y . Therefore a1M ≤ Υ(Y ). Consequently, Υ(Y )
is a prime element of M .
2) Suppose that Υ(Y ) is a prime element of M and Υ(Y ) ∈ Cl(Y ).
Since Υ(Y ) ≤ P , for each P ∈ Y , we have D(P ) ⊆ D(Υ(Y )) for
each P ∈ Y, by Corollary 3.2(2). Therefore ∪P∈YD(P ) ⊆ D(Υ(Y ))
and so by Lemma 3.1, Cl(Y ) ⊆ D(Υ(Y )). Since Υ(Y ) is a prime
element of M and Υ(Y ) ∈ Cl(Y ), we have, D(Υ(Y )) ⊆ Cl(Y ). Hence
D(Υ(Y )) = Cl(Y ). Now, let Y ⊆ X1∪X2, where X1 and X2 are closed
sets of SpecpM . Then Cl(Y ) ⊆ X1 ∪X2. Since D(Υ(Y )) = Cl(Y ) ⊆
X1 ∪ X2 and D(Υ(Y )) is irreducible, by Lemma 3.4, we have either
D(Υ(Y )) ⊆ X1 or D(Υ(Y )) ⊆ X2. It follows that either Y ⊆ X1 or
Y ⊆ X2. Consequently, Y is irreducible. �

Definition 3.6. [15] Let M be a lattice module over a C-lattice L and
N be an element of M . Then the prime radical of N is defined to be
the meet of all prime elements containing N , that is p

√
N = ∧{P ∈

Specp(M)|N ≤ P}.
Note that, p

√
N = 1M , if there is no prime element containing N . If

N = p
√
N , then N is called as prime radical element of M .

Corollary 3.7. Let M be a lattice module over a C-lattice L and N
be an element of M . Then the subset D(N) of Specp(M) is irreducible

if and only if p
√
N is a prime element.

Proof. Suppose that the subset D(N) of Specp(M) is irreducible. Then
by Theorem 3.5, Υ(D(N)) is a prime element. Now, we have Υ(D(N)) =

∧{P ∈ D(N)} = ∧{P ∈ Specp(M)|N ≤ P} = p
√
N . Hence p

√
N is a



CLASSICAL ZARISKI TOPOLOGY ON PRIME SPECTRUM 9

prime element.
Conversely, suppose that p

√
N is a prime element. Clearly for each ele-

ment N of M , D(N) = D( p
√
N). Since p

√
N is a prime element, D( p

√
N)

is irreducible by Lemma 3.4. Hence D(N) is irreducible. �

The following Lemma shows that for any lattice module M over
a C−lattice L, Specp(M) is always a T0−space and every finite irre-
ducible closed subset of Specp(M) has a generic point.

Lemma 3.8. Let M be a lattice module over a C-lattice L. Then

(1) Specp(M) is always a T0−space.
(2) Every P ∈ Specp(M) is a generic point of the irreducible closed

subset D(P ).
(3) Every finite irreducible closed subset of Specp(M) has a generic

point.

Proof. 1) Let P,Q ∈ Specp(M). Then by Corollary 3.2(1), Cl({P}) =
D(P ), Cl({Q}) = D(Q) and therefore Cl({P}) = Cl({Q}) if and only
if D(P ) = D(Q) if and only if P = Q, by Corollary 3.2(2). Now, by the
fact that a topological space is a T0−space if and only if the closures of
distinct points are distinct, we conclude that, Specp(M) is a T0−space.
2) By Corollary 3.2(1), it is clear that, for P ∈ Specp(M), D(P ) =
Cl({P}). Hence P is a generic point of the irreducible closed subset
D(P ).
3) Let Y be an irreducible closed subset of Specp(M) and Y = {P1, P2,
· · · , Pk}, where Pi ∈ Specp(M), k ∈ N. By Lemma 3.1, Y = Cl(Y ) =
D(P1) ∪ D(P2) ∪ · · · ∪ D(Pk). Since Y is irreducible, Y = D(Pi), for
some i(1 ≤ i ≤ k). Now by (2), Pi is a generic point of D(Pi) = Y . �

Definition 3.9. [13] A topological space X is a spectral space if X
satisfy the following conditions(Hochster’s characterization):

(1) X is a T0−space.
(2) X is a quasi-compact.
(3) The quasi-compact open subsets of X are closed under finite

intersection and form an open basis.
(4) Each irreducible closed subset of X has a generic point.

Theorem 3.10. Let M be a lattice module over a C-lattice L with
finite prime spectrum. Then Specp(M) is a spectral space(with Classical
Zariski topology).

Proof. Assume that Specp(M) is finite. Then by Lemma 3.8, Specp(M)
is a T0−space and every irreducible closed subset of Specp(M) has a
generic point. Also, since Specp(M) is finite, the quasi-compact open
subsets of Specp(M) are closed under finite intersection and form an
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open basis( This basis is B = {E(N1)∩E(N2)∩· · ·∩E(Nk)|Ni ∈M, 1 ≤
i ≤ k, for some k ∈ N})[10]. Now by Definition 3.9, we conclude that
Specp(M) is a spectral space. �

4. Finer Patch Topology and Spectral Spaces

Let X be a topological space. By the patch topology on X, we mean
the topology which has as a sub-basis for its closed sets the closed sets
and compact open sets of the original space. By a patch we mean a set
closed in the patch topology(see [12],[17]).
Definition 4.1. Let M be a lattice module over a C-lattice L and let
U(M) be the family of all elements of Specp(M) of the form D(N) ∩
E(K), where N,K ∈ M . Clearly both Specp(M) = D(0M) ∩ E(1M)
and the empty set φ = D(0M) ∩ E(0M) are members of U(M). Let
T (M) to be the collection of all unions of finite intersections of elements
of U(M). Then T (M) is a topology on Specp(M) and is called the finer
patch topology. In fact U(M) is a sub-basis for the finer patch topology
of M .
Note that, finer patch topology on Specp(M) is finer than classical
Zariski topology on Specp(M).

Theorem 4.2. Let M be a lattice module over a C-lattice L. Then
Specp(M) with the finer patch topology is Hausdorff. Moreover, Specp(M)
with this topology is disconnected if and only if |Specp(M)| > 1.

Proof. Suppose that P,Q ∈ Specp(M) and P 6= Q. Since P 6= Q,
either P � Q or Q � P . By Definition 4.1, U1 = E(1M) ∩ D(P )
is a finer patch-neighborhood of P and U2 = E(P ) ∩ D(Q) is a finer
patch-neighborhood of Q. It is clear that E(P )∩D(P ) = φ and hence
U1 ∩ U2 = φ. Thus Specp(M) is a Hausdorff space. Now, for each
element N ∈ M , E(N) and D(N) are open in finer patch topology,
because D(N) = E(1M) ∩D(N) and E(N) = E(1M) ∩D(0M). Since
E(N) and D(N) are complements of each other, these sets are closed.
Therefore Specp(M) with finer patch topology is disconnected if and
only if |Specp(M)| > 1. �

Theorem 4.3. Let M be a lattice module over a C-lattice L such that
M has ascending chain condition on prime radical elements. Then
Specp(M) with the finer patch topology is a compact space.

Proof. Suppose that M is a lattice module over a C−lattice L such that
M has ascending chain condition on prime radical elements. Let A be a
family of finer patch-open sets which covers Specp(M) and suppose that
no finite subfamily of A covers Specp(M). Since D( p

√
0M) = D(0M) =

Specp(M), we may use the ascending chain condition on prime radical
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elements to choose an element N maximal with respect to the property
that no finite subfamily of A covers D(N)(we may assume N = p

√
N

because D(N) = D( p
√
N)).

Suppose that N is not prime element of M . Then there exists X ∈
M and a ∈ L, such that aX ≤ N and X � N , a1M � N . Thus

N < N ∨ X ≤ p
√
N ∨X and N < N ∨ a1M ≤ p

√
N ∨ a1M . Hence

without loss of generality, there must be a finite subfamily A
′
of A that

covers both D(N ∨X) and D(N ∨ a1M). Let P ∈ D(N), then N ≤ P
and so aX ≤ N ≤ P . Since P is prime, X ≤ P or a1M ≤ P and
hence N ∨X ≤ P and N ∨ a1M ≤ P . Thus either P ∈ D(N ∨X) or
P ∈ D(N ∨ a1M), therefore D(N) ⊆ D(N ∨ a1M) ∪D(N ∨X). Thus
D(N) is covered with the finite subfamily A

′
, which is contradiction.

Hence N is prime element of M .
Now choose U ∈ A such that N ∈ U . Thus N must have a patch-
neighborhood ∩ni=1[E(Ki) ∩D(Ni)], for some Ki, Ni ∈ M,n ∈ N, such
that ∩ni=1[E(Ki) ∩ D(Ni)] ⊆ U . Suppose for each i(1 ≤ i ≤ n), P ∈
E(Ki ∨ N) ∩ D(N). Then P ∈ E(Ki ∨ N), P ∈ D(N) and so that
Ki ∨N � P and N ≤ P . Thus Ki � P, i.e., P ∈ E(Ki). On the other
hand N ∈ D(Ni), i.e., Ni ≤ N , therefore Ni ≤ P and P ∈ D(Ni).
Consequently, N ∈ [E(Ki ∨N) ∩D(N)] ⊆ [E(Ki) ∩D(Ni)] and hence
N ∈ ∩ni=1[E(Ki ∨ N) ∩ D(N)] ⊆ ∩ni=1[E(Ki) ∩ D(Ni)] ⊆ U . Thus
[∩ni=1E(Ki ∨N)]∩D(N), where N < Ki ∨N , is a neighborhood of N ,
with [∩ni=1E(Ki ∨N)] ∩D(N) ⊆ U .
Since for each i(1 ≤ i ≤ n), N < Ki ∨ N , D(Ki ∨ N) is covered
by some finite subfamily A

′
i of A. But D(N) − [∪ni=1D(Ki ∨ N)] =

D(N)− [∩ni=1E(Ki∨N)]c = [∩ni=1E(Ki∨N)]∩D(N) ⊆ U and so D(N)
can be covered by A

′
1 ∪A

′
2 ∪ · · · ∪A

′
n ∪ {U}, which is contradiction to

our choice of N . Thus there must exist a finite subfamily of A which
covers Specp(M). Therefore Specp(M) is compact in the finer patch
topology of M . �

Let τ1 and τ2 be two topologies on X such that τ1 ⊆ τ2. If X is
quasi-compact (i.e. any open cover of it has a finite subcover) in τ2,
then X is also quasi-compact in τ1 (see [16]).

Theorem 4.4. Let M be a lattice module over a C-lattice L such that
M has ascending chain condition on prime radical elements. Then for
each n ∈ N and elements Ni(1 ≤ i ≤ n) of M , E(N1) ∩ E(N2) ∩ · · · ∩
E(Nn) is a quasi-compact subset of Specp(M) with the classical Zariski
topology. Consequently, Specp(M) is quasi-compact and has a basis of
quasi-compact open subsets.
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Proof. By Definition 4.1, we have, for each element N ∈ M , D(N) =
D(N)∩E(1M) as an open subset of Specp(M) with finer patch topology
and E(N) is complement of D(N), therefore E(N), for each N ∈M , is
a closed subset of Specp(M). Thus for each n ∈ N and Ni ∈M(1 ≤ i ≤
n), E(N1) ∩ E(N2) ∩ · · · ∩ E(Nn) is also a closed subset in Specp(M)
with finer patch topology. By Theorem 4.3, Specp(M) is a compact
space with finer patch topology and since every closed subset of a com-
pact space is compact, E(N1) ∩ E(N2) ∩ · · · ∩ E(Nn) is compact in
Specp(M) with finer patch topology and therefore, it is quasi-compact
in Specp(M) with the classical Zariski topology.
Since Specp(M) = E(1M) and B = {E(N1)∩E(N2)∩· · ·∩E(Nn)|Ni ∈
M,n ∈ N} is a basis for the classical Zariski topology of M , Specp(M)
is quasi-compact and has a basis of quasi-compact open subsets. �

Lemma 4.5. Let M be a lattice module over a C-lattice L such that
M has ascending chain condition on prime radical elements. Then
every irreducible closed subset of Specp(M)(with the classical Zariski
topology) has a generic point.

Proof. Suppose that Y is an irreducible closed subset of Specp(M).
Note that D(N) and E(N) are both open and closed in finer patch
topology. Hence for each P ∈ Y,D(P ) is an open subset of Specp(M).
Now, since Y is closed subset of Specp(M) with classical Zariski topol-
ogy, the complement of Y is open by this topology, hence complement
of Y is open subset with finer patch topology and Y is closed subset
of Specp(M) with finer patch topology. By Theorem 4.3, Specp(M) is
compact and Y is a closed subset of Specp(M), Y is also compact. We
have, by Lemma 3.3, Y = ∪P∈YD(P ). Since Y is compact and each
D(P ) is finer patch-open, there exists a finite subset Y1 of Y such that
Y = ∪P∈Y1D(P ). Since Y is irreducible, Y = D(P ) for some P ∈ Y .
Consequently, P is a generic point for Y . �

Corollary 4.6. Let M be a lattice module over a C-lattice L such that
M has ascending chain condition on prime radical elements. Then
quasi-compact open sets of Specp(M) (with classical Zariski topology)
are closed under finite intersections.

Proof. Let U1 and U2 be two quasi-compact open sets of Specp(M) and
let U = U1 ∩ U2. Each of U1 and U2 is a finite union of members of
B = {E(N1) ∩ E(N2) ∩ · · · ∩ E(Nn)|Ni ∈ M,n ∈ N}. Hence U =
∪mi=1(∩

ni
j=1E(Nj)). Let Π be any open cover of U . Then Π also covers

each ∩ni
j=1E(Nj) which is quasi-compact by Theorem 4.4. Hence each

∩ni
j=1E(Nj) has a finite subcover of Π and hence U has a finite subcover

of Π. Thus U is quasi-compact, as required. �
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Theorem 4.7. Let M be a lattice module over a C-lattice L such that
M has ascending chain condition on prime radical elements. Then
Specp(M)(with the classical Zariski topology) is a spectral space.

Proof. By Lemma 3.8, Specp(M) is a T0−space. Since M has ascending
chain condition on prime radical elements, B = {E(N1)∩E(N2)∩· · ·∩
E(Nn)|Ni ∈ M,n ∈ N} is a basis for Specp(M) with the property
that each basis element, in particular E(1M) = Specp(M) is quasi-
compact by Theorem 4.4. By Corollary 4.6, the quasi-compact open
sets are closed under finite intersections. And finally, by Lemma 4.5,
each irreducible closed set has a generic point. Therefore, by Definition
3.9, Specp(M) is a spectral space. �
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