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ON THE CLASS OF SUBSETS OF RESIDUATED
LATTICE WHICH INDUCES A CONGRUENCE

RELATION

H. HARIZAVI

Abstract. In this manuscript, we study the class of special sub-
sets connected with a subset in a residuated lattice and investigate
some related properties. We describe the union of elements of this
class. Using the intersection of all special subsets connected with
a subset, we give a necessary and sufficient condition for a sub-
set to be a filter. Finally, by defining some operations, we endow
this class with a residuated lattice structure and prove that it is
isomorphic to the set of all congruence classes with respect to a
filter.

1. INTRODUCTION

The concept of residuated lattice was firstly introduced by M. Ward
and R. P. Dilworth [14] as generalization of ideals of rings. The prop-
erties of a residuated lattice were presented in [9]. Recently, these
structures have been studied in [5] and [8]. The quotient residuated
lattice with respect to a filter was defined and studied in [12]. In 2009,
a class of special subset connected with an order filter of a MV -algebra
was defined and studied by Colin G. Bailey (see ([3]). In this paper,
following [3], we consider a class of special subsets connected with a
subset of a residuated lattice and investigate some related properties.
We describe the union of two of these subsets. We consider the inter-
section of all special subsets in a residuated lattice and investigate some
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related properties. Also, we give a characterization of this intersection.
Finally, we consider a filter with an additional condition, namely, the
complement-closed and prove that for any complement-closed filter F
there is a close connection between the class of special subsets con-
nected with F and the set of all congruence classes induced by F in a
residuated lattice.

2. Preliminaries

We first recall some basic definitions and theorems which required
in the sequel. For more details we refer the reader to [2, 8, 12].

Definition 2.1. [2] A residuated lattice is an algebra (L;∧,∨,�,→
, 0, 1) of type (2, 2, 2, 2, 0, 0) satisfying the following:

(i) (L;∧,∨, 0, 1) is a bounded lattice;
(ii) (A;�, 1) is a commutative ordered monoid;
(iii) � and ∧ form an adjoint pair, i.e. a ≤ b → c if and only if

a� b ≤ c for all a, b, c ∈ L.

In the sequel, a residuated lattice (L;∧,∨,�,→, 0, 1) is represented
by its support set L unless otherwise stated.

Theorem 2.2. [8, 12] Let x, y.z ∈ L. Then we have the following rules
of calculus:

(r1) 1→ x = x, x→ x = 1, x→ 1 = 1, 0→ x = 1;
(r2) x ≤ y if and only if x→ y = 1;
(r3) x� y ≤ x, y, hence x� y ≤ x ∧ y and x� 0 = 0;
(r4) x→ y = 1 and y → x = 1 imply x = y;
(r5) if x ≤ y then z → x ≤ z → y and y → z ≤ x→ z;
(r6) x ≤ y → x;
(r7) x� (x→ y) ≤ y;
(r8) x ≤ (x→ y)→ y;
(r9) ((x→ y)→ y)→ y = x→ y;
(r10) x� (y → z) ≤ y → (x� z) ≤ (x� y)→ (x� z);
(r11) x→ y ≤ (x� z)→ (y � z;
(r12) x ≤ y implies x� z ≤ y � z;
(r13) x→ (y → z) = y → (x→ z) = (x� y)→ z;
(r14) x→ y ≤ (z → x)→ (z → y);
(r15) x→ y ≤ (y → z)→ (x→ z);
(r16) x� (y ∨ z) = (x� y) ∨ (x� z);
(r17) x� (y ∧ z) ≤ (x� y) ∧ (x� z);
(r18) (x ∨ y)→ z = (x→ z) ∧ (y → z);
(r19) x→ (y ∧ z) = (x→ y) ∧ (x→ z).
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Definition 2.3. [13] A non-empty subset F of L is called a filter if
(F1) 1 ∈ F ;
(F2) if a ∈ F and a ≤ b, then b ∈ F ;
(F3) if a, b ∈ F , then a� b ∈ F .

Theorem 2.4. [13] A non-empty subset F of L is a filter of L if and
only if it satisfies the following conditions:

(F1) 1 ∈ F ;
(F4) x ∈ F and x→ y ∈ F imply y ∈ F .

Definition 2.5. [13] A filter F of L is called a prime filter if x∨y ∈ F
implies x ∈ F or y ∈ F for all x, y ∈ L.

Theorem 2.6. [13] Let F be a filter of L. Define the relation ≡F on
L by

x ≡F y if and only x→ y ∈ F and y → x ∈ F.

Then ≡F is a congruence relation on L.

For every congruence relation ≡F and x ∈ L, we denote the equiva-
lence class of x by x/F and the set of all classes by L/F .

Theorem 2.7. [13] Let F be a filter of L. Then L/F , endowed with
the natural operations induced from those L, become a residuated lattice
which is called the quotient residuated lattice with respect to F .

3. Main results

In this section, we define the special subset of L and investigate some
related properties. In the sequel, we denote the complement of a subset
E by Ec.

Definition 3.1. For any non-empty subset E of L and for any a ∈ L,
we denote

Ea :=

{
E if a ∈ E
{x ∈ L| x→ a ∈ Ec} if a ∈ Ec.

Proposition 3.2. If E is a non-empty subset of L, then we have
(i) 1 ∈ Ea for all a ∈ Ec;
(ii) 1 ∈ E if and only if a 6∈ Ea for all a ∈ Ec.

Proof. (i) Let a ∈ Ec. By Theorem 2.2(r1), 1 → a = a, and so by
Definition 3.1, we get 1 ∈ Ea.

(ii) Using the rule a→ a = 1, the result is obvious. �

Proposition 3.3. If F is a filter of L, then

(∀a, b ∈ L) a ≤ b⇒ Fb ⊆ Fa.
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Proof. Let F be a filter of L. We investigate the following cases:
Case 1: a ∈ F .

In this case, from a ≤ b we get b ∈ F and so Fa = F = Fb.
Case 2: a ∈ F c and b ∈ F .

In this case, we have Fb = F . Now, let x ∈ Fb. If x → a ∈ F , then
since F is a filter and x ∈ F , we get a ∈ F , which is a contradiction.
Hence x→ a ∈ F c and so x ∈ Fa. Therefore Fb ⊆ Fa.

Case 3: a, b ∈ F c.
Assume that x ∈ Fb. Then x → b ∈ F c. Applying Theorem 2.2(r5)

to a ≤ b, we obtain x → a ≤ x → b. If x → a ∈ F , then, since F is a
filter, we get x → b ∈ F , which is a contradiction. Hence x → a ∈ F c

and so x ∈ Fa. Therefore Fb ⊆ Fa. �

Corollary 3.4. If F is a filter of L, then for all a ∈ L, F ⊆ Fa.

Proof. From a ≤ 1 and F1 = F the result holds by Proposition 3.3(ii).
�

The following example shows that the condition “F being a filter”
in Proposition 3.3 is necessary.

Example 3.5. [7] Let L = {0, a, b, c, d, 1} be the residuated lattice
defined by the following tables:

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b c c 1 1 1 1
c b c d 1 d 1
d a a c c 1 1
1 0 a b c d 1

� 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

b•�
��

d••c

•

@
@@

1

�
��

@
@@

a •�
��

•�
��

@
@@

0

E := {c, d, 1} is not a filter of L because d→ b = c ∈ E but b 6∈ E. By
a simple calculation, we obtain Eb = {1, a} and Ec = E. Hence, b ≤ c
does not imply Ec ⊆ Eb.

Definition 3.6. A subset E of L is said to be ∧-closed if a, b ∈ E
implies a ∧ b ∈ E.

Proposition 3.7. Let F be a filter of L. Then

Fa ∪ Fb ⊆ Fa∧b for all a, b ∈ L.

In addition, if F is a ∧-closed, then

Fa ∪ Fb = Fa∧b for all a, b ∈ L.

Proof. Using Proposition 3.3, it follows from a∧ b ≤ a that Fa ⊆ Fa∧b.
Similarly, we have Fb ⊆ Fa∧b and so Fa∪Fb ⊆ Fa∧b. To show the second
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part of proposition it suffices to prove the inverse inclusion. Assume
that x ∈ Fa∧b and consider the following cases:

Case (1) a ∈ F c or b ∈ F c.
In this case, since a ∧ b ≤ a, b we have a ∧ b ∈ F c and so from

x ∈ Fa∧b, we get x → (a ∧ b) ∈ F c. Hence, by Theorem 2.2(r19), we
have (x→ a)∧ (x→ b) ∈ F c. Thus it follows from F is a ∧-closed that
x→ a ∈ F c or x→ b ∈ F c. Thus x ∈ Fa or x ∈ Fb and so x ∈ Fa ∪Fb.
Therefore Fa∧b ⊆ Fa ∪ Fb.

Case (2) a, b ∈ F .
In this case, since F is a ∧-closed, we have a ∧ b ∈ F and so by

Definition 3.1, we get Fa ∪ Fb = F = Fa∧b. �

Definition 3.8. For any non-empty subset E of L, we denote

Γ(E) := {x ∈ L|x→ a ∈ Ec, ∀a ∈ Ec}.

Proposition 3.9. Let E be a non-empty sunset of L. Then the fol-
lowing statements hold:

(i) Γ(E) =
⋂

a∈Ec

Ea.

(ii) 1 ∈ E if and only if Γ(E) ⊆ E.

Proof. (i) By Definitions 3.8 and 3.1, the result is obvious.
(ii) Let 1 ∈ E. Assume to the contrary that Γ(E) 6⊆ E. Then there

exists x ∈ Γ(E) such that x ∈ Ec. Hence it follows from x ∈ Γ(E) that
x ∈ Ex, that is, x → x ∈ Ec. Thus 1 ∈ Ec, which is a contradiction.
Therefore Γ(E) ⊆ E.

Conversely, by Proposition 3.2(i), the proof is straightforward. �

The following theorem introduces the relationship between Γ(E) and
filter E.

Theorem 3.10. Let E be a subset of L. Then the following are equiv-
alent:

(i) E is a filter of L;
(ii) 1 ∈ E and E ⊆ Γ(E);
(iii) 1 ∈ E and Γ(E) = E.

Proof. (i) ⇒ (ii) Let E be a filter of L. Clearly, 1 ∈ E. Assume that
x ∈ E such that x 6∈ Ea for some a ∈ Ec. It follows from x 6∈ Ea that
x → a ∈ E. Thus, since E is a filter and x ∈ E, we get a ∈ E, which
is a contradiction. Therefore x ∈ Ea and so E ⊆ Ea for any a ∈ Ec.
Therefore E ⊆ Γ(E).

(ii) ⇒ (iii) By Proposition 3.9(ii), since 1 ∈ E, we get Γ(E) ⊆ E
and so by hypothesis Γ(E) = E.
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(iii)⇒ (i) Assume to the contrary that E is not a filter of L. Then
there exist x, y ∈ L such that x→ y ∈ E and x ∈ E but y 6∈ E. Since
x ∈ E ⊆ Γ(E), we get x ∈ Ey. This implies x → y ∈ Ec, which is a
contradiction. Therefore E is a filter of L. �

The next theorem gives a characterization of Γ(F ).

Theorem 3.11. Let F be a filter of L. Then

Γ(F ) = {x ∈ L|x� e ∈ F, ∀e ∈ F}.

Proof. We have

x ∈ Γ(F )⇔ x ∈
⋂
a∈Ec

Fa by Proposition 3.9(i)

⇔ (∀a ∈ F c) x ∈ Fa

⇔ (∀a ∈ F c) x→ a ∈ F c by Definition 3.1

⇔ (∀a ∈ F c) (∀e ∈ F ) e 6≤ x→ a F is a filter

⇔ (∀a ∈ F c) (∀e ∈ F ) e� x 6≤ a by Definition 2.1(iii)

⇔ (∀e ∈ F ) x� e ∈ F by x� e ≤ e

⇔ x ∈ {x ∈ L|x� e ∈ F, ∀e ∈ F}.

Therefore Γ(F ) = {x ∈ L|x� e ∈ F, ∀e ∈ F}.
�

To describe the connection between the special subsets and the con-
gruence classes, we define:

Definition 3.12. A non-empty subset E of L is called complement-
closed if

(∀a ∈ Ec) (∃x ∈ Ec) x→ a ∈ Ec.

Lemma 3.13. For any filter F of L, the following are equivalent:
(i) F is complement-closed;
(ii) For any a ∈ F c, Fa 6= F .

Proof. (i) ⇒ (ii) Let a ∈ F c. Then by Definition 3.12, there exists
x ∈ F c such that x → a ∈ F c. This implies that x ∈ Fa. But x 6∈ F ,
hence Fa 6= F .

(ii) ⇒ (i) Let a ∈ F c. Then by (ii) and Corollary 3.4, we have
F(Fa. Hence there exists x ∈ Fa such that x ∈ F c. Thus from x ∈ Fa,
we conclude x→ a ∈ F c. Therefore F is a complement-closed. �

Corollary 3.14. Let F be a complement-closed filter of L. Then

(∀a, b ∈ L) Fa = Fb ⇒ a, b ∈ F or a, b ∈ F c.
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Proof. Using Lemma 3.13(ii) and Definition 3.1, the proof is straight-
forward. �

Example 3.15. Let L = {0, a, b, c, d, 1} be the residuated lattice de-
fined by the following tables (see [8]):

→ 0 a b c d 1
0 1 1 1 1 1 1
a 0 1 b c c 1
b c a 1 c c 1
c b a b 1 a 1
d b a b a 1 1
1 0 a b c d 1

� 0 a b c d 1
0 0 0 0 0 0 0
a 0 a b d d a
b 0 b b 0 0 b
c 0 d 0 d d c
d 0 d 0 d d d
1 0 a b c d 1 0

•

b

a•

�
�

c

d

•
•@

@

•�
�
�

@
@
@

•1

Consider the filters E := {a, 1} and F := {a, b, 1}. It is easily to check
that:
(i) Eb = {a, c, d, 1}, Ec = {a, b, 1} and Ed = {a, b, 1}. Hence E is a
complement-closed filter;
(ii) Fc = F and so F is not a complement-closed filter.

Theorem 3.16. If F is a filter of L, then we have

(∀a, b ∈ F c) Fa ⊆ Fb ⇔ b→ a ∈ F.

Proof. (⇒) Let Fa ⊆ Fb for some a, b ∈ F c. By Proposition 3.2(ii),
since 1 ∈ F , we have b 6∈ Fb. From this follows that b 6∈ Fa. Therefore
b→ a ∈ F .

(⇐) Let b→ a ∈ F for some a, b ∈ F c. Suppose that x ∈ Fa. Then
x → a ∈ F c. If x /∈ Fb, then x → b ∈ F . By Theorem 2.2(r14), we
have b → a ≤ (x → b) → (x → a). Since F is a filter, it follows from
b → a ∈ F that (x → b) → (x → a) ∈ F . Then from x → b ∈ F ,
we get x → a ∈ F , which is a contradiction. Hence x ∈ Fb and so
Fa ⊆ Fb. �

As a consequence from Theorem 3.16, we have:

Corollary 3.17. For any filter F of L, we have

(∀a, b ∈ F c) Fa = Fb ⇔ b→ a ∈ F and a→ b ∈ F.

Notation 3.18. For any non-empty subset E of L, we denote

L(E) := {Ea : a ∈ L}.

It is clear that E ∈ L(E).
To introduce some operations on L(E), we state and prove some

rules of calculus in residuated lattice as follows:

Lemma 3.19. For any a, b, c ∈ L, we have
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(i) a� (a→ b) ≤ a ∧ b;
(ii) a→ b ≤ a ∧ c→ b ∧ c.

Proof. (i) Using Theorem 2.2(r3, r7), the proof is straightforward.
(ii) By Definition 2.1(iii), it suffices to show that (a→ b)� (a∧c) ≤

b ∧ c. For this purpose, we have

(a→ b)� (a ∧ c) ≤ ((a→ b)� a) ∧ ((a→ b)� c),
by Theorem 2.2(r17)

≤ (a ∧ b) ∧ c, by (i) and Theorem 2.2(r3)

≤ b ∧ c.

�

Lemma 3.20. Let F be a complement-closed filter of L. Then we have

(∀a, b ∈ L) Fa = Fb ⇒ a→ b ∈ F and b→ a ∈ F.

Proof. Let Fa = Fb. Then by Lemma 3.14, we get a, b ∈ F or a, b ∈ F c.
If a, b ∈ F , then, since F is a filter, it follows from b ≤ a → b that
a → b ∈ F . Similarly, from a ≤ b → a we get b → a ∈ F . If
a, b ∈ F c, then by Corollary 3.17, we also conclude b → a ∈ F and
a→ b ∈ F . �

In order to endow L(F ) with a residuated lattice structure, we define
operations “u,t, ↪→,⊗” on L(E) as follows:

Proposition 3.21. Let F be a complement-closed filter of L. Then
the operations “u,t, ↪→,⊗” on L(E) defined by, (∀Fa, Fb ∈ L(F )),

(i) Fa u Fb = Fa∧b,
(ii) Fa t Fb = Fa∨b,
(iii) Fa ⊗ Fb = Fa�b,
(iv) Fa ↪→ Fb = Fa→b

are well-defined.

Proof. Let Fa = Fc and Fb = Fd for some a, b, c, d ∈ L. Then by
Lemma 3.20, we have

(a→ c ∈ F and c→ a ∈ F ) ; (b→ d ∈ F and d→ b ∈ F ).

(i) By Lemma 3.19(ii), we have

a→ c ≤ a ∧ b→ c ∧ b;

b→ d ≤ b ∧ c→ d ∧ c.

Then, since F is a filter, it follows from a→ c ∈ F and b→ d ∈ F that

a ∧ b→ c ∧ b ∈ F ; (3.1)

b ∧ c→ d ∧ c ∈ F. (3.2)



ON THE CLASS OF SUBSETS OF RESIDUATED LATTICE 9

By Theorem 2.2(r15), we have a∧b→ c∧b ≤ (c∧b→ d∧c)→ (a∧b→
d∧c). Then it follows from (3.1) that (b∧c→ d∧c)→ (a∧b→ d∧c) ∈ F.
Thus from (3.2), we get

a ∧ b→ d ∧ c ∈ F. (3.3)

By a similar argument as above, we obtain

d ∧ c→ a ∧ b ∈ F. (3.4)

Since F is a filter, it follows from (3.3) and (3.4) that

a ∧ b ∈ F ⇔ c ∧ d ∈ F.

Thus by Corollary 3.17, we conclude Fa∧b = Fc∧d and so Fa u Fb =
Ec u Fd, e.i. the operation u is well-defined.

(ii) Applying Theorem 2.2(r14) on c ≤ b ∨ c, we get a → c ≤ a →
(b ∨ c). Then this follows from a → c ∈ F that a → (b ∨ c) ∈ F. By
Theorem 2.2(r18), we have

(a ∨ b)→ (b ∨ c) = (a→ (b ∨ c)) ∧ (b→ (b ∨ c))

= (a→ (b ∨ c)) ∧ 1

= a→ (b ∨ c).

Then from a→ (b ∨ c) ∈ F , we get

(a ∨ b)→ (b ∨ c) ∈ F.

By a similar argument as above, using b→ d ∈ F , we obtain

(b ∨ c)→ (c ∨ d) ∈ F.

Using Theorem 2.2(r14), similar to the proof of (i), we get

(a ∨ b)→ (c ∨ d) ∈ F and (c ∨ d)→ (a ∨ b) ∈ F. (3.5)

Since F is a filter, it follows from (3.5) that

a ∨ b ∈ F ⇔ c ∨ d ∈ F.

Thus by Corollary 3.17, we conclude Fa∨b = Fc∨d and so Fa t Fb =
Ec t Fd, e.i. the operation t is well-defined.

(iii) Applying Theorem 2.2(r11) on b → d ∈ F and c → a ∈ F , we
get

b→ d ≤ a� b→ a� d;

a→ c ≤ a� d→ c� d.

Hence, since F is a filter, we get

a� b→ a� d ∈ F.

a� d→ c� d ∈ F.



10 HARIZAVI

Similar to the proof of (i), we have

a� b ∈ F ⇔ c� d ∈ F.

Thus by Corollary 3.17, we conclude Fa�b = Fc�d and so Fa ⊗ Fb =
Fc ⊗ Fd, e.i. the operation ⊗ is well-defined.

(iv) We have

b→ d ≤ (a→ b)→ (a→ d) by Theorem 2.2(r14)

≤ (a→ b)→ ((c→ a)→ (c→ d)) by Theorem 2.2(r14, r5)

≤ (c→ a)→ ((a→ b)→ (c→ d)) by Theorem 2.2(r13).

Then it follows from b → d ∈ F that (c → a) → ((a → b) → (c →
d)) ∈ F and so from c→ a ∈ F , we conclude

(a→ b)→ (c→ d) ∈ F. (3.6)

Similarly, we obtain

(c→ d)→ (a→ b) ∈ F. (3.7)

Applying Lemma 3.20, from (3.6) and (3.7), we obtain Fa→b = Fc→d

and so Fa ↪→ Fb = Fc ↪→ Fd, e.i. the operation ↪→ is well-defined. �

Theorem 3.22. Let F be a complement-closed filter of L. Then
(L(F );u,t,⊗, ↪→, F0, F ) is a residuated lattice, where the operations
“u,t,⊗, ↪→ ” are defined as Proposition 3.21.

Moreover, L(F ) ' L/F , where L/F is the quotient residuated lattice
with respect to F .

Proof. Define the mapping ϕ : L(F )→ L/F by ϕ(Fa) = a/F . Assume
that Fa = Fb for some a, b ∈ L. Then by Lemma 3.20, we have a→ b ∈
F and b→ a ∈ F . This implies that a/F = b/F and so ϕ(Fa) = ϕ(Fb).
Hence ϕ is well-defined. Now, let ϕ(Fa) = ϕ(Fb). Then a/F = b/F
and so by the property of congruence classes, we obtain a → b ∈
F and b → a ∈ F . Hence a ∈ F if and only if b ∈ F . Then by
Corollary 3.17, we get Fa = Fb. Therefore ϕ is injective. Obviously, ϕ
is onto. We note that the operations defined on L(F ) and L/F are the
natural operations induced from L. Therefore ϕ is a bijective function
preserving the operations of L(F ). Then L(F ) ' L/F and so, since
L/F is a residuated lattice, it follows that (L(F );u,t,⊗, ↪→, F0, F ) is
a residuated lattice too. �

We now give an example to illustrate the previous theorem.

Example 3.23. [7] Let L = {0, a, b, c, 1} be the residuated lattice
defined by the following tables:
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→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

� 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1 0

•
@
@

a
@
@
•�
�
•c

�
�

b•

•1

It is not difficult to check that F := {c, 1} is a complement-closed filter
of L. By a simple calculation, we obtain:

L(F ) = {F1 = Fc = F, Fa = {b, c, 1}, Fb = {a, c, 1}, F0 = {a, b, c, 1}};
L/F = {1/F = c/F = F, a/F = {a}, b/F = {b}, 0/F = {0}};

L(F ) ∼= L/F in which Fx 7−→ x/F (∀x ∈ L).

The following example shows that the condition complement-closed
in Theorem 3.22 is necessary.

Example 3.24. Let L = {0, a, b, c, d, 1} be the residulated lattice as
in Example 3.15. Then F := {a, b, 1} is a filter of L, but is not a
complement-closed because x → c = 1 ∈ F for any x ∈ F c. By a
simple calculation, we obtain

| L(F ) |=| {F0 = Fa = Fb = Fc = Fd = F1 = F} |= 1,

| L/F |=| {a/F = b/F = 1/F = {a, b, 1}, 0/F = {0, c, d}} |= 2.

From this follows that L(F ) 6∼= L/F .
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