Journal of Algebra and Related Topics Vol. 7, No 1, (2019), pp 1-12

ON THE CLASS OF SUBSETS OF RESIDUATED LATTICE WHICH INDUCES A CONGRUENCE RELATION

H. HARIZAVI

ABSTRACT. In this manuscript, we study the class of special subsets connected with a subset in a residuated lattice and investigate some related properties. We describe the union of elements of this class. Using the intersection of all special subsets connected with a subset, we give a necessary and sufficient condition for a subset to be a filter. Finally, by defining some operations, we endow this class with a residuated lattice structure and prove that it is isomorphic to the set of all congruence classes with respect to a filter.

1. INTRODUCTION

The concept of residuated lattice was firstly introduced by M. Ward and R. P. Dilworth [14] as generalization of ideals of rings. The properties of a residuated lattice were presented in [9]. Recently, these structures have been studied in [5] and [8]. The quotient residuated lattice with respect to a filter was defined and studied in [12]. In 2009, a class of special subset connected with an order filter of a MV-algebra was defined and studied by Colin G. Bailey (see ([3]). In this paper, following [3], we consider a class of special subsets connected with a subset of a residuated lattice and investigate some related properties. We describe the union of two of these subsets. We consider the intersection of all special subsets in a residuated lattice and investigate some

MSC(2010): Primary: 03G10; Secondary: 06F35.

 $Keywords: \ Residuated \ lattice, \ Filter, \ Complement-closed, \ Congruence \ Relation.$

Received: 22 September 2018, Accepted: 19 September 2019.

related properties. Also, we give a characterization of this intersection. Finally, we consider a filter with an additional condition, namely, the complement-closed and prove that for any complement-closed filter F there is a close connection between the class of special subsets connected with F and the set of all congruence classes induced by F in a residuated lattice.

2. Preliminaries

We first recall some basic definitions and theorems which required in the sequel. For more details we refer the reader to [2, 8, 12].

Definition 2.1. [2] A residuated lattice is an algebra $(L; \land, \lor, \odot, \rightarrow , 0, 1)$ of type (2, 2, 2, 2, 0, 0) satisfying the following:

(i) $(L; \land, \lor, 0, 1)$ is a bounded lattice;

(*ii*) $(A; \odot, 1)$ is a commutative ordered monoid;

 $(iii) \odot$ and \land form an adjoint pair, i.e. $a \leq b \rightarrow c$ if and only if $a \odot b \leq c$ for all $a, b, c \in L$.

In the sequel, a residuated lattice $(L; \land, \lor, \odot, \rightarrow, 0, 1)$ is represented by its support set L unless otherwise stated.

Theorem 2.2. [8, 12] Let $x, y.z \in L$. Then we have the following rules of calculus:

 $(r_1) \ 1 \to x = x, \ x \to x = 1, \ x \to 1 = 1, 0 \to x = 1;$ (r_2) x < y if and only if $x \to y = 1$; $(r_3) \ x \odot y \leq x, y$, hence $x \odot y \leq x \land y$ and $x \odot 0 = 0$; $(r_4) x \rightarrow y = 1 and y \rightarrow x = 1 imply x = y;$ (r_5) if $x \leq y$ then $z \to x \leq z \to y$ and $y \to z \leq x \to z$; $(r_6) x \leq y \rightarrow x;$ $(r_7) \ x \odot (x \to y) \le y;$ $(r_8) x \leq (x \rightarrow y) \rightarrow y;$ $(r_9) ((x \to y) \to y) \to y = x \to y;$ $(r_{10}) \ x \odot (y \to z) \le y \to (x \odot z) \le (x \odot y) \to (x \odot z);$ $(r_{11}) \ x \to y \le (x \odot z) \to (y \odot z;$ $(r_{12}) x \leq y \text{ implies } x \odot z \leq y \odot z;$ $(r_{13}) x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z) = (x \odot y) \rightarrow z;$ $(r_{14}) x \to y \le (z \to x) \to (z \to y);$ $(r_{15}) x \to y \le (y \to z) \to (x \to z);$ $(r_{16}) \ x \odot (y \lor z) = (x \odot y) \lor (x \odot z);$ $(r_{17}) \ x \odot (y \land z) < (x \odot y) \land (x \odot z);$ (r_{18}) $(x \lor y) \to z = (x \to z) \land (y \to z);$ $(r_{19}) x \rightarrow (y \land z) = (x \rightarrow y) \land (x \rightarrow z).$

 $\mathbf{2}$

Definition 2.3. [13] A non-empty subset F of L is called a *filter* if $(F1) \ 1 \in F$; (F2) if $a \in F$ and $a \leq b$, then $b \in F$; (F3) if $a \in F$ and $a \leq b$, then $b \in F$;

(F3) if $a, b \in F$, then $a \odot b \in F$.

Theorem 2.4. [13] A non-empty subset F of L is a filter of L if and only if it satisfies the following conditions:

- $(F1) \ 1 \in F;$
- $(F4) x \in F \text{ and } x \to y \in F \text{ imply } y \in F.$

Definition 2.5. [13] A filter F of L is called a *prime* filter if $x \lor y \in F$ implies $x \in F$ or $y \in F$ for all $x, y \in L$.

Theorem 2.6. [13] Let F be a filter of L. Define the relation \equiv_F on L by

 $x \equiv_F y$ if and only $x \to y \in F$ and $y \to x \in F$.

Then \equiv_F is a congruence relation on L.

For every congruence relation \equiv_F and $x \in L$, we denote the equivalence class of x by x/F and the set of all classes by L/F.

Theorem 2.7. [13] Let F be a filter of L. Then L/F, endowed with the natural operations induced from those L, become a residuated lattice which is called the quotient residuated lattice with respect to F.

3. Main results

In this section, we define the special subset of L and investigate some related properties. In the sequel, we denote the complement of a subset E by E^c .

Definition 3.1. For any non-empty subset E of L and for any $a \in L$, we denote

$$E_a := \begin{cases} E & \text{if } a \in E \\ \{x \in L \mid x \to a \in E^c\} & \text{if } a \in E^c. \end{cases}$$

Proposition 3.2. If E is a non-empty subset of L, then we have (i) $1 \in E_a$ for all $a \in E^c$;

(i) $1 \in E$ if and only if $a \notin E_a$ for all $a \in E^c$.

Proof. (i) Let $a \in E^c$. By Theorem 2.2(r_1), $1 \to a = a$, and so by Definition 3.1, we get $1 \in E_a$.

(ii) Using the rule $a \rightarrow a = 1$, the result is obvious.

Proposition 3.3. If F is a filter of L, then

$$(\forall a, b \in L) \quad a \leq b \Rightarrow F_b \subseteq F_a.$$

Proof. Let F be a filter of L. We investigate the following cases: Case 1: $a \in F$.

In this case, from $a \leq b$ we get $b \in F$ and so $F_a = F = F_b$.

Case 2: $a \in F^c$ and $b \in F$. In this case, we have $F_b = F$. Now, let $x \in F_b$. If $x \to a \in F$, then since F is a filter and $x \in F$, we get $a \in F$, which is a contradiction.

Hence $x \to a \in F^c$ and so $x \in F_a$. Therefore $F_b \subseteq F_a$.

Case 3: $a, b \in F^c$.

Assume that $x \in F_b$. Then $x \to b \in F^c$. Applying Theorem 2.2(r_5) to $a \leq b$, we obtain $x \to a \leq x \to b$. If $x \to a \in F$, then, since F is a filter, we get $x \to b \in F$, which is a contradiction. Hence $x \to a \in F^c$ and so $x \in F_a$. \Box

Corollary 3.4. If F is a filter of L, then for all $a \in L$, $F \subseteq F_a$.

Proof. From $a \leq 1$ and $F_1 = F$ the result holds by Proposition 3.3(*ii*).

The following example shows that the condition "F being a filter" in Proposition 3.3 is necessary.

Example 3.5. [7] Let $L = \{0, a, b, c, d, 1\}$ be the residuated lattice defined by the following tables:

\rightarrow	0	a	b	c	d	1	\odot	0	a	b	c	d	1	1
0	1	1	1	1	1	1	0	0	0	0	0	0	0	
a	d	1	d	1	d	1	a	0	a	0	a	0	a	c d
b	c	c	1	1	1	1	b	0	0	0	0	b	b	
c	b	c	d	1	d	1	c	0	a	0	a	b	c	
d	a	a	c	c	1	1	d	0	0	b	b	d	d	
1	0	a	b	c	d	1	1	0	a	b	c	d	1	0

 $E := \{c, d, 1\}$ is not a filter of L because $d \to b = c \in E$ but $b \notin E$. By a simple calculation, we obtain $E_b = \{1, a\}$ and $E_c = E$. Hence, $b \leq c$ does not imply $E_c \subseteq E_b$.

Definition 3.6. A subset *E* of *L* is said to be \wedge -*closed* if $a, b \in E$ implies $a \wedge b \in E$.

Proposition 3.7. Let F be a filter of L. Then

 $F_a \cup F_b \subseteq F_{a \wedge b}$ for all $a, b \in L$.

In addition, if F is a \wedge -closed, then

$$F_a \cup F_b = F_{a \wedge b}$$
 for all $a, b \in L$.

Proof. Using Proposition 3.3, it follows from $a \wedge b \leq a$ that $F_a \subseteq F_{a \wedge b}$. Similarly, we have $F_b \subseteq F_{a \wedge b}$ and so $F_a \cup F_b \subseteq F_{a \wedge b}$. To show the second

4

part of proposition it suffices to prove the inverse inclusion. Assume that $x \in F_{a \wedge b}$ and consider the following cases:

Case (1) $a \in F^c$ or $b \in F^c$.

In this case, since $a \wedge b \leq a, b$ we have $a \wedge b \in F^c$ and so from $x \in F_{a \wedge b}$, we get $x \to (a \wedge b) \in F^c$. Hence, by Theorem 2.2(r_{19}), we have $(x \to a) \wedge (x \to b) \in F^c$. Thus it follows from F is a \wedge -closed that $x \to a \in F^c$ or $x \to b \in F^c$. Thus $x \in F_a$ or $x \in F_b$ and so $x \in F_a \cup F_b$. Therefore $F_{a \wedge b} \subseteq F_a \cup F_b$.

Case (2) $a, b \in F$.

In this case, since F is a \wedge -closed, we have $a \wedge b \in F$ and so by Definition 3.1, we get $F_a \cup F_b = F = F_{a \wedge b}$.

Definition 3.8. For any non-empty subset E of L, we denote

 $\Gamma(E) := \{ x \in L | x \to a \in E^c, \forall a \in E^c \}.$

Proposition 3.9. Let E be a non-empty sunset of L. Then the following statements hold:

(i) $\Gamma(E) = \bigcap_{a \in E^c} E_a.$ (ii) $1 \in E$ if and only if $\Gamma(E) \subseteq E.$

Proof. (i) By Definitions 3.8 and 3.1, the result is obvious.

(*ii*) Let $1 \in E$. Assume to the contrary that $\Gamma(E) \not\subseteq E$. Then there exists $x \in \Gamma(E)$ such that $x \in E^c$. Hence it follows from $x \in \Gamma(E)$ that $x \in E_x$, that is, $x \to x \in E^c$. Thus $1 \in E^c$, which is a contradiction. Therefore $\Gamma(E) \subseteq E$.

Conversely, by Proposition 3.2(i), the proof is straightforward.

The following theorem introduces the relationship between $\Gamma(E)$ and filter E.

Theorem 3.10. Let E be a subset of L. Then the following are equivalent:

(i) E is a filter of L; (ii) $1 \in E$ and $E \subseteq \Gamma(E)$; (iii) $1 \in E$ and $\Gamma(E) = E$.

Proof. (i) \Rightarrow (ii) Let E be a filter of L. Clearly, $1 \in E$. Assume that $x \in E$ such that $x \notin E_a$ for some $a \in E^c$. It follows from $x \notin E_a$ that $x \to a \in E$. Thus, since E is a filter and $x \in E$, we get $a \in E$, which is a contradiction. Therefore $x \in E_a$ and so $E \subseteq E_a$ for any $a \in E^c$. Therefore $E \subseteq \Gamma(E)$.

 $(ii) \Rightarrow (iii)$ By Proposition 3.9(ii), since $1 \in E$, we get $\Gamma(E) \subseteq E$ and so by hypothesis $\Gamma(E) = E$.

 $(iii) \Rightarrow (i)$ Assume to the contrary that E is not a filter of L. Then there exist $x, y \in L$ such that $x \to y \in E$ and $x \in E$ but $y \notin E$. Since $x \in E \subseteq \Gamma(E)$, we get $x \in E_y$. This implies $x \to y \in E^c$, which is a contradiction. Therefore E is a filter of L. \Box

The next theorem gives a characterization of $\Gamma(F)$.

Theorem 3.11. Let F be a filter of L. Then

$$\Gamma(F) = \{ x \in L | x \odot e \in F, \forall e \in F \}.$$

Proof. We have

 $\begin{aligned} x \in \Gamma(F) \Leftrightarrow x \in \bigcap_{a \in E^c} F_a & \text{by Proposition 3.9(i)} \\ \Leftrightarrow (\forall a \in F^c) \ x \in F_a \\ \Leftrightarrow (\forall a \in F^c) \ x \to a \in F^c & \text{by Definition 3.1} \\ \Leftrightarrow (\forall a \in F^c) \ (\forall e \in F) \ e \not\leq x \to a & \text{F is a filter} \\ \Leftrightarrow (\forall a \in F^c) \ (\forall e \in F) \ e \odot x \not\leq a & \text{by Definition 2.1(ii)} \\ \Leftrightarrow (\forall e \in F) \ x \odot e \in F & \text{by } x \odot e \leq e \\ \Leftrightarrow x \in \{x \in L | x \odot e \in F, \forall e \in F\}. \end{aligned}$

Therefore $\Gamma(F) = \{x \in L | x \odot e \in F, \forall e \in F\}.$

To describe the connection between the special subsets and the con-

gruence classes, we define:

Definition 3.12. A non-empty subset E of L is called complementclosed if

$$(\forall a \in E^c) \ (\exists x \in E^c) \ x \to a \in E^c.$$

Lemma 3.13. For any filter F of L, the following are equivalent:

(i) F is complement-closed;

(ii) For any $a \in F^c$, $F_a \neq F$.

Proof. $(i) \Rightarrow (ii)$ Let $a \in F^c$. Then by Definition 3.12, there exists $x \in F^c$ such that $x \to a \in F^c$. This implies that $x \in F_a$. But $x \notin F$, hence $F_a \neq F$.

 $(ii) \Rightarrow (i)$ Let $a \in F^c$. Then by (ii) and Corollary 3.4, we have $F \subsetneq F_a$. Hence there exists $x \in F_a$ such that $x \in F^c$. Thus from $x \in F_a$, we conclude $x \to a \in F^c$. Therefore F is a complement-closed. \Box

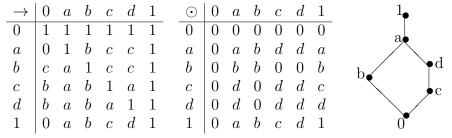
Corollary 3.14. Let F be a complement-closed filter of L. Then

$$(\forall a, b \in L)$$
 $F_a = F_b \Rightarrow a, b \in F \text{ or } a, b \in F^c.$

 $\mathbf{6}$

Proof. Using Lemma 3.13(ii) and Definition 3.1, the proof is straightforward.

Example 3.15. Let $L = \{0, a, b, c, d, 1\}$ be the residuated lattice defined by the following tables (see [8]):



Consider the filters $E := \{a, 1\}$ and $F := \{a, b, 1\}$. It is easily to check that:

(*i*) $E_b = \{a, c, d, 1\}, E_c = \{a, b, 1\}$ and $E_d = \{a, b, 1\}$. Hence *E* is a complement-closed filter;

(*ii*) $F_c = F$ and so F is not a complement-closed filter.

Theorem 3.16. If F is a filter of L, then we have

$$(\forall a, b \in F^c)$$
 $F_a \subseteq F_b \Leftrightarrow b \to a \in F_b$

Proof. (\Rightarrow) Let $F_a \subseteq F_b$ for some $a, b \in F^c$. By Proposition 3.2(*ii*), since $1 \in F$, we have $b \notin F_b$. From this follows that $b \notin F_a$. Therefore $b \rightarrow a \in F$.

 (\Leftarrow) Let $b \to a \in F$ for some $a, b \in F^c$. Suppose that $x \in F_a$. Then $x \to a \in F^c$. If $x \notin F_b$, then $x \to b \in F$. By Theorem 2.2 (r_{14}) , we have $b \to a \leq (x \to b) \to (x \to a)$. Since F is a filter, it follows from $b \to a \in F$ that $(x \to b) \to (x \to a) \in F$. Then from $x \to b \in F$, we get $x \to a \in F$, which is a contradiction. Hence $x \in F_b$ and so $F_a \subseteq F_b$.

As a consequence from Theorem 3.16, we have:

Corollary 3.17. For any filter F of L, we have

$$(\forall a, b \in F^c)$$
 $F_a = F_b \Leftrightarrow b \to a \in F \text{ and } a \to b \in F.$

Notation 3.18. For any non-empty subset E of L, we denote

$$L(E) := \{ E_a : a \in L \}.$$

It is clear that $E \in L(E)$.

To introduce some operations on L(E), we state and prove some rules of calculus in residuated lattice as follows:

Lemma 3.19. For any $a, b, c \in L$, we have

(i) $a \odot (a \to b) \le a \land b$; (ii) $a \to b \le a \land c \to b \land c$.

Proof. (i) Using Theorem 2.2 (r_3, r_7) , the proof is straightforward.

(*ii*) By Definition 2.1(*iii*), it suffices to show that $(a \to b) \odot (a \land c) \le b \land c$. For this purpose, we have

$$\begin{aligned} (a \to b) \odot (a \land c) &\leq ((a \to b) \odot a) \land ((a \to b) \odot c), \\ & \text{by Theorem } 2.2(r_{17}) \\ &\leq (a \land b) \land c, \\ &\leq b \land c. \end{aligned}$$

Lemma 3.20. Let F be a complement-closed filter of L. Then we have

$$(\forall a, b \in L)$$
 $F_a = F_b \Rightarrow a \rightarrow b \in F \text{ and } b \rightarrow a \in F.$

Proof. Let $F_a = F_b$. Then by Lemma 3.14, we get $a, b \in F$ or $a, b \in F^c$. If $a, b \in F$, then, since F is a filter, it follows from $b \leq a \rightarrow b$ that $a \rightarrow b \in F$. Similarly, from $a \leq b \rightarrow a$ we get $b \rightarrow a \in F$. If $a, b \in F^c$, then by Corollary 3.17, we also conclude $b \rightarrow a \in F$ and $a \rightarrow b \in F$.

In order to endow L(F) with a residuated lattice structure, we define operations " $\Box, \sqcup, \hookrightarrow, \otimes$ " on L(E) as follows:

Proposition 3.21. Let F be a complement-closed filter of L. Then the operations " $\Box, \sqcup, \hookrightarrow, \otimes$ " on L(E) defined by, $(\forall F_a, F_b \in L(F))$,

(i)
$$F_a \sqcap F_b = F_{a \land b},$$

 $(ii) \quad F_a \sqcup F_b = F_{a \lor b},$

- $(iii) \quad F_a \otimes F_b = F_{a \odot b},$
- $(iv) \quad F_a \hookrightarrow F_b = F_{a \to b}$

 $are \ well-defined.$

Proof. Let $F_a = F_c$ and $F_b = F_d$ for some $a, b, c, d \in L$. Then by Lemma 3.20, we have

 $(a \to c \in F \text{ and } c \to a \in F)$; $(b \to d \in F \text{ and } d \to b \in F).$

(i) By Lemma 3.19(ii), we have

$$a \to c \le a \land b \to c \land b;$$

$$b \to d \le b \land c \to d \land c.$$

Then, since F is a filter, it follows from $a \to c \in F$ and $b \to d \in F$ that

$$a \wedge b \to c \wedge b \in F;$$
 (3.1)

$$b \wedge c \to d \wedge c \in F. \tag{3.2}$$

8

By Theorem 2.2(r_{15}), we have $a \wedge b \to c \wedge b \leq (c \wedge b \to d \wedge c) \to (a \wedge b \to d \wedge c)$. Then it follows from (3.1) that $(b \wedge c \to d \wedge c) \to (a \wedge b \to d \wedge c) \in F$. Thus from (3.2), we get

$$a \wedge b \to d \wedge c \in F. \tag{3.3}$$

By a similar argument as above, we obtain

$$d \wedge c \to a \wedge b \in F. \tag{3.4}$$

Since F is a filter, it follows from (3.3) and (3.4) that

$$a \wedge b \in F \Leftrightarrow c \wedge d \in F.$$

Thus by Corollary 3.17, we conclude $F_{a\wedge b} = F_{c\wedge d}$ and so $F_a \sqcap F_b = E_c \sqcap F_d$, e.i. the operation \sqcap is well-defined.

(ii) Applying Theorem 2.2(r_{14}) on $c \leq b \vee c$, we get $a \to c \leq a \to (b \vee c)$. Then this follows from $a \to c \in F$ that $a \to (b \vee c) \in F$. By Theorem 2.2(r_{18}), we have

$$(a \lor b) \to (b \lor c) = (a \to (b \lor c)) \land (b \to (b \lor c))$$
$$= (a \to (b \lor c)) \land 1$$
$$= a \to (b \lor c).$$

Then from $a \to (b \lor c) \in F$, we get

$$(a \lor b) \to (b \lor c) \in F$$

By a similar argument as above, using $b \to d \in F$, we obtain

$$(b \lor c) \to (c \lor d) \in F.$$

Using Theorem 2.2 (r_{14}) , similar to the proof of (i), we get

$$(a \lor b) \to (c \lor d) \in F \text{ and } (c \lor d) \to (a \lor b) \in F.$$
 (3.5)

Since F is a filter, it follows from (3.5) that

$$a \lor b \in F \Leftrightarrow c \lor d \in F.$$

Thus by Corollary 3.17, we conclude $F_{a \vee b} = F_{c \vee d}$ and so $F_a \sqcup F_b = E_c \sqcup F_d$, e.i. the operation \sqcup is well-defined.

(iii) Applying Theorem 2.2(r_{11}) on $b \to d \in F$ and $c \to a \in F$, we get

$$b \to d \le a \odot b \to a \odot d;$$

$$a \to c \le a \odot d \to c \odot d.$$

Hence, since F is a filter, we get

$$a \odot b \to a \odot d \in F.$$
$$a \odot d \to c \odot d \in F.$$

Similar to the proof of (i), we have

$$a \odot b \in F \Leftrightarrow c \odot d \in F$$

Thus by Corollary 3.17, we conclude $F_{a \odot b} = F_{c \odot d}$ and so $F_a \otimes F_b = F_c \otimes F_d$, e.i. the operation \otimes is well-defined.

(iv) We have

$$b \to d \leq (a \to b) \to (a \to d) \text{ by Theorem } 2.2(r_{14})$$

$$\leq (a \to b) \to ((c \to a) \to (c \to d)) \text{ by Theorem } 2.2(r_{14}, r_5)$$

$$\leq (c \to a) \to ((a \to b) \to (c \to d)) \text{ by Theorem } 2.2(r_{13}).$$

Then it follows from $b \to d \in F$ that $(c \to a) \to ((a \to b) \to (c \to d)) \in F$ and so from $c \to a \in F$, we conclude

$$(a \to b) \to (c \to d) \in F. \tag{3.6}$$

Similarly, we obtain

$$(c \to d) \to (a \to b) \in F. \tag{3.7}$$

Applying Lemma 3.20, from (3.6) and (3.7), we obtain $F_{a\to b} = F_{c\to d}$ and so $F_a \hookrightarrow F_b = F_c \hookrightarrow F_d$, e.i. the operation \hookrightarrow is well-defined. \Box

Theorem 3.22. Let F be a complement-closed filter of L. Then $(L(F); \sqcap, \sqcup, \otimes, \hookrightarrow, F_0, F)$ is a residuated lattice, where the operations " $\sqcap, \sqcup, \otimes, \hookrightarrow$ " are defined as Proposition 3.21.

Moreover, $L(F) \simeq L/F$, where L/F is the quotient residuated lattice with respect to F.

Proof. Define the mapping $\varphi : L(F) \to L/F$ by $\varphi(F_a) = a/F$. Assume that $F_a = F_b$ for some $a, b \in L$. Then by Lemma 3.20, we have $a \to b \in$ F and $b \to a \in F$. This implies that a/F = b/F and so $\varphi(F_a) = \varphi(F_b)$. Hence φ is well-defined. Now, let $\varphi(F_a) = \varphi(F_b)$. Then a/F = b/Fand so by the property of congruence classes, we obtain $a \to b \in$ F and $b \to a \in F$. Hence $a \in F$ if and only if $b \in F$. Then by Corollary 3.17, we get $F_a = F_b$. Therefore φ is injective. Obviously, φ is onto. We note that the operations defined on L(F) and L/F are the natural operations induced from L. Therefore φ is a bijective function preserving the operations of L(F). Then $L(F) \simeq L/F$ and so, since L/F is a residuated lattice, it follows that $(L(F); \sqcap, \sqcup, \otimes, \hookrightarrow, F_0, F)$ is a residuated lattice too.

We now give an example to illustrate the previous theorem.

Example 3.23. [7] Let $L = \{0, a, b, c, 1\}$ be the residuated lattice defined by the following tables:

10

\rightarrow	0	a	b	c	1	\odot	0	a	b	c	1	● 1
0	1	1	1	1	1	0	0	0	0	0	0	C
a	b	1	b	1	1	a	0	a	0	a	a	<u> </u>
b	a	a	1	1	1	b	0	0	b	b	b	a b
c	0	a	b	1	1	c	0	a	b	c	c	
1	0	a	b	c	1	1	0	a	b	c	1	0

It is not difficult to check that $F := \{c, 1\}$ is a complement-closed filter of L. By a simple calculation, we obtain:

$$L(F) = \{F_1 = F_c = F, F_a = \{b, c, 1\}, F_b = \{a, c, 1\}, F_0 = \{a, b, c, 1\}\};$$

$$L/F = \{1/F = c/F = F, a/F = \{a\}, b/F = \{b\}, 0/F = \{0\}\};$$

$$L(F) \cong L/F \text{ in which } F_x \longmapsto x/F \ (\forall x \in L).$$

The following example shows that the condition complement-closed in Theorem 3.22 is necessary.

Example 3.24. Let $L = \{0, a, b, c, d, 1\}$ be the residulated lattice as in Example 3.15. Then $F := \{a, b, 1\}$ is a filter of L, but is not a complement-closed because $x \to c = 1 \in F$ for any $x \in F^c$. By a simple calculation, we obtain

$$L(F) \models \{F_0 = F_a = F_b = F_c = F_d = F_1 = F\} \mid = 1,$$

 $|L/F| = |\{a/F = b/F = 1/F = \{a, b, 1\}, 0/F = \{0, c, d\}\} |= 2.$ From this follows that $L(F) \ncong L/F$.

Acknowledgement

The author would like to thank the referee for the careful reading and valuable comments to an improvement of the paper.

References

- G. Birkhoff, *Lattice Theory*, American Mathematical Society Colloquium Publication, third edition, 1967.
- 2. T. S. Blyth and M. F. Janovitz, *Residuation Theory*, Pregamon Press, 1972.
- 3. C. G. Bailey, Prime filters in MV-algebras, arXiv:0907.3328v1 [math.RA], 2009.
- E. Eslami, H. Shojaei and J. J. Buckley, *Filters in Residuated Algebras*, Southeast Asian Bull. Math., 27 (2003), 429-438.
- N. Galatos, P. Jipsen, T. Kowalski and H. Ono, Residuated lattices: an algebraic glimpse at substructural logics, Elsevier, 2007.
- P. Hájek, Matemathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998.
- A. Iorgulescu, Classes of BCK algebras-Part III, Preprint Series of the Institute of Mathematics of the Romanian Academy, preprint, 3 (2004), 1-37.
- T. Kowalski and H. Ono, *Residuated Lattices:* An algebraic glimpse at logics without contraction, 2001.

- H. Ono, Substructural logics and residuated lattices- an introduction, 50 Years of Studia Logica, Trends in Logic, Kluwer Academic Publischer, 21 (2003), 193-228.
- 10. D. Piciu, Algebras of Fuzzy Logic, Editura Universitaria Craiova, 2007.
- 11. S. Tanaka, A new class of algebras, Math. Seminar Notes, 3 (1975), 37-43.
- 12. E. Turunen, Mathematics behind fuzzy logic, Physica-Verlag, Heidelberg, 1999.
- E. Turunen, Boolean deductive systems of BL-algebras, Archive for Mathematical Logic, 40 (2001), 467-473.
- M. Ward and R. P. Dilworth, *lattices*, rans. Amer. Math. Soc., 45 (1939), 335-354.

Habib Harizavi

Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran Email: harizavi@scu.ac.ir