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CONNECTIONS BETWEEN GRAPHS AND SHEAVES

P. VAMSI SAGAR ∗ AND M. PHANI KRISHNA KISHORE

Abstract. In this paper, we discussed a method to construct a
global sheaf space using graphs via Maximal compatibility blocks
(MCB’s) and we proposed the correspondence between graphs and
sheaves. Further we discussed the sheaf constructions for various
graphs using MCB’s and vice-versa. We also presented some graph
theoretical examples for the construction of sheaves.

1. Introduction

The concept of sheaves was introduced by Jean Leray in 1950’s.
Sheaves provide a mechanism for dealing with information at local
and global levels. The theory has been successfully applied to areas
like Coding Networks [8], Signal Processing [9]. Some applications
of sheaves in computer science has been studied by Malcolm [3]. In
particular the algebraic representations were studied extensively by re-
searchers like Comer [10], Hofmann [6], Davey [2] and Swamy [11].
Swamy [11] and Wolf [1] gave mechanisms for construction of sheaves
of a universal algebra based on Chinese Remainder Theorem. The ef-
fectiveness of the theory is visible in several mathematical disciplines.
The theory of graphs is known for its versatility in applications. Re-
cently, Joel Friedman[4] introduces a notion of a Sheaf vector spaces on
a graph and studied homology theory for such sheaves. The authors
studied construction of sheaves of sets [7] via tolerances and estab-
lished connections with graphs. The motivation for the present work is
to establish the connections between sheaves and graphs using maximal
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compatibility blocks as they play major role in establishing connections
of graphs and also in practical applications of computer networks.
In this paper the sheaf terminology used is based on the theory devel-
oped by Swamy [11].
The motivation for the work is to establish a link between graphs and
sheaf representations so that problems of one domain can be visualised
in another domain and vice-versa to facilitate better understanding and
better solutions.

2. Preliminaries

In this section we provide a fairly comprehensive overview of sheaf
theory and present those parts of the theory that will be useful for our
construction. We start with the following.

A sheaf (of sets) is a triple (S, π,X) where S,X are topological spaces
and π is a surjective local homeomorphism of S onto X, for any p ∈ X,
π−1(p) is a non empty set and is called the stalk at p, denote it by
Sp and S is a disjoint union of all S ′ps. For Y ⊆ X, a section on
Y is a continuous map f : Y → S such that π ◦ f = idY . Sections
on X are called global sections. A global sheaf is a sheaf in which
every element of the sheaf space is in the image of some global section.
A sheaf (S, π,X) is said to be isomorphic with a sheaf (S ′, π′, X ′) if
there exists homeomorphisms α : S → S ′ and β : X → X ′ such that
π′ ◦ α=β ◦ π.
A relation R on X is said to be a tolerance or compatibility relation if
it is reflexive and symmetric. Let X be a set and R be a compatibility
relation on X. A subset A ⊆ X is called a maximal compatibility block
if any element of A is compatible to every other element of A and no
element of X−A is compatible to all the elements of A. We denote an
MCB by (abcd), where a, b, c, d are the elements of the set X.
A graph is an ordered pair G = (V,E) comprising a set V of vertices
together with a set E of edges, which are 2-element subsets of V . A
graph is called a complete graph if every two vertices pair are joined
by exactly one edge. A cycle graph is a graph that consists of a single
cycle. A tree is a connected undirected graph with no cycles. There is
a unique path between ever pair of vertices in G.

Proposition 2.1. If (S, π,X) is a sheaf, then π is a continuous and
an open map.

Proof. Let (S, π,X) be a sheaf, which implies π : S → X is a surjection
and local homeomorphism. Claim(1): π : S → X is continuous. Let
W be an open set in X. Let s ∈ π−1(W ). Since (S, π,X) is a sheaf, we
can choose two open sets G and U in S and X respectively such that
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s ∈ G, π(s) ∈ U and π|G : G → U is a homeomorphism. Since W is
open in X and U is open in X, it follows that, (π|G)−1(U ∩W ) is open
in G and hence it is open in S. Also s ∈ G and π|G(s) = π(s) ∈ U ∩W .
Therefore, s ∈ (π|G)−1(U ∩W ) ⊆ π−1(W ). Thus π−1(W ) is open in S.
Hence π : S → X is continuous. Claim(2): π : S → X is open. Suppose
H is an open set in S, it is enough to show that π(H) is open in X. Let
p ∈ π(H). Choose s ∈ H such that π(s) = p. Since (S, π,X) is a sheaf,
we can choose two open sets G and U in S and X respectively such
that s ∈ G, π(s) = p ∈ U and π|G : G→ U is a homeomorphism. Since
(G∩H) is open in G which implies π|G(G∩H) is open in U and hence
is open in X, since s ∈ (G∩H) we have p = π(s) ∈ π|G(G∩H) ⊆ π(H)
thus π(H) is open in X. Hence π : S → X is open. �

Proposition 2.2. Every section on an open set is an open map.

Proof. Let (S, π,X) be a sheaf and Y ⊆ X. Suppose Y is open and
f : Y → S is a section on Y .
Claim: f : Y → S is an open map. Let V be an open subset of
Y . We have to prove that f(V ) is open in S. Let s ∈ f(V ) which
implies there exists p ∈ V such that f(p) = s. Choose two open
sets G and U in S and X respectively such that s ∈ G, π(s) ∈ U
and π|G : G → U is a homeomorphism. Now (U ∩ V ) is open in U
implies H = (π|G)−1(U ∩ V ) is open in G and hence in S. Also π(s) =
π(f(p)) = (π ◦f)(p) = p ∈ U ∩V ⇒ s ∈ (π|G)−1(U ∩V ) = H. Further,
if t ∈ H then f(π(t)) ∈ H ⊆ G and π(t) = π(f(π(t))) ∈ H ⊆ G and
since π|G : G → U is one-one. Thus s ∈ H ⊆ f(V ) and H is open in
S. Therefore f(V ) is open in S. �

3. Construction of Sheaves by Maximal Compatibility
blocks

The construction of sheaf for an arbitrary set over a topological space
using equivalence relations is discussed in [11]. M.P.K.Kishore et.al.,[7]
discussed the construction of sheafs for an arbitrary set over a topo-
logical space using Tolerance relations. In this section we propose a
method to construct a sheaf for an arbitrary set over a topological
space using Maximal compatibility blocks.

Let X be a topological space and let A be a non-empty set. Let η
be a tolerance relation on A. Let Tol(A) denote the set of all tolerance
relations on A. It can be observed that every tolerance relation gen-
erates a graph and denote the set of all maximal compatibility blocks
with respect to η by A//η, that is,
A//η = {B|B is a Maximal Compatibility Block with respect to η}.



22 SAGAR AND KISHORE

Suppose there is a map from X to Tol(A) such that for each p ∈ X,
ηp be the tolerance relation on A. Denote for each a ∈ A, ηp(a) = B
where B is a Maximal Compatibility Block with respect to ηp contain-
ing a, (if there are more than one MCB’s arbitrarily select one of the
MCB’s). Let Sp = A//ηp where A//ηp = {MCB′s w.r.t. ηp on A}
and

Define S =
⊔
p∈X

Sp, be the disjoint union of Sp
′
s.

For any a ∈ A, define â : X → S by â(p) = ηp(a). Topologies S
with the largest topology with respect to each â is continuous. Define
π : S → X by π(s) = π(ηp(a)) = p for all s ∈ Sp. Then (S, π,X) forms
a triple.

Example 3.1. Let G = (V,E) be the graph, where V = {a, b, c, d},
E = {(ab)(bc)(cd)(da)(bd)}, X = {p, q} be a topological space and ηp
= {(ab)(bc)(bd)(dc)(ad)} ∪ {(ba)(cb)(db)(cd)(da)} ∪ ∆. For a ∈ A,
ηp(a) = (abd), ηp(b) = (bcd) (select), ηp(c) = (bcd), ηp(d) = (abd)
(select) and Sp = A//ηp = {(abd)(bcd)}, ηq = ∆ = {(aa)(bb)(cc)(dd)}
and Sq = A//ηq = {(a)(b)(c)(d)} and

Define S =
⊔
p∈X

Sp, be the disjoint union of Sp
′
s

={((abd), p), ((bcd), p), ((a), q), ((b), q), ((c), q), ((d), q)}.

Now we prove a necessary and sufficient condition for the triple
(S, π,X) to be a global sheaf. The proof of the following theorem
is analogous to the similar proof given in [7], however in the following
theorem ηp(a) = â(p) denote a Maximal Compatibility Block.

Theorem 3.2. (S, π,X) is a global sheaf if and only if for any a, b ∈ A,

X(a, b) = {p ∈ X|â(p) = b̂(p)} is open in X [7].

Proof. Let (S, π,X) be a global sheaf. First we prove that for a ∈ A,
â is a global section. Continuity of â is clear from the definition. Also
π ◦ â(p) = π(â(p)) = π(ηp(a)) = p, for all p ∈ X. Therefore π ◦ â is the
identity and hence â is a global section. Now we claim that X(a, b) is

open in X. Let p ∈ X(a, b) that is, p ∈ X and â(p) = b̂(p) = s(say),
s ∈ S. By the definition of sheaf there exists open sets G and U
in S and X respectively such that s ∈ G and π|G : G → U is a
homeomorphism. Observe that π(s) = π(â(p)) = p, p ∈ U . Now take

V = â−1(G) ∩ b̂−1(G) ∩ U . Since â, b̂ are continuous and U is open,
it follows that V is open in X and p ∈ V . Now for any q ∈ V , â(q),
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b̂(q) ∈ G and π(â(q)) = π(b̂(q)). From the fact that π|G is a one-to-one

map, it follows that â(q) = b̂(q). Therefore q ∈ X(a, b) and hence
X(a, b) is open.

Conversely assume that X(a, b) is open in X. We now prove that
(S, π,X) is a global sheaf. Let s ∈ S. Then there exist p ∈ X,
a ∈ A such that s = ηp(a). Now since ηp(a) = â(p), â(p) ∈ â(X)
it follows that s ∈ â(X). We now prove that π|â(X):â(X) → X is a
homeomorphism. Suppose π|â(X)(ηp(a)) = π|â(X)(ηq(a)). By definition
of π, it follows that p = q. Thus, ηp(a) = ηq(a) and hence π|â(X)

is one-one. Given p ∈ X, observe that π|â(X)(ηp(a))=p for a ∈ A,
ηp(a) ∈ â(X). Therefore π|â(X) is onto. Let U be open in X and
s ∈ (π|â(X))

−1(U). Then π|â(X)(s) ∈ U . Now since s ∈ Sp for some
p, there exists a ∈ A such that s = ηp(a) and hence π|â(X)(ηp(a)) ∈
U . Since π|â(X)(ηp(a))=p, it follows that p ∈ U , clearly â(p) ∈ â(U).
From the fact that â is an open map, it is clear that â(U) is open
in S. Let s′ ∈ â(U). Then s′ = â(q)(= ηq(a)) for some q ∈ U .It
can be observed that π|â(X)(ηq(a)) ∈ U as π(ηp(a)) = q. Therefore
s′ = ηq(a)∈ (π|â)−1(U). Thus â(U) ⊆ (π|â(X))

−1(U) and hence π|â(X)

is continuous. Let H be an open set in â(X). By the subspace topology
induced by S, there exists an open set G in S such that H = â(X)∩G.
Let s ∈ H ; then there exists q ∈ X such that s = â(q)(= ηq(a)),
s ∈ G. Since q ∈ â−1(G), consider W = â−1(G) ∩ X. Clearly q ∈ W
and W is open in X. Now let p ∈ W , that is, p ∈ â−1(G) ∩X. Then
â(p) ∈ G and since â(p) ∈ â(X), it follows that â(p) ∈ â(X) ∩G = H.
p = π|â(X)(â(p)) ∈ π|â(X)(H). Thus π|â(X) is an open map. �

The proof of the following theorem is analogous to theorem (3.4) of
[7]

Theorem 3.3. For a, b ∈ A. Let < a, b > = {η ∈ Tol(A)|η(a) =
η(b) whereη(a)denotes set of all MCB′s containing a}. Equip Tol(A)
with the topology for which {< a, b > |a, b ∈ A} is a sub-base. Then
(S, π,X) is a global sheaf if and only if f : p 7→ η(p) is continuous.

I. Construction of sheaf from the given graph:
Let G = (V,E) be a finite graph. That is V,E are finite and V is
non-empty, V = {v1, v2, ..., vn}. Let X denote discrete topology of
sub graphs Gi(= (Vi, Ei)) of G such that V (G) = V (Gi). That is
XG = {Gi|Gi is a sub graph of G and V (G) = V (Gi)}. It can be
observed that E ∪ Ẽ ∪∆ is a tolerance relation on V , where Ẽ denotes
a converse of E and hence every graph can be uniquely identified with
a tolerance relation on V . For each Gi, define the tolerance relation ηGi

by ηGi
=Ei ∪ Ẽi ∪∆. Define ηGi

(v)=MCB containing v in Gi ( if there
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are more than one MCB containing v fix MCB that contains smallest
indexed vertex vj that immediately follows v). Every MCB shall be
denoted as (v1v2...vk), where v1, v2, ..., vk are arranged in lexicographic
order and shall be considered in cyclic order. That is vk precedes v1.
Let SGi

= V//ηGi
= {ηGi

(v)|v ∈ V } and

Define SG =
⊔

Gi∈X

SGi
, be the disjoint union of SGi

′
s.

For any v ∈ V , define v̂(Gi) = ηGi
(v). Topologies S with the largest

topology for which each v̂ is continuous. Define πG : SG → XG by
πG(s) = πG(ηGi

(v)) = Gi. Then (SG, πG, XG) is a global sheaf, since
for any vi, vj ∈ V , {Gi ∈ X|(vi, vj) ∈ ηGi

} is open in X.

Example 3.4. Let G = (V,E) be the given graph, where
V = {a, b, c, d} be the vertices and E = {(ab), (ac), (bd)} be the edges.
Sub graphs of the above graph and the corresponding MCB’s are as
follows.
1. G1 = (V1, E1) where V1 = V , E1 = φ and the respective MCB’s are
SG1 = (a)(b)(c)(d)
2. G2 = (V2, E2) where V2 = V , E2 = {(ab)} and the respective MCB’s
are SG2 = (ab)(c)(d)
3. G3 = (V3, E3) where V3 = V , E3 = {(ab)(bd)} and the respective
MCB’s are SG3 = (ab)(bd)(c)
4. G4 = (V4, E4) where V4 = V , E4 = {(ab)(ac)} and the respective
MCB’s are SG4 = (ab)(ac)(d)
5. G5 = (V5, E5) where V5 = V , E5 = {(ac)} and the respective MCB’s
are SG5 = (ac)(b)(d)
6. G6 = (V6, E6) where V6 = V , E6 = {(bd)} and the respective MCB’s
are SG6 = (bd)(a)(c)
7. G7 = (V7, E7) where V7 = V , E7 = {(ac)(bd)} and the respective
MCB’s are SG7 = (ac)(bd)
8. G8 = (V8, E8) where V8 = V , E8 = {(ab)(ac)(bd)} and the respective
MCB’s are SG8 = (ab)(ac)(bd) and S = {{(a), G1}, {(b), G1}, {(c), G1},
{(d), G1}, {(ab), G2},
{(c), G2}, {(d), G2}, {(ab), G3}, {(bd), G3}, {(c), G3}, {(ab), G4},
{(ac), G4}, {(d), G4}, {(ac), G5}, {(b), G5}, {(d), G5}, {(bd), G6},
{(a), G6}, {(c), G6}, {(ac), G7}, {(bd), G7}, {(ab), G8}, {(ac), G8},
{(bd), G8}}. Now X = {G1, G2, G3, G4, G5, G6, G7, G8} and the distinct
MCB’s are {(a), (b), (c), (d), (ab), (ac), (bd)}.
The sheaf space encapsulates the information of MCB’s that are present
in all possible subsets of G. Each v̂ identifies the role of the vertex v
with respect to the MCB’s that it identifies in each of the sub graphs.
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Each stalk SGi
contains the information of the MCB’s corresponding

to the sub graph Gi and the projection map π : S → X identifies the
sub graph to which the particular MCB belongs.

Observations on different types of graphs:
Observation(1): Null graph: Let G = (V,E) be a null graph. That is
E = φ. let X = {φ,G} be the indiscrete topology.
SG = V//ηG = {(v)| v ∈ V }, S = SG. Each v̂ : X → S by v̂(G) =
ηG(v) = (v), v ∈ V . Define π : S → X by π((v)) = π(ηG(v)) = G.
Therefore (S, π,X) is a sheaf with stalks consisting of MCB’s with one
element.
Observation(2): Complete graph: Let G = (V,E) be the complete
graph. Let X = {Gi| Gi is a sub graph of G and V (G) = V (Gi)} with
discrete topology. X consists of 2(|V |.(|V |−1))/2 sub graphs with discrete
topology. There are 2(|V |.(|V |−1))/2 number of stalks, where each stalk
corresponds to an element of P (E) ranging from null graph to complete
graph. Hence there is a bijection between the number of elements in
the stalks and the set of numbers {1, 2, 3, ..., 2|E|}. Each v̂ : X → S by
v̂(Gi)= ηGi

(v) = {(v1v2...vk)|vGi
= (v1v2...vk)}, for all v ∈ Vi. In this

case (S, π,X) is a sheaf with 2|Ei| number of elements.
Observation(3): Cycle graph: Let G = (V,E) be the cycle graph such
that V = {v1, v2, ..., vn} and E = {(vi, vi+1)|1 ≤ i ≤ n−1}∪{(vn, v1)}.
Let X denotes {Gi| Gi is a sub graph of G and V (G) = V (Gi)} be a
discrete topology. Then (S, π,X) is a sheaf with 2|V | number of stalks
such that every stalk contains MCB’s contains two elements.
Observation(4): Tree: Let G = (V,E) be a tree with |V | = n and
|E| = |V | − 1. The sheaf (S, π,X) consists of 2|V |−1 number of stalks
with each stalk element contains at most two elements.
Observation: In general different topologies can be considered with sub
graphs of G other than discrete topology.

Example 3.5. LetG = (V,E) be the given graph, where V = {a, b, c, d}
be the vertices and E = {(ab), (bc), (cd), (ad), (bd)} be the edges. The
sub graphs are as follows. 1. G1 = {(abd), (c)} 2. G2 = {(bcd), (a)} 3.
G3 = {(bd), (a), (c)} 4. G4 = {(a), (b), (c), (d)} 5. G5 = {(abd), (bcd)}

Formula for number of stalks:|E|C0 + |E|C1 + ...+ |E|C|E| = 2|E|

Definition 3.6. Sub-sheaf space : Let (S, π,X) be a sheaf space. A
sheaf space (T, η, Y ) is said to be sub-sheaf space of (S, π,X) if T is
equipped with subspace topology of that of S and Y is equipped with
subspace topology that of X and π|T = η.

Observation: Let (SG, πG, XG) be a sheaf space obtained for a graph
G. Then for any sub graphGi corresponding sheaf generated (SGi

, πGi
, XGi

)
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is a sub-sheaf space of (SG, πG, XG).
Observation: Construction of a graph: From the above constructed
sheaf the original graph can be reconstructed by the following proce-
dure. Step(i): Consider vertices corresponding to MCB’s with single
elements. Step(ii): Consider edges corresponding to remaining MCB’s.
That is construct edges between every pair of vertices in a given MCB.
II. Construction of a graph from a sheaf of sets: Let (S, π,X)
be a sheaf of sets such that each element of the stalk Sp is a set. That
is

S =
⊔
p∈X

Sp, [ be the disjoint union of Sp
′
s

]and Sp={sp1, s
p
2, ..., s

p
n} where Sp is a sheaf of sets, and spi ={a1i , a2i , ..., ali}.

For any p ∈ X construct a graph Gp = (Vp, Ep) where

Vp =
⋃

(1≤i≤n)

spi ,

=
⋃

(1≤i≤n)of{a1i , a2i , ..., ali}that is each aji corresponds to a vertex

and add an edge (ami
ani

) ∈ Ep if (ami
, ani

) ∈ spi for some p. Now
consider

GS =
⊔
p∈X

Gp

where GS = (VS, ES),

VS =
⊔
p∈X

Vp

and
ES =

⊔
p∈X

Ep

Theorem 3.7. Let (S, π,X) be a sheaf of finite sets such that each
stalk Sp, p ∈ X, is a collection of finite sets. Let

A =
⋃
p∈X

(
⋃

V ∈Sp

V )

Let ≤ be an ordering on A such that (A, ≤) is an ordered set. Let GS

be the graph constructed over the given sheaf as given in (II). Let Y be
a topological space on sub graphs of G such that {Gp| p ∈ U, U is an
open set in X} is open in Y . Let (T, η, Y ) be the sheaf constructed
over GS by the construction of a sheaf from the given graph as given
in (I). Then (S, π,X) ∼= (T, η, Y ).

Proof. Let s ∈ S, that is s = spi ∈ Sp for some p ∈ X and spi =
{a1i , a2i , ..., ari} define α : S → T by α(s) = ηGp(aki), where aki ∈
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spi (= s), then choose aki such that ki is the least suffix. Define β : X →
Y by β(p) = Gp.

Figure 1.

Observe that (β ◦ π)(s) = (β ◦ π)(spi ) = β(π(spi )) = β(p) = Gp

and (θ◦α)(s) = (θ◦α)(spi ) = θ(α(spi )) = θ(ηGp(aki)) = Gp for a suitable
aki as given above. Hence β ◦ π = θ ◦ α.
Claim: β is an isomorphism. (i) β is one-one: Suppose β(p) = β(q)
which implies Gp = Gq implies Sp = Sq which implies spi = sqi so that
π(spi ) = π(sqi ) which implies p = q therefore β is one-one.(ii) β is onto:
By the construction of Y , β is clearly onto. (iii) β is continuous: Let
W be an open set in Y . β−1(W ) = {p ∈ X| Gp ∈ W}. By the
construction of topology on Y , {Gp| p ∈ U} is open in Y if and only if
U is open in X. Clearly β−1(W ) is open in X. Hence β is continuous,
and hence β is an isomorphism.
Claim: α : S → T be an isomorphism.(i) α is one-one: Let α(s) = α(s′)
which implies ηGp(aki) = ηGp(aji) by the construction, the MCB of
ηGp(aki) = the MCB of ηGp(aji) implies the corresponding sets s, s′

in (S, π,X) is same by the construction of the graph, implies s = s′.
Therefore α is one-one. (ii) α is onto: Every element of T is in the
form of ηGp(v) for some v, which corresponds to spi = ηGp(v), by the
construction of the graph and the sheaf. Hence α is onto. (iii) α is
continuous: Let W be an open set in T . Since β ◦ π = θ ◦ α. Now
α−1(W ) = π−1(β−1(θ(w)). Since π, β, θ being continuous and open,
α−1(W ) is open in S. Hence α is continuous and open. Hence α is an
isomorphism. �

Theorem 3.8. Let G = (V, E) be a graph and (SG, πG, XG) be
the sheaf of sets constructed by (I). Let G′ = (V ′, E ′) be the graph
constructed from (SG, πG, XG) by (II). Then G is isomorphic to G′.

Proof. By the construction of the sheaf, every sub graph Gp contains
all vertices of G and by the construction of the graph from the sheaf

V ′ =
⋃
p∈X

V ′p
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where in

V ′p =
⋃

(1≤i≤n)

sPi ,

where each spi corresponds to MCB of Gi which is a sub graph of G.
Hence V = V ′. Suppose (vi, vj) ∈ E. Let Gi be a sub graph containing
E so that (vi, vj) ∈ ηGi

. By the construction of sheaf (vi, vj) belongs
to some MCB ηGi

(v) for some v. And by the construction of the graph
given in (II) corresponding to every element in the sheaf space an MCB
is constructed and hence ηGi

(v) forms an MCB in the new graph G′,
as a result (vi, vj) ∈ E ′. Then G is isomorphic to G′. �

Theorem 3.9. Two graphs G, G′ are isomorphic if and only if their
corresponding sheaves constructed over discrete topology of sub graphs
of G are isomorphic.

Proof. Suppose G and G′ are isomorphic. Let (S, π,X), (S ′, π′, X ′) be
two sheaves corresponding to G, G′, and by the above construction of
sheaves, since G, G′ are isomorphic, the MCB’s corresponding to G are
isomorphic to MCB’s corresponding to G′, which implies (S, π,X) is
isomorphic to (S ′, π′, X ′). Conversely suppose (S, π,X), (S ′, π′, X ′) be
two sheaves constructed corresponding to G, G′ are isomorphic, X, X ′

are discrete topologies on G, G′. Since sheaves are isomorphic, the
collection of MCB’s on G, the collection of MCB’s on G′ are bijective.
Thus G and G′ are isomorphic. �

Example 3.10. Consider the graphsG = (V,E) where V = {r, x, y, z, t}
be the vetices and E = {(rx), (xy), (yz), (zt), (tr), (ry), (yt)} be the
edges and another graph G′ = (V ′, E ′) where V ′ = {a, b, c, d, e} be
the vertices and E ′ = {(ab), (bc), (cd), (de), (ea), (ac), (ad) be the edges.
The graphsG, G′ are isomorphic. The MCB’s ofG are {(rty)(rxy)(ytz)}
and the MCB’s of G′ are {(ade)(adc)(abc)}.

Figure 2.
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Now Constructing new graphs H from G, H ′ from G′ where each
MCB becomes a vertex and whenever two MCB’s share vertices add
an edge between the corresponding vertices (MCB’s) with an edge
level of common vertices to both. The graphs H = (V,E) where
V = {(rxy), (rty), (ytz)} be the vetices and E = {(ry), (yt), y} be
the edges and another graph H ′ = (V ′, E ′) where V ′ = {ade, adc, abc}
be the vertices and E ′ = {(ad), (ac), a} be the edges. Since both the
graphs produce equivalent MCB’s corresponding sheaves shall also be
isomorphic when constructed on the same topological space.

Figure 3.

Algorithm for testing isomorphism of graphs:
Let G = (V,E), G′ = (V ′, E ′) be two graphs such that |V | = |V ′|,
|E| = |E ′|
Step(i): Construct sheaves (S, π,X), (S ′, π′, X ′) where X, X ′ are dis-
crete topologies on G, G′ respectively. If S is not isomorphic to S ′ then
graphs are not isomorphic. Else
Step(ii): Construct a new graphs H from G, H ′ from G′ where each
MCB becomes a vertex and whenever two MCB’s share vertices add an
edge between the corresponding vertices (MCB’s) with an edge level of
common vertices to both.
Step(iii): Construct sheaves on H, H ′. If the corresponding sheaves
are not isomorphic, then the graphs G, G′ are not isomorphic.
Step(iv): Repeat steps (i),(ii), (iii) until the multilevel sheafs con-
structed in successive steps are same.

4. Conclusion

In this paper, a method for construction of sheaves using maximal
compatibility blocks is discussed. The one-to-one correspondence be-
tween graphs and sheaves is observed.
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