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ON SECONDARY SUBHYPERMODULES

F. FARZALIPOUR AND P. GHIASVAND ∗

Abstract. Let R be a Krasner hyperring and M be an R- hy-
permodule. Let ψ : Sh(M) → Sh(M) ∪ {∅} be a function, where
Sh(M) denote the set of all subhypermodules of M . In the first
part of this paper, we introduce the concept of a secondary hy-
permodule over a Krasner hyperring. A non-zero hypermodule M
over a Krasner hyperring R is called secondary if for every r ∈ R,
rM = M or rnM = 0 for some positive integer n. Then we inves-
tigate some basic properties of secondary hypermodules. Second,
we introduce the notion of ψ-secondary subhypermodules of an
R-hypermodule and we obtain some properties of such subhyper-
modules.

1. Introduction

Algebraic hyperstructures are a suitable generalization of classical
algebraic structures. In a classical algebraic structure, the composition
of two elements is an element, while in an algebraic hyperstructure,
the composition of two elements is a set. Hyperstructures have many
applications to several sectors of both pure and applied mathematics,
for instance in geometry, lattices, cryptography, automata, graphs and
hypergraphs, fuzzy set, probability and rough set theory and so on
(see [4] and [5]). The hypergroup notion was introduced in 1934 by
a French mathematician F. Marty [8], at the 8th Congress of Scandi-
navian Mathematicians. The notion of hyperrings was introduced by
M. Krasner in 1983, where the addition is a hyperoperation, while the
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multiplication is an operation [7]. Also, hypermodules over a hyperring
is a generalization of the classical modules over a ring. Several kinds
of hyperrings and hypermodules were introduced and studied by many
authors. Prime, primary, and maximal subhypermodules of a hyper-
module were discussed by M. M. Zahedi and R. Ameri in [10]. Also,
R. Ameri et al in [1] studied prime and primary subhypermodules of
(m,n)-hypermodules. The principal notions of algebraic hyperstruc-
ture theory can be found in [5] and [10].

In this paper, we define the concept of secondary hypermodules and
get some basic properties of such hypermodules. Also, we introduce and
study a generalization of secondary subhypermodules which is called
ψ-secondary subhypermodules and we give a number of results of these
subhypermodules.

2. Basic definitions and results

Definition 2.1. [7] Let H be a nonempty set and P∗(H) denotes the
set of all nonempty subsets of H. If + : H × H −→ P∗(H) is a map
such that the following conditions hold, then we say that (H,+) is a
canonical hypergroup.

(i) for every x, y, z ∈ H, x+ (y + z) = (x+ y) + z;
(ii) for every x, y ∈ H, x+ y = y + x;

(iii) there exists 0 ∈ H such that 0 + x = {x} for every x ∈ H;
(iv) for every x ∈ H there exists a unique element x′ ∈ R such that

0 ∈ x+ x′, it is denoted by −x;
(v) for every x, y, z ∈ H, z ∈ x+y implies y ∈ −x+z and x ∈ z−y.

Let A ⊂ H. Then A is called a subhypergroup of H if 0 ∈ H and
(A,+) is itself a hypergroup.

Definition 2.2. A Krasner hyperring is an algebraic hyperstructure
(R,+, ·) which satisfies the following axioms:

(1) (R,+) is a canonical hypergroup;
(2) (R, ·) is a semigroup having zero as a bilaterally absorbing ele-

ment, i.e., x · 0 = 0 · x = 0;
(3) the operation “ ·” is distributive over the hyperoperation “+”,

which means that for all x, y, z of R we have:

x · (y + z) = x · y + x · z and (x+ y) · z = x · z + y · z.

A Krasner hyperring (R,+, ·) is called commutative with unit element
1 ∈ R; if we have

(a) xy = yx for all x, y ∈ R,
(b) 1x = x1 for all x ∈ R.
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A subset S of a hyperring R is said to be a subhyperring of R if
(S,+, ·) is itself a hyperring.

A subhyperring I of a hyperring R is a left (right) hyperideal of R if
rx ∈ I(xr ∈ I) for all r ∈ R, x ∈ I. I is called a hyperideal if I is both
a left and a right hyperideal.

Definition 2.3. [10] Let I be a hyperideal of a Krasner hyperring R.
The radical of I (in abbreviation rad(I)) is the set of all x ∈ R such
that xn ∈ I for some n ∈ N. It is clear that rad(I) is a hyperideal of
R.

Definition 2.4. [10] Let R be a Krasner hyperring and P be a proper
hyperideal of R.

(1) P is called a prime hyperideal of R if ab ∈ P for some a, b ∈ P ,
then a ∈ P or b ∈ P .

(2) P is called a primary hyperideal of R if ab ∈ P for some a, b ∈ P ,
then a ∈ P or b ∈ rad(P ).

Definition 2.5. [10] Let R and S be hyperrings. A mapping φ from
R into S is said to be a hyperring homomorphism, if for all a, b ∈ R;

(1) φ(a+ b) = φ(a) + φ(b), φ(0) = 0.
(2) φ(ab) = φ(a)φ(b).

Definition 2.6. [10] Let (R,+, ·) be a hyperring with unit element
1. An R-(left) hypermodule M is a commutative hypergroup (M,+)
together with a map · : R×M −→M defined by

(a,m) 7→ a ·m = am ∈M

such that for all r1, r2 ∈ R and m1,m2,m ∈M we have

(1) r1 · (m1 +m2) = r1 ·m1 + r2 ·m2;
(2) (r1 + r2) ·m = (r1 ·m) + (r2 ·m);
(3) (r1 · r2) ·m = r1 · (r2 ·m);
(4) 1m = m;
(5) r0M = 0Rm = 0M .

A nonempty subset N of an R-hypermodule M is called a subhyper-
module if N is an R-hypermodule with the operations of M .

Proposition 2.7. Let N 6= ∅ be a subset of an R-hypermodule M .
Then N is a subhypermodule of M , if and only if, for every x, y ∈ N
and r ∈ R, we have x− y ⊆ N and rx ∈ N .

Definition 2.8. (a) A proper subhypermodule P of a R-hypermodule
M is called prime (primary) whenever rm ∈ P with r ∈ h(R) and
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m ∈ h(M), implies that m ∈ N or rM ⊆ N (m ∈ N or rnM ⊆ N for
some positive integer n).

(b) A proper subhypermoduleN ofM is said to be maximal, provided
that for subhypermodule K of M with N ⊆ K ⊆ M , then N = K or
K = M .

Example 2.9. [7] If (R,+, ·) is a ring and G a subset of R such that
(G, ·) is a group, then we can define an equivalence relation ∼= on R as
follows:

(∀x, y ∈ R) (x ∼= y ⇔ xG = yG)

The equivalence class represented by x is P (x) = {y ∈ R | yG = xG} =
xG. Let R

G
be the set of all equivalence classes. Define a hyperoperation

⊕ on R
G

as follows:

P (x)⊕ P (y) = {P (t) | P (t) ∩ (P (x) + P (y)) 6= ∅}
= {tG | ∃g1, g2 ∈ G such that t = xg1 + yg2}

and define a binary operation · on R
G

by xG·yG = xyG ( or P (x)·P (y) =

P (xy)). Then (R
G
,⊕, ·) forms a hyperring. Moreover, if we choose R to

be a field, then we get that (R
G
,⊕, ·) is a hyperfield.

Lemma 2.10. [3] Let R be a hyperring with unit element. Then R is
an R-hypermodule.

Definition 2.11. Let I be a hyperideal of a hyperring R and let R/I =
{r + I|r ∈ R}. Define the hyperoperations ⊕ and ⊗ on R/I by (a +
I)⊕ (b+I) = a+ b+I and (a+I)⊗ (b+I) = ab+I. Then (R/I,⊕,⊗)
is called a quotient hyperring.

Proposition 2.12. [3] Let M be an R-hypermodule and N be a subhy-
permodule of M . The quotient hypergroup M/N = {m+N | m ∈M}
is an R-hypermodule under the multiplication defined by r(m + N) =
rm+N . This is called the quotient hypermodule.

In the following, we recall the construction of the hyperrings of frac-
tions [6]. Let R be any hyperring and let S be any multiplicatively
closed subset of R with 1 ∈ S. Define a relation “∼” on R × S by
(a, s) ∼ (b, t),if and only if 0 ∈ (at − bs)u, for some u ∈ S. Denote
the equivalence class of (a, s) with a

s
and let S−1R denote the set of all

equivalence classes. We endow the set S−1R with a hyperring struc-
ture, by defining the addition and the multiplication between fractions
as follows:

a

s
+
b

t
=
at+ bs

st
and

a

s
· b
t

=
ab

st
We know that S−1R forms a hyperring under these operations.
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Similarly, one constructs hypermodule of fractions. Let M be an
R-hypermodule and S be a multiplicatively closed subset of R. Define
a relation “∼” on M × S by

(m, s) ∼ (m′, s′)⇔ (∃t ∈ S)(0 ∈ t(ms′ −m′s)),
i. e. that there exists t ∈ S such that tms′ = tm′s. Such a relation is
obviously an equivalence relation. Let m

s
denote the equivalence class of

the pair (m, s), and let, for a given M and S, the symbol S−1M denote
the set of all such fractions. Then S−1M is an S−1R-hypermodule.

3. secondary hypermodules

In this section we introduce and study the concept of secondary
hypermodules over a Krasner hyperring.

Definition 3.1. A non-zero hypermodule M over a Krasner hyperring
R is called secondary if for every r ∈ R, rM = M or rnM = 0 for
some positive integer n. In which case, rad((0 :R M)) = P is a prime
hyperideal of R, M is said to be P -secondary.

An R- hypermodule M is called simple, if it is non-zero and has no
non-zero proper subhypermodule.

Lemma 3.2. Let M be an R-hypermodule and N a subhypermodule of
M . Then N is a maximal subhypermodule of M if and only if M/N is
a simple R-hypermodule.

Proof. It is straightforward. �

Let M be an R-hypermodule. An element r ∈ R is called a zero-
divisor on M , if there exists 0 6= m ∈M such that rm = 0.

Lemma 3.3. Let M be a simple hypermodule over hyperring R. Then
every zero divisor on M is an annihilator of M .

Proof. Let r be a zero-divisor on M . Then there exists 0 6= a ∈M such
that ra = 0. Since M is a simple R-hypermodule, we get Ra = M .
Hence, rM = r(Ra) = (Rr)a = R(ra) = 0. Thus, r is an annihilator
of M . �

Proposition 3.4. Let M be an R-hypermodule. Then every maximal
subhypermodule is a prime subhypermodule.

Proof. Let N be a maximal subhypermodule of M . Let rm ∈ N where
r ∈ R and m ∈M \N . Since 0 6= (m+N) ∈M/N and r(m+N) = 0,
we get r is a zero-divisor on hypermodule M/N ; hence by Lemma 3.2
and Lemma 3.3, r ∈ (N :R M), as required. �
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Proposition 3.5. Let R be a Krasner hyperring and M be a free R-
hypermodule. Then the following hold:

(a) If I is a primary hyperideal of R, then IM is a primary sub-
hypermodule of M .

(b) If I is a prime hyperideal of R, then IM is a prime subhyper-
module of M .

Proof. (a) We have IM 6= M since I 6= R and M is free hypermodule.
Let {mi}i∈I be a basis of M and let rm ∈ IM with m 6∈ IM where
r ∈ R and m ∈ M . Hence m ∈

∑n
i=1 rimi with ri ∈ R. Since m 6∈

IM , there exists, 1 ≤ j ≤ n, such that rj 6∈ I. There are elements
b1, b2, · · · , bn ∈ I such that

∑n
i=1(rri)mi =

∑n
i=1 bimi, and so 0 ∈∑n

i=1(rri − bi)mi, so rri = bi for every i = 1, · · · , n. Since rrj ∈ I and
rj 6∈ I, then rm ∈ I for some m ∈ N; thus rmM ⊆ IM , as required.
(b) The proof is similar to that of (a). �

Definition 3.6. A subhypermodule N of M is said to be pure subhy-
permodule if aN = N ∩ aM for every a ∈ R.

Proposition 3.7. Let R be a Krasner hyperring and M be an R-
hypermodule, and N be a non-zero pure subhypermodule of M . Then
M is a P -secondary hypermodule if and only if both N and M/N are
P -secondary R-hypermodules.

Proof. Assume that M is P -secondary and let a ∈ R. If a ∈ P , then
anN ⊆ anM = 0 and an(M/N) = 0 for some n ∈ N. If a 6∈ P , then
aN = N ∩ aM = N and a(M/N) = M/N , hence N and M/N are P -
secondary R-hypermodules. Conversely, assume that N and M/N are
P secondary R-hypermodules and let b ∈ R. If b ∈ P , then btM ⊆ N
and 0 = btN = N ∩ bmM = btM for some t ∈ N, so b is nilpotent on
M . If b 6∈ P , then N = bN = N ∩ bM and b(M/N) = M/N , hence
bM = M , as needed. �

Theorem 3.8. Let M be a secondary hypermodule and N be a P -prime
subhypermodule of M . Then N is a P -secondary hypermodule.

Proof. Assume that M is a Q-secondary hypermodule and r ∈ R. If
r ∈ Q, then rsN ⊆ rsM = 0 for some s ∈ N, so r is a nilpotent on
N . Suppose that r 6∈ Q; we show that rN = N . So assume that
a ∈ N . Then there exists b ∈ M such that a = rb. As N is a prime
subhypermodule and rb ∈ N , then b ∈ N . It follows that rN = N ,
so N is a Q-secondary R-hypermodule. Now we need to show that
P = Q. Since the inclusion P ⊆ Q is trivial, we will prove the reverse
inclusion. Suppose c ∈ Q. Then cmM = 0 for some m ∈ N since M is
a Q-secondary hypermodule. As M 6= N , there is an element x ∈ M
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such that x 6∈ N . Therefore, cmx = 0 ∈ N , so N prime gives c ∈ P ;
hence Q ⊆ P , as required. �

Corollary 3.9. Let R be a Krasner hyperring, M an R-hypermodule
and N a P -secondary subhypermodule of M . Then the following hold:

(a) If K is a primary subhypermodule of M , then N ∩ K is P -
secondary.

(b) If K is a prime subhypermodule of M , then N ∩ K is P -
secondary.

Proof. (a) Assume that a ∈ R and let a ∈ P . Then am(N ∩ K) ⊆
amN = 0 for some m, so a is nilpotent on N ∩K. Suppose that a 6∈ P ;
we show that a divides N ∩ K. It suffices to show that N ∩ K ⊆
a(N ∩K). If b ∈ N ∩K, then b = am for some m ∈ N . Then am ∈ K.
It follows that m ∈ K, otherwise, if m 6∈ K and as ∈ (K :R M) for
some s, then m ∈ N = asN ⊆ asM ⊆ K which is a contradiction, so
m ∈ K; hence b ∈ a(N ∩K) and the proof is complete.
(b) The proof is similar to that (a). �

Definition 3.10. A hypermodule M is said to be secondary repre-
sentable, if it can be written as a sum M = M1 +M2 + · · ·+Mk with
each Mi secondary, and if such representation exists then the attached
primes of M are Att(M) = {(0 :R M1), · · · , (0 :R Mk)}.
Theorem 3.11. (a) Every primary subhypermodule of a repre-

sentable R-hypermodule is representable.
(b) Every prime subhypermodule of a representable R-hypermodule

is representable.

Proof. (a) Assume that M =
∑k

i=1 Si is a minimal secondary represen-
tation of M with Att(M) = {P1, · · · , Pk} and let N be a P -primary
subhypermodule of M . There exists a subhypermodule Si, say S1, such
that S1 * N since N 6= M . First, we show that P = P1. Let a ∈ P1.
So there exist n ∈ N and y ∈ S1 − N such that any = 0. Hence
a ∈ P since N is P -primary. Therefore P1 ⊆ P . For the other contain-
ment, suppose that there exists an element c ∈ P with c 6∈ P1. Then
S1 = csS1 ⊆ csM ⊆ N for some s, which is a contradiction. Thus
P = P1. Likewise, if Sj * N for j 6= 1, then P = P1 = Pj which is a
contradiction. We will show that Si ⊆ N for i = 2, · · · , k. As P 6= Pi,
we divide the proof into two cases:

Case 1: P * Pi.
There exists an element p ∈ P with p 6∈ P . Let b ∈ Si. Then Si =
ptSi ⊆ ptM ⊆ N for some t.

Case 2: Pi * P .
There exists an element p ∈ P with p 6∈ P . Then there exists an integer
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n such that anb = 0 ∈ N , so b ∈ N since N is primary; hence b ∈ N .
Thus Si ⊆ N . It follows that N = N ∩M = N ∩ S1 +

∑k
i=1 Si. Now

the assertion follows from Corollary 3.9.
(b) The proof is similar to that (a). �

Corollary 3.12. Let R be a hyperring, M a representable R-hypermodule
and N a primary (resp. prime) R-subhypermodule of M . Then Att(N) ⊆
Att(M).

4. ψ-secondary subhypermodules

In this section, we define and study ψ-secondary subhypermodules
of a hypermodule over a Krasner hyperring.

Definition 4.1. Let M be an R-hypermodule. We say that a non-
zero subhypermodule N of an R-hypermodule M is a secondary (weak
secondary) subhypermodule, if r ∈ R, K a subhypermodule of M ,
rN ⊆ K (rN ⊆ K and rM * K), then N ⊆ K or rnN = 0 for some
n ∈ N.

Clearly, every secondary subhypermodule of an R-hypermodule M
is a weak secondary subhypermodule of M . But the converse is not
true in general, as we see in the following example.

Example 4.2. Let Z be the ring of integers and G = {−1, 1} is the
multiplicative subgroup Z. Then by using Example 2.9, R = Z

G
is a

hyperring. By using Lemma 2.10, M = Z
G

is an R = Z
G

hypermodule.
Then R-hypermodule M is weak secondary which is not secondary.

Definition 4.3. Let M be an R-hypermodule, Sh(M) be the set of
all subhypermodules of M , and let ψ : Sh(M) → Sh(M) ∪ {∅} be a
function. We say that a non-zero subhypermodule N of M is a ψ-
secondary subhypermodule of M if r ∈ R, K a subhypermodule of M ,
rN ⊆ K, and rψ(N) * K, then N ⊆ K or rnN = 0 for some n ∈ N.

In Definition 4.3, since rψ(N) * K implies that r(ψ(N) +N) * K,
there is no loss of generality in assuming that N ⊆ ψ(N) in the rest
of this paper. Let M be an R-hypermodule. We use the following
functions ψ : Sh(M)→ Sh(M) ∪ {∅}.

ψM(N) = M, ∀N ∈ Sh(M),

ψi(N) = (N :M AnniR(N)), ∀N ∈ Sh(M), ∀i ∈ N,

ψσ(N) =
∞∑
i=1

ψi(N), ∀N ∈ Sh(M).
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Then it is clear that for any subhypermodule and every positive
integer n, we have the following implications:

secondary ⇒ ψn−1 − secondary ⇒ ψn − secondary ⇒ ψσ − secondary

For functions ψ, θ : Sh(M) → Sh(M) ∪ {∅}, we write ψ ≤ θ if
ψ(N) ⊆ θ(N) for each N ∈ Sh(M). So whenever ψ ≤ θ, any ψ-
secondary subhypermodule is θ-secondary.

Theorem 4.4. Let M be an R-hypermodule and N be a subhypermod-
ule of R. Then the following statements are equivalent:

(i) N is a secondary subhypermodule of M .
(ii) N 6= 0 and rN ⊆ K, where r ∈ R and K is a subhypermodule

of M , implies either rnN = 0 for some n ∈ N or N ⊆ K.

Proof. (i)⇒ (ii) is obvious.
(ii) ⇒ (i) Let r ∈ R and rnN 6= 0 for any n ∈ N. Since rN ⊆ rN , so
N ⊆ rN by assumption. Therefore rN = N , as needed. �

Theorem 4.5. Let M be an R-hypermodule and N be a subhyper-
module of M . Let ψ : Sh(M) → Sh(M) ∪ {∅} be a function and
N be a ψ-secondary subhypermodule of R-hypermodule M such that
AnnR(N)ψ(N) * N . Then N is a secondary subhypermodule of M .

Proof. Let r ∈ R and K be a subhypermodule of M such that rN ⊆
K. If rψ(N) * K, then we are done because N is a ψ-secondary
subhypermodule of R-hypermodule M . Thus suppose that rψ(N) ⊆
K. If rψ(N) * N , then rψ(N) * N ∩ K. Since rN ⊆ N ∩ K, then
N ⊆ N ∩ K ⊆ K or rnN = 0 for some n ∈ N, as required. So let
rψ(N) ⊆ N . If AnnR(N)ψ(N) * K, then (r + AnnR(N))ψ(N) * K.
Thus t ∈ r + s such that tψ(N) * K for some s ∈ AnnR(N). As
tN ⊆ K implies that N ⊆ K or tnN = 0 for some n ∈ N. We have
r ∈ t−s, so rnN ⊆ (t−s)nN = 0. Hence let AnnR(N)ψ(N) ⊆ K. Since
AnnR(N)ψ(N) * N , there exists s ∈ AnnR(N) such that sψ(N) * N .
Thus sψ(N) * N ∩ K. Hence we have (r + s)ψ(N) * N ∩ K. So
t ∈ r + s such that tψ(N) * N ∩ K. Therefore, (r + s)N ⊆ N ∩ K
implies that tN ⊆ N ∩ K, hence N ⊆ N ∩ K ⊆ K or tnN = 0 for
some n ∈ N since N is a ψ-secondary subhypermodule of M . Hence
rnN ⊆ (t− s)nN = 0, as needed. �

Corollary 4.6. Let M be an R-hypermodule, N a subhypermodule of
M . Let ψ : Sh(M) → Sh(M) ∪ {∅} be a function and N be a ψ-
secondary subhypermodule of M such that (N :M Ann2

R(N)ψ(N) ⊆
ψ(N). Then N is a ψσ-secondary subhypermodule of M.
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Proof. If N is a secondary subhypermodule of M , then the result is
clear. So assume that N is not a secondary subhypermodule of M .
Then by Theorem 4.5, we have AnnR(N)ψ(N) ⊆ N . Therefore, by
assumption,

(N :M Ann2
R(N)) ⊆ ψ(N) ⊆ (N :M AnnR(N)).

We conclude that ψ(N) = (N :M Ann2
R(N)) = (N :M AnnR(N)),

because (N :M AnnR(N)) ⊆ (N :M Ann2
R(N)). So we get

(N :M Ann3
R(N)) = (((N :M Ann2

R(N)) :M AnnR(ψ(N))) =

((N :M AnnR(N)) :M AnnR(N)) = (N :M Ann2
R(N)) = ψ(N).

By continuing, we get that ψ(N) = (N :M AnniR(N)) for all i ≥ 1.
Hence ψ(N) = ψσ(N), as needed. �

Theorem 4.7. Let M be an R-hypermodule and ψ : Sh(M)→ Sh(M)∪
{∅} be a function. Let N be a subhypermodule of M such that for all hy-
perideals I and J of R, (N :M I) ⊆ (N :M J) implies that J ⊆ I. If N
is not a secondary subhypermodule of M , then N is not a ψ1-secondary
subhypermodule of M.

Proof. Since N is not a secondary subhypermodule of M , there exists
r ∈ R and a subhypermodule K of M such that rnN 6= 0 for each
n ∈ N and N * K, but rN ⊆ K by Theorem 4.4. We have N * N ∩K
and rN ⊆ N ∩ K. If r(N :M AnnR(N)) * N ∩ K, then N is not a
ψ1-secondary subhypermodule of M . Hence let r(N :M AnnR(N)) ⊆
N ∩ K. Thus r(N :M AnnR(N)) ⊆ N ∩ K ⊆ N . Therefore, (N :M
AnnR(N)) ⊆ (N :M r) and so by assumption, r ∈ AnnR(N), which is
a contradiction. �

Corollary 4.8. Let M be an R-hypermodule and ψ : Sh(M)→ Sh(M)∪
{∅} be a function. Let N be a subhypermodule of M such that for all
hyperideals I and J of R, (N :M I) ⊆ (N :M J) implies that J ⊆ I.
Then N is a secondary subhypermodule of M if and only if N is a
ψ1-secondary subhypermodule of M.

An R-hypermodule M is said to be a comultiplication hypermodule
if for every subhypermodule N of M , there exists a hyperideal I of R
such that N = (0 :M I). It is easy to see that M is a comultiplication
module if and only if N = (0 :M AnnR(N)) for each subhypermodule
N of M.

Definition 4.9. Let R be a hyperring and ϕ : Sh(R) → Sh(R) ∪ {∅}
be a function. A proper hyperideal P of R is called ϕ-primary, if for
a, b ∈ R, ab ∈ P − ϕ(P ), then a ∈ P or b ∈ rad(P ).
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Definition 4.10. Let M be an R-hypermodule and ϕ : Sh(M) →
Sh(M) ∪ {∅} be a function. A proper subhypermodule N of M is said
to be ϕ-primary, if for each r ∈ R and m ∈ M , rm ∈ N \ ϕ(N), then
m ∈ N or r ∈ rad((N :R M)).

Theorem 4.11. Let M be an R-hypermodule, ϕ : Sh(R) → Sh(R) ∪
{∅}, and ψ : Sh(M) → Sh(M) ∪ {∅} be functions. Then the following
hold:

(i) If S is a ψ-secondary subhypermodule of M with AnnR(ψ(S)) ⊆
ϕ(AnnR(S)), then AnnR(S) is a ϕ-primary hyperideal of R.

(ii) If M is a comultiplication R-hypermodule, S is a subhypermod-
ule of M such that ψ(S) = (0 :M ϕ(AnnR(S))), and AnnR(S)
is a ϕ-primary hyperideal of R, then S is a ψ-secondary subhy-
permodule of M .

Proof. (i) Let ab ∈ AnnR(S) \ ϕ(AnnR(S)) for some a, b ∈ R. Then
abψ(S) 6= 0 by assumption. If aψ(S) ⊆ (0 :M b), then abψ(S) = 0,
a contradiction. Thus aψ(S) * (0 :M b). Therefore, S ⊆ (0 :M b) or
anS = 0 for some n ∈ N because S is a ψ-secondary subhypermodule
of M . Hence a ∈ AnnR(S) or b ∈ AnnR(S), as required.

(ii) Let a ∈ R and K be a subhypermodule of M such that aS ⊆ K
and aψ(S) * K. As aS ⊆ K, we have S ⊆ (K :M a). It follows that

S ⊆ ((0 :M AnnR(K)) :M a) = (0 :M aAnnR(K)).

This implies that aAnnR(K) ⊆ AnnR((0 :M aAnnR(K))) ⊆ AnnR(S).
Hence aAnnR(K) ⊆ AnnR(S). If aAnnR(K) ⊆ ϕ(AnnR(S)), then

ψ(S) = ((0 :M ϕ(AnnR(S)) = ((0 :M AnnR(K)) :M a).

As M is a comultiplication R-hypermodule, we have aψ(S) ⊆ K, a
contradiction. Thus aAnnR(K) * ϕ(AnnR(S)) and so as AnnR(S) is
a ϕ-primary hyperideal of R, we conclude that anS = 0 for some n ∈ N
or

S = (0 :M AnnR(S)) ⊆ (0 :M AnnR(K)) = K,

as needed. �

Example 4.12. Let Z be the ring of integers and G = {−1, 1} is
the multiplicative subgroup Z. Then by using Example 2.9, R = Z

G
is a hyperring. The hyperideals of R are of the form 〈nG〉, where
n ∈ Z. Also, by using Lemma 2.10, M = Z

G
is an R = Z

G
hypermodule.

Consider the subhypermodule S = 〈2G〉. Clearly, M is not a comul-
tiplication R-hypermodule. Suppose that ϕ : Sh(R) → Sh(R) ∪ {∅}
and ψ : Sh(M) → Sh(M) ∪ {∅} be functions such that ϕ(I) = I for
each hyperideal I of R and ψ(S) = M . Then AnnR(S) = 0 is a ϕ-
primary hyperideal of R and ψ(S) = M = (0 :M ϕ(AnnR(S))). But
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as (3G)S ⊆ 〈6G〉, S * 〈6G〉 and (3G)nS 6= 0 for each n ∈ N, we have
that S is not a ψ-secondary subhypermodule of M .

Proposition 4.13. Let M be an R-hypermodule, ψ : Sh(M)→ Sh(M)∪
{∅} be a function and N be a ψ-secondary subhypermodule of M . Then
we have the following statements.

(i) If K is a subhypermodule of M with K ⊂ N and ψK : S(M/K)→
S(M/K) ∪ {∅} be a function such that ψK(N/K) = ψ(N)/K,
then N/K is a ψK-secondary subhypermodule of M/K.

(ii) Let N be a finitely generated subhypermodule of M , S be a mul-
tiplicatively closed subset of R with AnnR(N) ∩ S = ∅, and
S−1ψ : Sh(S−1M) → Sh(S−1M) ∪ {∅} be a function such that
(S−1ψ)(S−1N) = S−1ψ(N). Then S−1N is a S−1ψ-secondary
subhypermodule of S−1M .

Proof. (i) Since K ⊂ N , then N/K 6= 0. Let r ∈ R, L/K be a subhy-
permodule of M/K, r(N/K) ⊆ L/K and rψ(N/K) * L/K. We get
rN ⊆ L and rψ(N) * L. Therefore, rnN = 0 for some n ∈ N or N ⊆ L
since N is a ψ-secondary subhypermodule of M . Hence rn(N/K) = 0
for some n ∈ N or N/K ⊆ L/K, as needed.
(ii) Since N is finitely generated and AnnR(N) ∩ S = ∅, we get
S−1(N) 6= 0. Let r

s
∈ h(S−1R), S−1(K) be a subhypermodule of S−1M

and r
s
(S−1ψ)(S−1N) * S−1K. Thus we get rN ⊆ K and rψ(N) * K

((S−1ψ)(S−1N) = S−1ψ(N)). Hence N ⊆ K or rnN = 0 for some
n ∈ N since N is a ψ-secondary subhypermodule of M . Therefore,
S−1N ⊆ S−1K or ( r

s
)nψ(S−1N) = 0 for some n ∈ N, and so S−1N is a

S−1ψ-secondary subhypermodule of S−1M . �

Definition 4.14. Let M and M ′ be R-hypermodules. A mapping f
from M into M ′ is said to be a homomorphism, if

(1) for any m,n ∈M , f(m+ n) = f(m) + f(n),
(2) for any r ∈ R and m ∈M , f(rm) = rf(m).

Proposition 4.15. Let M and M ′ be R-hypermodules and f : M →
M ′ be a monomorphism. Let ψ : Sh(M) → Sh(M) ∪ {∅} and ψ′ :
S(M ′)→ S(M ′)∪{∅} be functions such that ψ(f−1(N ′)) = f−1(ψ′(N ′)),
for each subhypermodule N ′ of M ′. If N ′ is a ψ-secondary subhyper-
module of M ′ such that N ′ ⊆ Im(f), then f−1(N ′) is a ψ-secondary
subhypermodule of M .

Proof. Since N ′ 6= 0 and N ′ ⊆ Im(f), we have f−1(N ′) 6= 0. Let
a ∈ R and K be a subhypermodule of M such that af−1(N ′) ⊆ K and
aψ(f−1(N ′)) * K. Then by assumptions, aN ′ ⊆ f(K) and aψ′(N ′) *
f(K). Thus anN ′ = 0 for some n ∈ N or N ′ ⊆ f(K) since N ′ is a
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ψ′-secondary subhypermodule of M ′. Therefore, anf−1(N ′) = 0 for
some n ∈ N or f−1(N ′) ⊆ K, as required. �

A proper subhypermodule N of an R-hypermodule M is said to be
completely irreducible if N =

⋂
i∈I Ni, where {Ni}i∈I is a family of

subhypermodules of M , implies that N = Ni for some i ∈ I. It is easy
to see that every subhypermodule of M is an intersection of completely
irreducible subhypermodules of M .

Remark 4.16. Let N , K be subhypermodules of an R-hypermodule
M . To prove N ⊆ K, it is enough to show that if L is a completely
irreducible subhypermodule of M such that K ⊆ L, then N ⊆ L.

Proposition 4.17. Let M be an R-hypermodule and ψ : Sh(M) →
Sh(M)∪{∅} be a function and let N be a ψ1-secondary subhypermodule
of M . Then we have the following statements:

(i) If for a ∈ R, aN 6= N , then (N :M rad(AnnR(N))) ⊆ (N :M a).
(ii) If J is a hyperideal of R such that rad(AnnR(N)) ⊆ J and

JN 6= N , then (N :M rad(AnnR(N))) = (N :M J).

Proof. (i) Let a ∈ R such that aN 6= N . If anN = 0 for some n ∈ N,
then clearly (N :M rad(AnnR(N))) ⊆ (N :M a). Hence let anN 6= 0 for
each n ∈ N. Now let H be a completely irreducible subhypermodule
of M such that N ⊆ H. Then N * aN ∩ H and aN ⊆ aN ∩ H.
Thus as N is a ψ1-secondary subhypermodule of M , we have a(N :M
AnnR(N)) ⊆ aN ∩H ⊆ H. Hence a(N :M AnnR(N)) ⊆ N by Remark
4.16. Therefore, a(N :M rad(AnnR(N))) ⊆ a(N :M AnnR(N)) implies
that a(N :M rad(AnnR(N))) ⊆ N . Hence (N :M rad(AnnR(N))) ⊆
(N :M a).
(ii) As JN 6= N , we have aN 6= N for each a ∈ J . Thus by part (i),
for each a ∈ J , (N :M rad(AnnR(N))) ⊆ (N :M a). This implies that

(N :M J) =
⋂
a∈J

(N :M a) ⊇ (N :M rad(AnnR(N))).

The inverse inclusion follows from the fact that rad(AnnR(N)) ⊆ J .
�

Theorem 4.18. Let M be an R-hypermodule, ψ : Sh(M)→ Sh(M) ∪
{∅} be a function. If (0 :M a) is a ψ1-secondary of subhypermodule of
M such that (0 :M a) ⊆ a(0 :M aAnnR(0 :M a)), then (0 :M a) is a
secondary subhypermodule of M .

Proof. Let N := (0 :M a) be a ψ1-secondary subhypermodule of M .
Then (0 :M a) 6= 0. Let b ∈ R and K be a subhypermodule of M such
that b(0 :M a) ⊆ K. If b(N :M AnnR(N)) * K, then bn(0 :M a) = 0
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for some n ∈ N or (0 :M a) ⊆ K since (0 :M a) is a ψ1-secondary
subhypermodule of M . So let b(N :M AnnR(N)) ⊆ K. Now we
have (a + b)(0 :M a) ⊆ K. If (a + b)(N :M AnnR(N)) * K, then
there exists t ∈ a + b such that t(N :M AnnR(N)) * K and since
t(0 :M a) ⊆ K, then as (0 :M a) is a ψ1-secondary subhypermodule of
M , then tn(0 :M a) = 0 for some n ∈ N or (0 :M a) ⊆ K and so a ∈ t−b,
hence an(0 :M a) ⊆ (t − b)n(0 :M a) = 0, we are done. Hence assume
that (a+b)(N :M AnnR(N)) ⊆ K. Then b(N :M AnnR(N)) ⊆ K gives
that a(N :M AnnR(N)) ⊆ K. Therefore by assumption, (0 :M a) ⊆ K
and the result follows from Theorem 4.4. �

Theorem 4.19. Let M be an R-hypermodule, ψ : Sh(M)→ Sh(M) ∪
{∅} be a functions, and N be a non-zero subhypermodule of M . Then
the following are equivalent:

(i) N is a ψ-secondary subhypermodule of M ;
(ii) For a subhypermodule L of M with N * L, we have

rad((L :R N)) = rad(AnnR(N)) ∪ rad((L :R ψ(N)));

(iii) For a subhypermodule L of M with N * L, we have rad((L :R
N)) = rad(AnnR(N)) or rad((L :R N)) = rad((L :R ψ(N)));

(iv) For any hyperideal I of R and any subhypermodule K of M , if
IN ⊆ K and I * rad((K :R ψ(N))), then IN = 0 or N ⊆ K;

(v) For each a ∈ R with aψ(N) * aN , we have aN = N or anN =
0 for some n ∈ N.

Proof. (i) ⇒ (ii) Let for a subhypermodule L of M with N * L, we
have a ∈ rad((L :R N))\rad((L :R ψ(N))). Then anψ(N) ⊆ L for some
n ∈ N and anψ(N) * L. Since N is a ψ-secondary subhypermodule of
M , we have a ∈ rad(AnnR(N)). As we may assume that N ⊆ ψ(N),
the other inclusion always holds.

(ii)⇒ (iii) This follows from the fact that if a hyperideal is a union
of two hyperideals, it is equal to one of them.

(iii)⇒ (iv) Let I be a hyperideal of R and K be a subhypermodule
of M such that IN ⊆ K and I * rad((K :R ψ(N))). Suppose I *
rad(AnnR(N)) and N * K. We show that I ⊆ rad((K :R ψ(N))). Let
a ∈ I and first let a 6∈ rad(AnnR(N)). Then since aN ⊆ K, we have
rad((K :R N)) 6= rad(AnnR(N)). Hence by assumption rad((K :R
N)) = rad((K :R ψ(N))). So a ∈ rad((K :R ψ(N))). Now let a ∈
I ∩ rad(AnnR(N)). Let b ∈ I \ rad(AnnR(N)). Then a + b ⊆ I \
rad(AnnR(N)). Hence by the first case, we have b ∈ rad((K :R ψ(N)))
and (b+a) ∈ rad((K :R ψ(N))). This gives that a ∈ rad((K :R ψ(N))).
Thus in any case a ∈ rad((K :R ψ(N))). Thus I ⊆ rad((K :R ψ(N))),
as desired.
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(iv)⇒ (i) The proof is straightforward.
(i)⇒ (v) Let a ∈ R such that aψ(N) * aN . Then aN ⊆ aN implies

that N ⊆ aN or anN = 0 for some n ∈ N by part (i). Thus N = aN
or anN = 0 for some n ∈ N, as required.

(v) ⇒ (i) Let a ∈ R and K be a subhypermodule of M such that
aN ⊆ K and aψ(N) * K. If aψ(N) ⊆ aN , then aN ⊆ K implies
that aψ(N) ⊆ K, a contradiction. Thus by part (v), anN = 0 for some
n ∈ N or aN = N . Therefore, N ⊆ K or anN = 0 for some n ∈ N, as
needed. �

Example 4.20. Let N be a non-zero subhypermodule of M and let
ψ : Sh(M) → Sh(M) ∪ {∅} be a function. If ψ(N) = N , then N is a
ψ-secondary subhypermodule of M by Theorem 4.19 (v)⇒ (i).

Proposition 4.21. Let M be an R-hypermodule and let N and K
be weak secondary subhypermodules of M such that N ∩ K 6= 0 and
r(N ∩K) = rN ∩ rK for each r ∈ R, then N ∩K is a weak secondary
subhypermodule of M .

Proof. Let a ∈ R with aM * a(N ∩K). If aM ⊆ aN and aM ⊆ aK,
then aM ⊆ a(N ∩K), a contradiction. If aM * aN and aM * aK,
then by Theorem 4.19 (i) ⇒ (v), aN = N or anN = 0 for some
n ∈ N and aK = K or amK = 0 for some m ∈ N. If anN = 0
or amK = 0, then at(N ∩ K) = 0 for some t ∈ N and we are done.
So let aN = N and aK = K. Then a(N ∩ K) = N ∩ K. Finally,
if aM * aN , aM ⊆ aK, and aN = N , then aN ⊆ aM ⊆ aK.
Hence N ∩ K ⊆ N = aN = aN ∩ aK = a(N ∩ K). It follows that
a(N ∩K) = N ∩K, as needed. �
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