ON SOME ADDITIVE MAPPINGS ON DIVISION RINGS

A. Y. ABDELWANIS AND S. ALI

Abstract

Let D be a division ring such that $\operatorname{char}(D) \neq 2$ and $\alpha, \beta: D \rightarrow D$ be automorphisms of D. The main purpose of this paper is to characterizes additive maps f and g satisfying the identity $f(x) \alpha\left(x^{-1}\right)+\beta(x) g\left(x^{-1}\right)=0$ for all $0 \neq x \in D$. As an application, we describe the structure of an additive map f satisfying the identity $f(x) \alpha(y)+\beta(x) f(y)=l$ for all $x, y \in D$ such that $x y=a$, where $l, a \in D$ and a is nonzero. With this, many known results can be either generalized or deduced. In particular, we generalized the results proved in [2] and [3], respectively.

1. Introduction

Throughout, D will represent a division ring with a center $Z(D)$. For any $x, y \in$ D, the symbol $[x, y]$ will denote the commutator $x y-y x$ while the symbol $[x, y]_{\alpha, \beta}$ will denote the (α, β)-commutator $x \alpha(y)-\beta(y) x$, where α and β are endomorphisms of D. Recall that a derivation of a ring D is an additive map $\delta: D \rightarrow D$ if $\delta(x y)=\delta(x) y+x \delta(y)$ for all $x, y \in D$. A derivation δ is said to be inner if there exists $a \in D$ such that $\delta(x)=[a, x]$ for all $x \in D$.

Let α and β be the endomorphisms of D. An additive map $\delta: D \rightarrow D$ is called an α-derivation if $\delta(x y)=\delta(x) \alpha(y)+x \delta(y)$ for all $x, y \in D$. In literature, α-derivations are also called skew derivations(see [6] for details). Given $a \in D$, the map $\delta: D \rightarrow D$ such that $\delta(x)=a \alpha(x)-x a$ for all $x \in D$. Obviously defines an α-derivation, called the inner α-derivation associated with $a \in D$. Analogously, we define β-derivations and the inner β-derivations. Note that for I_{D} the identity map on D, α-derivations (respectively, β-derivations) are merely ordinary derivations. Moreover, if $\alpha \neq I_{D}$, then $\delta=I_{D}-\alpha$ is an α-derivation. An additive map $\delta: D \rightarrow D$ is called an (α, β)-derivation if $\delta(x y)=\delta(x) \alpha(y)+\beta(x) \delta(y)$ for all $x, y \in D$. An additive map $\delta: D \rightarrow D$ is called a Jordan (α, β)-derivation if $\delta\left(x^{2}\right)=\delta(x) \alpha(x)+\beta(x) \delta(x)$ for all $x \in D$ (see [5] for details). For a fixed element $a \in D$, the map $\delta_{a}: D \rightarrow D$ is given by $\delta_{a}(x)=[a, x]_{\alpha, \beta}$ for all $x \in D$, is an $(\alpha, \beta)-$

[^0]Keywords: Division ring, derivation, (α, β)-derivation, functional identity
Received: 11 March 2021, Accepted: 13 September 2021.
*Corresponding author .
derivation which is said to be an inner (α, β)-derivation. An $\left(I_{D}, I_{D}\right)$-derivation is just a derivation. It is clear that every derivation is an (α, β)-derivation with $\alpha=\beta=I_{D}$. However, the converse need not be true in general. For example, if D has a nontrivial central idempotent e and take $\delta(x)=e x$ for all $x \in D$. Next, consider $\alpha(x)=(1-e) x$ for all $x \in D$ and $\beta=I_{D}$. Then, it is straightforward to check that δ is an (α, β)-derivation, but not a derivation. Clearly, this notion includes those of α-derivations (β-derivations) when $\beta=I_{D}$ (respectively, $\alpha=I_{D}$) and of derivation which is the case when $\alpha=\beta=I_{D}$.

In [2], Catalano studied special types of functional identities (see [1] for details) and characterized additive maps f and g satisfying the identity of the form

$$
\begin{equation*}
f(x) x^{-1}+x g\left(x^{-1}\right)=0 \text { for all } 0 \neq x \in D \tag{1.1}
\end{equation*}
$$

on a division and a simple Artinian ring. It follows from Catalano result [2, Theorems 1,4$]$ that the additive maps f and g that satisfy identity (1.1) on a division ring or a simple Artinian ring D must be of the form $f(x)=x q+\delta(x), g(x)=-q x+\delta(x)$ where q is a fixed element of D and $\delta: D \rightarrow D$ is a derivation. In fact, if $g=f$ it follows from [2, Corollary 3] that f is a derivation. Further, he studied the identity of the form

$$
\begin{equation*}
f(x) y+x f(y)=l \text { for all } x, y \in D \tag{1.2}
\end{equation*}
$$

where $l, a \in D$ are fixed elements such that $x y=a \neq 0$. It follows from Catalano result [3, Theorem 1] that the additive map f that satisfy identity (1.2) on a division ring D must be of the form $f(x)=x q+\delta(x)$. where q is a fixed element of D and $\delta: D \rightarrow D$ is a derivation. In case f is derivable at a i.e., f satisfies the identity (1.2) with $l=f(a)$ and $a=x y$, it follows from [[3], Corollary 2] that f is a derivation. This study showed that the above functional identities have close connection with derivations and Jordan derivations (viz.; [5]).

The present paper is motivated by the above mentioned identities. Our goal is to study some suitable generalizations of these results. More precisely, we study following identity

$$
\begin{equation*}
f(x) \alpha\left(x^{-1}\right)+\beta(x) g\left(x^{-1}\right)=0 \text { for all } 0 \neq x \in D \tag{1.3}
\end{equation*}
$$

where $\alpha, \beta: D \rightarrow D$ are automorphisms of D. We also discuss the case when $g=f$ and conclude that f is an (α, β)-derivation.

In the second part, we consider the functional identity of the form

$$
\begin{equation*}
f(x) \alpha(y)+\beta(x) f(y)=l, \tag{1.4}
\end{equation*}
$$

on a division ring D for all $x, y \in D$ where $l, a \in D$ are fixed elements such that $0 \neq a=x y$, and $\alpha, \beta: D \rightarrow D$ are automorphisms. Further, we consider the case when additive map f satisfies the identity (1.4) with $l=f(a)$ and $x y=a, f$ is an (α, β)-derivable, and we find that f is an (α, β)-derivation. In fact, our results unify, extend and complement those theorems obtained in [2] and [3], respectively.

The following facts are important and pertinent in our discussions. First one is a well known identity due to Hua's [4] whereas the last one is the commutator identity.
Fact 1.1. Let t, z be any two elements of a division ring D with $t z \neq 0,1$. Then,

$$
t-\left(t^{-1}+\left(z^{-1}-t\right)^{-1}\right)^{-1}=t z t
$$

Fact 1.2. Replacing z by $-z^{-1}$ gives another equivalent form of above identity

$$
\left(t+t z^{-1} t\right)^{-1}+(t+z)^{-1}=t^{-1}
$$

Fact 1.3. Let r, s, t be any three elements of a division ring D and automorphisms α, β of D. Then,

$$
\begin{gathered}
{[r, s t]_{\alpha, \beta}=[r, s]_{\alpha, \beta} \alpha(t)+\beta(s)[r, t]_{\alpha, \beta} \text { and }} \\
{[r s, t]_{\alpha, \beta}=r[s, t]_{\alpha, \beta}+[r, \beta(t)] s=r[s, \alpha(t)]+[r, t]_{\alpha, \beta} s}
\end{gathered}
$$

2. Main Results

We begin the discussions with our first main result of the present paper.
Theorem 2.1. Let D be a division ring with $\operatorname{char}(D) \neq 2, \alpha, \beta: D \rightarrow D$ be automorphisms of D and let $f, g: D \rightarrow D$ be additive maps satisfying the identity

$$
\begin{equation*}
f(x) \alpha\left(x^{-1}\right)+\beta(x) g\left(x^{-1}\right)=0 \tag{2.1}
\end{equation*}
$$

for all $x \in D^{\times}$, where D^{\times}is the set of invertible elements of D. Then $f(x)=$ $\beta(x) q+\delta(x)$ and $g(x)=-q \alpha(x)+\delta(x)$ for all $x \in D^{\times}$, where $\delta: D \rightarrow D$ is an (α, β)-derivation and $q \in D$ is a fixed element.
Proof. We are given that $f, g: D \rightarrow D$ be additive maps and $\alpha, \beta: D \rightarrow D$ are automorphisms such that

$$
\begin{equation*}
f(x) \alpha\left(x^{-1}\right)+\beta(x) g\left(x^{-1}\right)=0 \tag{2.2}
\end{equation*}
$$

for every $x \in D^{\times}$. Since α and β are automorphisms of D, the above expression yield the following

$$
\begin{gather*}
f(x)=-\beta(x) g\left(x^{-1}\right)\left(\alpha\left(x^{-1}\right)\right)^{-1}=-\beta(x) g\left(x^{-1}\right) \alpha(x), \tag{2.3}\\
g\left(x^{-1}\right)=-(\beta(x))^{-1} f(x) \alpha\left(x^{-1}\right)=-\beta\left(x^{-1}\right) f(x) \alpha\left(x^{-1}\right) \tag{2.4}\\
f(1)=-g(1) \tag{2.5}
\end{gather*}
$$

In view of Fact 1.1, substitute $c=t-t z t$ for x and $c^{-1}=t^{-1}+\left(z^{-1}-t\right)^{-1}$ for some elements $t, z \in D^{\times}$, where $t z \neq 1$ in Eq. (2.3), to get

$$
f(c)=-\beta(c) g\left(t^{-1}+\left(z^{-1}-t\right)^{-1}\right) \alpha(c)
$$

Since g is additive, the above expression gives

$$
\begin{equation*}
f(c)=-\beta(c) g\left(t^{-1}\right) \alpha(c)-\beta(c) g\left(\left(z^{-1}-t\right)^{-1}\right) \alpha(c) \tag{2.6}
\end{equation*}
$$

Expelling g from the equation by applying (2.4), we obtain
$f(c)=\beta(c) \beta\left(t^{-1}\right) f(t) \alpha\left(t^{-1}\right) \alpha(c)+\beta(c) \beta\left(\left(z^{-1}-t\right)^{-1}\right) f\left(z^{-1}-t\right) \alpha\left(\left(z^{-1}-t\right)^{-1}\right) \alpha(c)$.
In view of Fact (1.1), we have $\left(z^{-1}-t\right)^{-1}=c^{-1}-t^{-1}$ (where $\left.c=t-t z t\right)$ and hence we conclude that
$f(t-t z t)=f(t)-f(t) \alpha(z t)-\beta(t z) f(t)+\beta(t z) f(t) \alpha(z t)+\beta(t z) f\left(z^{-1}-t\right) \alpha(z t)$.
This implies that

$$
\begin{equation*}
f(t z t)=f(t) \alpha(z t)+\beta(t z) f(t)-\beta(t z) f\left(z^{-1}\right) \alpha(z t) \tag{2.9}
\end{equation*}
$$

Application of (2.3) yields

$$
\begin{equation*}
f(t z t)=f(t) \alpha(z t)+\beta(t z) f(t)+\beta(t) g(z) \alpha(t) \tag{2.10}
\end{equation*}
$$

Similarly, we can obtain

$$
\begin{equation*}
g(t z t)=g(t) \alpha(z t)+\beta(t z) g(t)+\beta(t) f(z) \alpha(t) \tag{2.11}
\end{equation*}
$$

Now put $t=1, z=x$ in Eqs. $(2.10),(2.11)$ and use the fact that $\alpha(1)=1, \beta(1)=1$ together with (2.5), we get

$$
\begin{align*}
& f(x)=f(1) \alpha(x)+\beta(x) f(1)+g(x) \tag{2.12}\\
& g(x)=g(1) \alpha(x)+\beta(x) g(1)+f(x) \tag{2.13}
\end{align*}
$$

Again taking $t=x, z=1$ in Eqs.(2.10),(2.11) and using the fact that $\alpha(1)=$ $1, \beta(1)=1$ and $f(1)=-g(1)$ we obtain

$$
\begin{equation*}
f\left(x^{2}\right)=f(x) \alpha(x)+\beta(x) f(x)-\beta(x) f(1) \alpha(x), \tag{2.14}
\end{equation*}
$$

Also, we can obtain

$$
\begin{equation*}
g\left(x^{2}\right)=g(x) \alpha(x)+\beta(x) g(x)-\beta(x) g(1) \alpha(x) \tag{2.15}
\end{equation*}
$$

Adding Eqs. (2.14) and (2.15), and using the fact that f and g are additive, we arrive at

$$
\begin{equation*}
(f+g)\left(x^{2}\right)=(f+g)(x) \alpha(x)+\beta(x)(f+g)(x)-\beta(x)(f(1)+g(1)) \alpha(x) \tag{2.16}
\end{equation*}
$$

Since f and g are additive maps, so we take $h=f+g$ and we obtain

$$
h\left(x^{2}\right)=h(x) \alpha(x)+\beta(x) h(x)-\beta(x)(f(1)+g(1)) \alpha(x) .
$$

Application of (2.5) gives

$$
\begin{equation*}
h\left(x^{2}\right)=h(x) \alpha(x)+\beta(x) h(x) \text { for all } x \in D^{\times} . \tag{2.17}
\end{equation*}
$$

Thus h is a Jordan (α, β)-derivation on D. Hence, in view of [[7], Corollary 1] we conclude that h is an (α, β)-derivation on D. Adding $f(x)$ to the both sides of Eq. (2.12), we get

$$
\begin{equation*}
2 f(x)=2 \beta(x) f(1)+[f(1), x]_{\alpha, \beta}+h(x) \tag{2.18}
\end{equation*}
$$

where $[f(1), x]_{\alpha, \beta}=f(1) \alpha(x)-\beta(x) f(1)$ for all $x \in D^{\times}$. In view of Fact 1.3, we set the (α, β)-derivation $\delta: D \rightarrow D$ by $\left.2 \delta(x)=[f(1), x]_{\alpha, \beta}+h(x)\right)$ for all $x \in D^{\times}$. Then, we find that $f(x)=\beta(x) q+\delta(x)$ and $g(x)=-q \alpha(x)+\delta(x)$ for all $x \in D^{\times}$, where $q:=f(1)$. This completes the proof of theorem.

Following are the immediate consequences of above theorem.
Corollary 2.2. Let D be a division ring with $\operatorname{char}(D) \neq 2, \alpha, \beta: D \rightarrow D$ be automorphisms. Next, let $f: D \rightarrow D$ be an additive map satisfying the identity

$$
\begin{equation*}
f(x) \alpha\left(x^{-1}\right)+\beta(x) f\left(x^{-1}\right)=0 \text { for all } x \in D^{\times} \tag{2.19}
\end{equation*}
$$

Then, f is an (α, β)-derivation.
Corollary 2.3. Let D be a division ring with $\operatorname{char}(D) \neq 2$ and $\alpha: D \rightarrow D$ be an automorphism of D. Next, let $f: D \rightarrow D$ be additive map satisfying the identity

$$
\begin{equation*}
f(x) \alpha\left(x^{-1}\right)+x f\left(x^{-1}\right)=0 \text { for all } x \in D^{\times} . \tag{2.20}
\end{equation*}
$$

Then, f is an α-derivation (skew derivation) associated with the automorphism α.

Corollary 2.4. Let D be a division ring with $\operatorname{char}(D) \neq 2$ and $\beta: D \rightarrow D$ be an automorphism of D. Next, let $f: D \rightarrow D$ be additive map satisfying the identity

$$
\begin{equation*}
f(x) x^{-1}+\beta(x) f\left(x^{-1}\right)=0 \text { for all } x \in D^{\times} . \tag{2.21}
\end{equation*}
$$

Then, f is a β-derivation(skew derivation) associated with the automorphism β.
Corollary 2.5 ([2], Theorem 1). Let D be a division ring with $\operatorname{char}(D) \neq 2$. Next, let $f, g: D \rightarrow D$ be additive maps satisfying the identity

$$
f(x) x^{-1}+x g\left(x^{-1}\right)=0 \text { for all } x \in D^{\times}
$$

Then $f(x)=x q+\delta(x)$ and $g(x)=-q x+\delta(x)$, where $\delta: D \rightarrow D$ is a derivation and $q \in D$ is a fixed element.

Our next theorem deals with the matrix case.
Theorem 2.6. Let D be a division ring with $\operatorname{char}(D) \neq 2,3$. Let $R=M_{n}(D)$ be the ring of $n \times n$ matrices over D with $n \geq 2$ and $\alpha, \beta: R \rightarrow R$ be automorphisms of D. If $f, g: R \rightarrow R$ are additive maps satisfying the identity

$$
\begin{equation*}
f(x) \alpha\left(x^{-1}\right)+\beta(x) g\left(x^{-1}\right)=0 \text { for all } \in R^{\times} \tag{2.22}
\end{equation*}
$$

where R^{\times}is the set of invertible elements of R. Then $f(x)=\beta(x) q+\delta(x)$ and $g(x)=-q \alpha(x)+\delta(x)$, where $\delta: R \rightarrow R$ is an (α, β)-derivation and $q \in R$ is a fixed element.

To prove the above theorem, we need the following result.
Proposition 2.7. Let D be a unital ring which contains the elements 2,3 and their inverses and $\alpha, \beta: D \rightarrow D$ be automorphisms of D. Next, let $H=\{x \in R: x$ and $x+c$ are invertable for every $c=1,2$ or 3$\}$. If additive maps $f, g: D \rightarrow D$ satisfying the identity

$$
\begin{equation*}
f(x) \alpha\left(x^{-1}\right)+\beta(x) g\left(x^{-1}\right)=0 \text { for all } x \in D^{\times} \tag{2.23}
\end{equation*}
$$

then an additive map $h:=f+g$ must of the form

$$
\begin{equation*}
h\left(x^{2}\right)=h(x) \alpha(x)+\beta(x) h(x) \text { for all } x \in H . \tag{2.24}
\end{equation*}
$$

Proof. We follow the arguments of [2, Lemma 7]. Let x and $x+c$ be two elements as given in the statement of the proposition. We note that $x^{-1}-(x+c)^{-1}=$ $c x^{-1}(x+c)^{-1}$, which leads to

$$
\begin{equation*}
\left(x^{-1}-(x+c)^{-1}\right)^{-1}=c^{-1} x^{2}+x . \tag{2.25}
\end{equation*}
$$

Then, for any $a, b \in D$, we have $f(a-b)=f(a)-f(b)$, since f is an additive map. Presently, assuming that a and b are both invertible elements of D and utilizing Eq. (2.3), which is the equal type of the property expected in the proposition, then we can see that

$$
\begin{equation*}
\beta(a-b) g\left((a-b)^{-1}\right) \alpha(a-b)=\beta(a) g\left(a^{-1}\right) \alpha(a)-\beta(b) g\left(b^{-1}\right) \alpha(b) . \tag{2.26}
\end{equation*}
$$

Multiplying by $\beta\left((a-b)^{-1}\right)$ from left and by $\alpha\left((a-b)^{-1}\right)$ from right to the above relation and using the fact that $\alpha(1)=1=\beta(1)$, we get

$$
\begin{aligned}
g\left((a-b)^{-1}\right) & =\beta\left((a-b)^{-1}\right) \beta(a) g\left(a^{-1}\right) \alpha(a) \alpha\left((a-b)^{-1}\right) \\
& -\beta\left((a-b)^{-1}\right) \beta(b) g\left(b^{-1}\right) \alpha(b) \alpha\left((a-b)^{-1}\right) .
\end{aligned}
$$

Replace a by x^{-1} and b by $(x+c)^{-1}$ in the pervious equation and use Eq. (2.25) to get

$$
\begin{equation*}
g\left(c^{-1} x^{2}+x\right)=\beta\left(c^{-1} x+1\right) g(x) \alpha\left(c^{-1} x+1\right)-\beta\left(c^{-1} x\right) g(x+c) \alpha\left(c^{-1} x\right) . \tag{2.27}
\end{equation*}
$$

This implies that

$$
\begin{aligned}
c^{-1} g\left(x^{2}\right)+g(x) & =\beta\left(c^{-1} x\right) g(x) \alpha\left(c^{-1} x\right)+\beta\left(c^{-1} x\right) g(x)+g(x) \alpha\left(c^{-1} x\right)+g(x) \\
& -\beta\left(c^{-1} x\right) g(x) \alpha\left(c^{-1} x\right)-\beta\left(c^{-1} x\right) g(1) \alpha\left(c^{-1} x\right) .
\end{aligned}
$$

But by using $\alpha(c)=\beta(c)=c$ and simplifying the last equation gives us identity (2.15). Replacing x with x^{-1} and using Eq. (2.6) gives us identity (2.14). Now define $h=f+g$ and summing Eqs. (2.14) and (2.15), we can see that

$$
\begin{equation*}
h\left(x^{2}\right)=\beta(x) h(x)+h(x) \alpha(x)+\beta(x) h(1) \alpha(x) . \tag{2.28}
\end{equation*}
$$

Now, substituting $x=1$ in above expression, we get $h(1)=3 h(1)$ and therefore $2 h(1)=0$. This implies that $h(1)=0$, since R contains the element 2^{-1}. Hence, we arrive at

$$
\begin{equation*}
h\left(x^{2}\right)=\beta(x) h(x)+h(x) \alpha(x) \text { for all } x \in H \tag{2.29}
\end{equation*}
$$

This proves the proposition.
Now we are ready to prove our second main result. Here it is important to mention that a careful scrutiny of the proof of Theorem 2.6 below shows that the proof runs on similar lines to [[2], Theorem 4] with necessary variations, but we write here just for sake of completeness.

Proof. of Theorem 2.6. Let D be a division ring, $R=M_{n}(D)$, and $f, g: R \rightarrow R$ be additive maps such that

$$
\begin{equation*}
f(x) \alpha\left(x^{-1}\right)+\beta(x) g\left(x^{-1}\right)=0 \text { for all } x \in R^{\times} . \tag{2.30}
\end{equation*}
$$

Let us define $\left(a_{i j}\right) \in R$ be such that the (i, j) entry is an invertible element a of D and all other entries are zero. Now as in the proof of [[2], Theorem 4] we get at least three of $I+\left(a_{i j}\right), 2 I+\left(a_{i j}\right), 3 I+\left(a_{i j}\right), 4 I+\left(a_{i j}\right)$ are invertible. If $c_{0} I+\left(a_{i j}\right)$ is not invertible for $c_{0} \in\{1,2,3,4\}$, then we conclude that $\operatorname{det}\left(c_{0} I+\left(a_{i j}\right)\right)=0$, where by "det" we mean the Dieudonne determinant. Since there is at most one nonzero entry that does not occur along the main diagonal, we know $\operatorname{det}\left(c_{0} I+\left(a_{i j}\right)\right)$ is exactly the product of the elements along the main diagonal of $c_{0} I+\left(a_{i j}\right)$. Hence, $\operatorname{det}\left(c_{0} I+\left(a_{i j}\right)\right)=0$ implies one of the diagonal entries of $c_{0} I+\left(a_{i j}\right)$ is zero; that is, $i=j$ and $c_{0}+a=0$. Suppose that $c \in\{1,2,3,4\}$ is different from c_{0}, then we have $c+a \neq 0$, and thus, we have $\operatorname{det}\left(c I+\left(a_{i j}\right)\right) \neq 0$; that is, $c I+a_{i j}$ is invertible for every $c \in\{1,2,3,4\}-\left\{c_{0}\right\}$, as desired.
Also we have if $c I+\left(a_{i j}\right)$ and $c^{\prime} I+\left(a_{i j}\right)$ for $c, c^{\prime} \in\{1,2,3\}$, then $\left(c+c^{\prime}\right) I+\left(a_{i j}\right)$ is invertible. In view of Proposition 2.7 and definition of Jordan (α, β)-derivation, we find that

$$
\begin{equation*}
h\left(\left(c I+\left(a_{i j}\right)\right)^{2}\right)=h\left(c I+\left(a_{i j}\right)\right) \alpha\left(c I+\left(a_{i j}\right)\right)+\beta\left(c I+\left(a_{i j}\right)\right) h\left(c I+\left(a_{i j}\right)\right) \tag{2.31}
\end{equation*}
$$

Since h is additive, the above expression yields

$$
\begin{equation*}
h\left(\left(c I+\left(a_{i j}\right)\right)^{2}\right)=\left(c h(I)+h\left(a_{i j}\right)\right)\left(c I+\alpha\left(a_{i j}\right)\right)+\left(c I+\beta\left(\left(a_{i j}\right)\right)\left(c h(I)+h\left(a_{i j}\right)\right)\right. \tag{2.32}
\end{equation*}
$$

The above relation gives

$$
\begin{aligned}
h\left(\left(c I+\left(a_{i j}\right)\right)^{2}\right) & =2 c^{2} h(I)+2 \operatorname{ch}\left(\left(a_{i j}\right)\right)+\beta\left(\left(a_{i j}\right)\right) \operatorname{ch}(I)+\operatorname{ch}(I) \alpha\left(\left(a_{i j}\right)\right) \\
& \left.+\beta\left(\left(a_{i j}\right)\right)\right) h\left(\left(a_{i j}\right)\right)+h\left(\left(a_{i j}\right)\right) \alpha\left(\left(a_{i j}\right)\right) .
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\left.h\left(\left(c I+\left(a_{i j}\right)\right)^{2}\right)=2 c h\left(\left(a_{i j}\right)\right)+\beta\left(\left(a_{i j}\right)\right)\right) h\left(\left(a_{i j}\right)\right)+h\left(\left(a_{i j}\right)\right) \alpha\left(\left(a_{i j}\right)\right) . \tag{2.33}
\end{equation*}
$$

On the other hand, we also have

$$
\begin{equation*}
h\left(\left(c I+\left(a_{i j}\right)\right)^{2}\right)=h\left(c^{2} I\right)+2 h\left(c\left(a_{i j}\right)\right)+h\left(\left(a_{i j}\right)^{2}\right) . \tag{2.34}
\end{equation*}
$$

From relations (2.33) and (2.34), we obtain

$$
\begin{equation*}
h\left(\left(a_{i j}\right)^{2}\right)=h\left(\left(a_{i j}\right)\right) \alpha\left(\left(a_{i j}\right)\right)+\beta\left(\left(a_{i j}\right)\right) h\left(\left(a_{i j}\right)\right) . \tag{2.35}
\end{equation*}
$$

In the view of proof of [2, Theorem 4] we get at least two of $I+\left(a_{i j}\right)+\left(b_{k l}\right), 2 I+$ $\left(a_{i j}\right)+\left(b_{k l}\right), 3 I+\left(a_{i j}\right)+\left(b_{k l}\right), 4 I+\left(a_{i j}\right)+\left(b_{k l}\right)$ are invertible. Indeed, assume that $c_{0} I+\left(a_{i j}\right)+\left(b_{k l}\right)$ is not invertible for $c_{0} \in\{1,2,3,4\}$. Let $0 \neq a \in D$ be the i, j entry of $\left(a_{i j}\right)$ and let $0 \neq b \in D$ be the k, l entry of $\left(b_{k l}\right)$. There are some cases that can occur (throughout these cases, we assume $c \in\{1,2,3,4\}-\left\{c_{0}\right\}$).
Case 1: $i=j=k=l$. In this case, we can see that $c_{0} I+\left(a_{i j}\right)+\left(b_{k l}\right)=c_{0} I+$ $\left(a_{i i}\right)+\left(b_{i i}\right)$, so that $\operatorname{det}\left(c_{0} I+\left(a_{i i}\right)+\left(b_{i i}\right)\right)=c_{0}^{n-1}\left(c_{0}+a+b\right)=0$, which implies that $c_{0}=-(a+b)$. However, $\operatorname{det}\left(c I+\left(a_{i i}\right)+\left(b_{i i}\right)\right) \neq 0$, and so $c I+\left(a_{i i}\right)+\left(b_{i i}\right)$ is invertible for three values of c.
Case 2: $i=j, k \neq l$. Here, since the k, l entry is the only nonzero entry outside of the main diagonal, we know $\operatorname{det}\left(c_{0} I+\left(a_{i i}\right)+\left(b_{k l}\right)\right)=c_{0}^{n-1}\left(c_{0}+a\right)=0$ and hence, we must have $c_{0}=-a$. Again, we have $\operatorname{det}\left(c I+\left(a_{i i}\right)+\left(b_{k k}\right)\right) \neq 0$, and so $c I+\left(a_{i i}\right)+\left(b_{k k}\right)$ is invertible for three values of c.
Case 3: $i=j, k=l, i \neq k$. In this case, $\operatorname{det}\left(c_{0} I+\left(a_{i i}\right)+\left(b_{k k}\right)\right)$ equals $c_{0}^{n-2}\left(c_{0}+\right.$ $a)\left(c_{0}+b\right)$ or $c_{0}^{n-2}\left(c_{0}+b\right)\left(c_{0}+a\right)$. Either way, this implies that $c_{0}=-a$ or $c_{0}=-b$. Without loss of generality assume $c_{0}=-a$. Then we have $c I+\left(a_{i i}\right)+\left(b_{k k}\right)$ is invertible for $c \neq-b$; that is, $c I+\left(a_{i i}\right)+\left(b_{k k}\right)$ is invertible for at least two values of c.
Case 4: $i \neq j, k \neq l$. Suppose $\operatorname{det}\left(c_{0} I+\left(a_{i j}\right)+\left(b_{k l}\right)\right)=0$, we must have that $i=l, j=k$, in which case, $\operatorname{det}\left(c_{0} I+\left(a_{i j}\right)+\left(b_{j i}\right)\right)$ equals $c_{0}^{n-2}\left(c_{0}^{2}+(-1)^{i+j} a b\right)$ or $c_{0}^{n-2}\left(c_{0}^{2}+(-1)^{i+j} b a\right)$. This forces that c_{0}^{2} equals $-(-1)^{i+j} a b$ or $-(-1)^{i+j} b a$. If the characteristic of D is 5 or 7 , then we have that $12=42$ or $32=42$, respectively, which implies that $c I+\left(a_{i j}\right)+\left(b_{j i}\right)$ is invertible for at least two values of c. For any other characteristic, we have that $c I+\left(a_{i j}\right)+\left(b_{j i}\right)$ is invertible for three values of c. In any case, we can see that at least two of $I+\left(a_{i j}\right)+\left(b_{k l}\right), 2 I+\left(a_{i j}\right)+\left(b_{k l}\right), 3 I+$ $\left(a_{i j}\right)+\left(b_{k l}\right), 4 I+\left(a_{i j}\right)+\left(b_{k l}\right)$ are invertible.
Also if $c I+\left(a_{i j}\right)+\left(b_{k l}\right)$ and $c^{\prime} I+\left(a_{i j}\right)+\left(b_{k l}\right)$ for $c, c^{\prime} \in\{1,2,3\}$, then $\left(c+c^{\prime}\right) I+$ $\left(a_{i j}\right)+\left(b_{k l}\right)$ is invertible $c^{\prime} \in\{1,2,3\}$. Now by using the additivity of h and the
fact that $h(I)=0$, we obtain

$$
\begin{aligned}
h\left(\left(c I+\left(a_{i j}\right)+\left(b_{k l}\right)\right)^{2}\right) & =\beta\left(c I+\left(a_{i j}\right)+\left(b_{k l}\right)\right) h\left(c I+\left(a_{i j}\right)+\left(b_{k l}\right)\right) \\
& +h\left(c I+\left(a_{i j}\right)+\left(b_{k l}\right)\right)+\alpha\left(c I+\left(a_{i j}\right)+\left(b_{k l}\right)\right) \\
& =\left(c I+\beta\left(a_{i j}\right)+\beta\left(b_{k l}\right)\right)\left(c h(I)+h\left(a_{i j}\right)+h\left(b_{k l}\right)\right) \\
& +\left(c h(I)+h\left(a_{i j}\right)+h\left(b_{k l}\right)\right)\left(c I+\alpha\left(a_{i j}\right)+\alpha\left(b_{k l}\right)\right) \\
& =2 \operatorname{ch}\left(\left(a_{i j}\right)\right)+2 \operatorname{ch}\left(b_{k l}\right)+h\left(\left(a_{i j}\right)^{2}\right)+h\left(\left(b_{k l}\right)^{2}\right)+\beta\left(a_{i j}\right) h\left(b_{k l}\right) \\
& \left.+\beta\left(b_{k l}\right) h\left(a_{i j}\right)+h\left(a_{i j}\right) \alpha\left(b_{k l}\right)\right)+h\left(b_{k l}\right) \alpha\left(a_{i j}\right) .
\end{aligned}
$$

On the other hand, we can find that

$$
\begin{aligned}
h\left(\left(c I+\left(a_{i j}\right)+\left(b_{k l}\right)\right)^{2}\right) & =h\left(c^{2} I+2 c\left(a_{i j}\right)+2 c\left(b_{k l}\right)+\left(a_{i j}\right)^{2}+\left(b_{k l}\right)^{2}+\left(a_{i j}\right)\left(b_{k l}\right)+\left(b_{k l}\right)\left(a_{i j}\right)\right) \\
& =2 \operatorname{ch}\left(\left(a_{i j}\right)\right)+2 \operatorname{ch}\left(\left(b_{k l}\right)\right)+h\left(\left(a_{i j}\right)^{2}\right)+h\left(\left(b_{k l}\right)^{2}\right) \\
& +h\left(a_{i j} b_{k l}+b_{k l} a_{i j}\right) .
\end{aligned}
$$

Combing the above two systems we arrive at
(2.36) $\left.h\left(a_{i j} b_{k l}+b_{k l} a_{i j}\right)=h\left(a_{i j}\right) \alpha\left(b_{k l}\right)\right)+\beta\left(a_{i j}\right) h\left(b_{k l}\right)+h\left(b_{k l}\right) \alpha\left(a_{i j}\right)+\beta\left(b_{k l}\right) h\left(a_{i j}\right)$.

Thus, h is a Jordan (α, β)-derivation. Thus by [7, Corollary 1], we find that h is an (α, β) derivation. Henceforward, the proof is follows by the last paragraph of the proof of Theorem 2.1. The proof of the theorem is completed.

The next result is a generalization of [2, Corollary 5].
Corollary 2.8. Let D be a division ring with $\operatorname{char}(D) \neq 2,3$. Let $R=M_{n}(D)$ be the ring of $n \times n$ matrices over D with $n \geq 2$ and $\alpha, \beta: R \rightarrow R$ be automorphisms of D. If $f: R \rightarrow R$ is an additive map satisfying the identity

$$
\begin{equation*}
f(x) \alpha\left(x^{-1}\right)+\beta(x) f\left(x^{-1}\right)=0, \text { for all } x \in R^{\times} . \tag{2.37}
\end{equation*}
$$

Then, f is an (α, β)-derivation.
Corollary 2.9. Let D be a division ring with $\operatorname{char}(D) \neq 2,3$. Let $R=M_{n}(D)$ be the ring of $n \times n$ matrices over D with $n \geq 2$ and $\alpha: R \rightarrow R$ be automorphisms of D. If $f: R \rightarrow R$ is an additive map satisfying the identity

$$
\begin{equation*}
f(x) x^{-1}+\beta(x) f\left(x^{-1}\right)=0, \text { for all } x \in R^{\times} . \tag{2.38}
\end{equation*}
$$

Then, f is a β-derivation (skew derivation) associated with the automorphism β.
The following corollary is a generalization of [2, Corollary 6].
Corollary 2.10. Let R be a simple Artinian ring with $\operatorname{char}(R) \neq 2,3$. Let α, β : $R \rightarrow R$ be automorphisms of D. If $f, g: R \rightarrow R$ are additive maps satisfying the identity

$$
\begin{equation*}
f(x) \alpha\left(x^{-1}\right)+\beta(x) g\left(x^{-1}\right)=0 \text { for all } x \in R^{\times} . \tag{2.39}
\end{equation*}
$$

Then, $f(x)=\beta(x) q+\delta(x)$ and $g(x)=-q \alpha(x)+\delta(x)$, where $\delta: R \rightarrow R$ is an (α, β)-derivation and $q \in R$ is a fixed element.

The next theorem is a common generalization of $[3$, Theorem 1].

Theorem 2.11. Let D be a division ring with center $Z(D)$ such that $\operatorname{char}(D) \neq 2$. Next, let $\alpha, \beta: D \rightarrow D$ be automorphisms of D and $l \in D, a \in D^{\times}$be fixed elements. Suppose $f: D \rightarrow D$ is an additive map satisfying the identity

$$
f(x) \alpha(y)+\beta(x) f(y)=l \text { for all } x, y \in D \text { such that } x y=a .
$$

Then $f(x)=\beta(x) q+\delta(x)$ for all $x \in D$, where $\delta: D \rightarrow D$ is an (α, β)-derivation and $q \in Z(D)$.

Proof. By the assumption, we have

$$
\begin{equation*}
f(x) \alpha(y)+\beta(x) f(y)=l \text { for all } x, y \in D \tag{2.40}
\end{equation*}
$$

Substituting $x^{-1} a$ for y in the above relation, we obtain

$$
\begin{equation*}
f(x) \alpha\left(x^{-1} a\right)+\beta(x) f\left(x^{-1} a\right)=l \tag{2.41}
\end{equation*}
$$

Multiplying both sides of the pervious expressions from the right-hand side by $\alpha\left(a^{-1}\right)$, we obtain

$$
\begin{equation*}
f(x) \alpha\left(x^{-1}\right)+\beta(x) f\left(x^{-1} a\right) \alpha\left(a^{-1}\right)=l \alpha\left(a^{-1}\right) \tag{2.42}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
f(x) \alpha\left(x^{-1}\right)+\beta(x)\left(f\left(x^{-1} a\right) \alpha\left(a^{-1}\right)-\beta\left(x^{-1}\right) l \alpha\left(a^{-1}\right)\right)=0 \tag{2.43}
\end{equation*}
$$

Since f, α and β are additive maps, we define $g(x)=f(x a) \alpha\left(a^{-1}\right)-\beta(x) l \alpha\left(a^{-1}\right)$. Then, the above relation reduces to

$$
\begin{equation*}
f(x) \alpha\left(x^{-1}\right)+\beta(x) g\left(x^{-1}\right)=0 \text { for all } x \in D^{\times} \tag{2.44}
\end{equation*}
$$

In view of Theorem 2.1, we conclude that $f(x)=\beta(x) q+\delta(x)$ where q is a fixed element of D and $\delta: D \rightarrow D$ is an (α, β)-derivation. Now it remains to prove that $q \in Z(D)$. From Eq. (2.40), we find that

$$
\begin{aligned}
l & =f\left(x^{-1}\right) \alpha(x a)+\beta\left(x^{-1}\right) f(x a), \\
& \left.=\left(\beta\left(x^{-1}\right) q+\delta\left(x^{-1}\right)\right) \alpha(x a)+\beta\left(x^{-1}\right)(\beta(x a) q+\delta(x a))\right) \\
& =\beta\left(x^{-1}\right) q \alpha(x a)+\delta\left(x^{-1}\right) \alpha(x a)+\beta(a) q+\beta\left(x^{-1}\right) \delta(x a) \\
& =\beta\left(x^{-1}\right) q \alpha(x a)+\delta\left(x^{-1}\right) \alpha(x a)+\beta\left(x^{-1}\right) \delta(x) \alpha(a)+\beta(a) q+\delta(a) \\
& =\beta\left(x^{-1}\right) q \alpha(x a)+\left(\delta\left(x^{-1}\right) \alpha(x)+\beta\left(x^{-1}\right) \delta(x)\right) \alpha(a)+\beta(a) q+\delta(a) \\
& =\beta\left(x^{-1}\right) q \alpha(x a)+\left(\delta\left(x^{-1} x\right)\right) \alpha(a)+\beta(a) q+\delta(a) \\
& =\beta\left(x^{-1}\right) q \alpha(x a)+\delta(1) \alpha(a)+\beta(a) q+\delta(a) \\
& =\beta\left(x^{-1}\right) q \alpha(x a)+f(a) \text { for all } x \in D^{\times} .
\end{aligned}
$$

Notice that for any (α, β)-derivation $\delta, \quad 0=\delta(1)=\delta\left(x \cdot x^{-1}\right)=\delta(x) \alpha\left(x^{-1}\right)+$ $\beta(x) \delta\left(x^{-1}\right)$. Therefore, the above expression gives $\beta\left(x^{-1}\right) q \alpha(x a)=l-f(a)$. This gives $q \alpha(x a)=\beta(x) b$, where we set $b=l-f(a)$. Substituting $t x$ for x where $t \in D^{\times}$, we obtain

$$
\begin{aligned}
q \alpha(t x a) & =\beta(t x) b \\
q \alpha(t) \alpha(x) \alpha(a) & =\beta(t) \beta(x) b \\
& =\beta(t) q \alpha(x a) .
\end{aligned}
$$

This implies that $(q \alpha(t)-\beta(t) q) \alpha(x) \alpha(a)=0$ for all $x, t \in D$, i.e., $(q \alpha(t)-$ $\beta(t) q) D \alpha(a)=\{0\}$. Since α is an automorphism and $a \in D^{\times}$, the last relation
gives $q \alpha(t)=\beta(t) q$ for all $t \in D^{\times}$i.e., $[q, t]_{\alpha, \beta}=0$ for all $t \in D^{\times}$. In view of [8, Lemma 2.5], for $U=R$, we conclude that $q \in Z(D)$. This proves the theorem completely.

Corollary 2.12. Let D be a division ring with center $Z(D)$ such that $\operatorname{char}(D) \neq 2$. Next, let $\alpha, \beta: D \rightarrow D$ be automorphisms, $a \in D^{\times}$be a fixed element, and let $f: D \rightarrow D$ be an additive map satisfying the identity
(2.45) $\quad f(x) \alpha(y)+\beta(x) f(y)=f(a)$ for all $x, y \in D$ such that $x y=a$.

Then, f is an (α, β)-derivation.
Corollary 2.13. Let D be a division ring with center $Z(D)$ such that $\operatorname{char}(D) \neq 2$. Next, let $\alpha: D \rightarrow D$ be automorphisms, $a \in D^{\times}$be fixed elements, and let $f: D \rightarrow D$ be an additive map satisfying the identity
(2.46) $\quad f(x) \alpha(y)+x f(y)=f(a)$ for all $x, y \in D$ such that $x y=a$.

Then, f is an α-derivation(skew derivation).
Corollary 2.14. Let D be a division ring with center $Z(D)$ such that $\operatorname{char}(D) \neq 2$. Next, let $a \in D^{\times}$be fixed elements and $f: D \rightarrow D$ be an additive map satisfying the identity

$$
\begin{equation*}
f(x) y+x f(y)=f(a) \text { for all } x, y \in D \text { such that } x y=a . \tag{2.47}
\end{equation*}
$$

Then, f is a derivation.

Acknowledgement

The authors are deeply indebted to the learned referee(s) for their careful reading of the manuscript and useful comments. The research of second named author is supported by SERB-DST MATRICS Project under Grant No. MTR/2019/000603, India.

References

[1] Brešar, M. Brešar, M.A. Chebotar, and W.S. Martindale, Functional identities, Springer Science and Business Media Basel, 2007.
[2] L. Catalano, On a certain functional identity involving inverses, Comm. Algebra, (8) 46 (2018), 3430-3435.
[3] L. Catalano, On maps characterized by action on equal products, J. Algebra, 511 (2018), 148-154.
[4] P. M. Cohn, Further algebra and applications, Springer Science and Business Media, 2002.
[5] I. N. Herstein, Jordan derivations on prime rings, Proc. Amer. Math. Soc. (6) 8 (1957), 1104-1110.
[6] V. K. Kharchenko and A. Z. Popov, Skew derivations of prime rings, Comm. Algebra, (11) 20 (1992), 3321-3345.
[7] C. K. Liu and W. K. Shiue, Generalized Jordan triple (θ, ϕ)-derivations on semiprime rings, Taiwanese J. Math. (5) 11 (2007), 1397-1406.
[8] H. Marubayashi,, M. Ashraf, N. Rehman, and S. Ali, On generalized (α, β)-derivations in prime rings, Algebra Colloq. (Spec 1) 17 (2010), 865-874.

Shakir Ali

Department of Mathematics, Aligarh Muslim University, Aligarh, India. Email: shakir50@rediffmail.com

[^0]: MSC(2010): 16R60, 16W10

