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ON SOME ADDITIVE MAPPINGS ON DIVISION RINGS

A.Y. ABDELWANIS AND S. ALI

ABSTRACT. Let D be a division ring such that char(D) # 2 and o, 8: D — D
be automorphisms of D. The main purpose of this paper is to characterizes
additive maps f and g satisfying the identity f(z)a(z=1) + B(z)g(z~1) =0
for all 0 # = € D. As an application, we describe the structure of an additive
map f satisfying the identity f(z)a(y) + B(z)f(y) = for all z,y € D such
that zy = a, where l[,a € D and a is nonzero. With this, many known results
can be either generalized or deduced. In particular, we generalized the results
proved in [2] and [3], respectively.

1. INTRODUCTION

Throughout, D will represent a division ring with a center Z (D). For any x,y €
D, the symbol [z, y] will denote the commutator xy — yx while the symbol [z, y]q,g
will denote the («, 8)-commutator za(y)—B(y)x, where o and 5 are endomorphisms
of D. Recall that a derivation of a ring D is an additive map 6 : D — D if
0(zy) = 0(z)y + xd(y) for all z,y € D. A derivation ¢ is said to be inner if there
exists a € D such that 6(z) = [a, 2] for all x € D.

Let o and 8 be the endomorphisms of D. An additive map é : D — D is
called an a-derivation if 6(zy) = d(z)a(y) + zdé(y) for all z,y € D. In literature,
a-derivations are also called skew derivations(see [6] for details). Given a € D, the
map ¢ : D — D such that §(z) = aa(z) — xza for all x € D. Obviously defines
an a-derivation, called the inner a-derivation associated with a € D. Analogously,
we define S-derivations and the inner -derivations. Note that for Ip the identity
map on D, a-derivations (respectively, S-derivations) are merely ordinary deriva-
tions. Moreover, if a # Ip, then § = Ip — « is an a-derivation. An additive
map ¢ : D — D is called an (o, 8)-derivation if é(zy) = 0(z)a(y) + B(x)d(y) for
all z,y € D. An additive map 0 : D — D is called a Jordan (a, §)-derivation if
§(z?) = §(z)a(x) + B(z)d(z) for all x € D(see [5] for details). For a fixed element
a € D, the map &, : D — D is given by d,(z) = [a, z]q,p for all z € D, is an (a, 5)-

MSC(2010): 16R60, 16W10

Keywords: Division ring, derivation, («, 8)-derivation, functional identity
Received: 11 March 2021, Accepted: 13 September 2021.
*Corresponding author .

101



102 ABDELWANIS AND ALI

derivation which is said to be an inner (a, 8)-derivation. An (Ip,Ip)-derivation
is just a derivation. It is clear that every derivation is an (a, 3)-derivation with
a = B = Ip. However, the converse need not be true in general. For example, if
D has a nontrivial central idempotent e and take d(z) = ex for all z € D. Next,
consider a(x) = (1 — e)x for all z € D and 8 = Ip. Then, it is straightforward
to check that § is an (o, 8)-derivation, but not a derivation. Clearly, this notion
includes those of a-derivations (S-derivations) when 8 = Ip(respectively, « = Ip)
and of derivation which is the case when a = 8 = Ip.

In [2], Catalano studied special types of functional identities (see [1] for details)
and characterized additive maps f and g satisfying the identity of the form

(1.1) f(@)z™ +zg(z™)=0forall 0 £z € D

on a division and a simple Artinian ring. It follows from Catalano result [2, Theo-
rems 1, 4] that the additive maps f and g that satisfy identity (1.1) on a division ring
or a simple Artinian ring D must be of the form f(x) = zg+4d(x), g(x) = —qz+5(x)
where ¢ is a fixed element of D and ¢ : D — D is a derivation. In fact, if g = f it
follows from [2, Corollary 3] that f is a derivation. Further, he studied the identity
of the form

(1.2) f@y+azf(y)=1foral z,y € D,

where [,a € D are fixed elements such that zy = a # 0. It follows from Catalano
result [3, Theorem 1] that the additive map f that satisfy identity (1.2) on a division
ring D must be of the form f(z) = xq + 6(x). where ¢ is a fixed element of D and
0 : D — Disaderivation. In case f is derivable at a i.e., f satisfies the identity (1.2)
with [ = f(a) and a = zy, it follows from [ [3], Corollary 2] that f is a derivation.
This study showed that the above functional identities have close connection with
derivations and Jordan derivations (viz.; [5]).

The present paper is motivated by the above mentioned identities. Our goal
is to study some suitable generalizations of these results. More precisely, we study
following identity

(1.3) f(@)a(z™") + B(x)g(z™) =0 forall 0 £ x € D,

where a, 5 : D — D are automorphisms of D. We also discuss the case when g = f
and conclude that f is an («, 8)-derivation.
In the second part, we consider the functional identity of the form

(1.4) f@)aly) + B(@) f(y) =1,

on a division ring D for all x,y € D where l,a € D are fixed elements such that
0# a=u2zy, and o, : D — D are automorphisms. Further, we consider the case
when additive map f satisfies the identity (1.4) with | = f(a) and zy = a, f is
an (a, 8)-derivable, and we find that f is an («, 8)-derivation. In fact, our results
unify, extend and complement those theorems obtained in [2] and [3], respectively.

The following facts are important and pertinent in our discussions. First one
is a well known identity due to Hua’s [4] whereas the last one is the commutator
identity.

Fact 1.1. Let t, z be any two elements of a division ring D with tz # 0,1. Then,
t— @t (=) T =gt
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Fact 1.2. Replacing z by —z~' gives another equivalent form of above identity
(t+tz7 )y 4 (t+2)7 =t

Fact 1.3. Let r,s,t be any three elements of a division ring D and automorphisms
a, 8 of D. Then,

[, stla.g = [, S]a,pa(t) + B(s)[r, t]la,p and
[rs,tla,p = 7ls, tlas + [, B(H)]s = (s, a(t)] + [r,t]a,ps.
2. MAIN RESULTS
We begin the discussions with our first main result of the present paper.

Theorem 2.1. Let D be a division ring with char(D) # 2, o,8 : D — D be
automorphisms of D and let f,g: D — D be additive maps satisfying the identity
(2.1) f@)a(@™) + Bz)g(z™") =0

for all z € D*, where D* is the set of invertible elements of D. Then f(z) =

B(x)g + §(x) and g(z) = —qa(z) + é(x) for all x € D*, where § : D — D is an
(a, B)-derivation and ¢ € D is a fixed element.

Proof. We are given that f,g : D — D be additive maps and «, : D — D are
automorphisms such that

(22) f@)a(e™) + Bla)g(z™1) =0

for every x € D*. Since a and (8 are automorphisms of D, the above expression
yield the following

(2.3) f@) = =Bx)gz™)(a(z™")) ™" = =pz)gz™)a(),
(2.4) g9(z™") = —(B(x)) " f(@)a(z™) = =Ba7") f(z)a(z™!)
(2.5) f(1) = —g(1).

In view of Fact 1.1, substitute ¢ = t — tzt for # and ¢=! = ¢t~ + (271 —¢)7! for
some elements ¢,z € D*, where tz # 1 in Eq. (2.3), to get

fle) = =B(a)g(t™" + (=7 =) Hale).

Since g is additive, the above expression gives

(2.6) f(e) = =Ble)gtHale) = Ble)g((z~1 =) Hale).
Expelling ¢ from the equation by applying (2.4), we obtain
(2.7)

fle) = BBE N f()alt™a(e) + BBz =) f(z7 =tz = 1) Ha(e).
In view of Fact (1.1), we have (27t —¢)=! = ¢7! —t=1 (where ¢ = t — tzt) and
hence we conclude that

(2.8)

F(t = t2t) = £() — FB)alet) — BE) F(8) + B(t2) F(Dalzt) + B(t2) F( 1 — thalzt).
This implies that

(2.9) fltzt) = f(t)a(=t) + B(t2) () — B(t2) f (2~ a(zt).

Application of (2.3) yields

(2.10) ftzt) = f(H)alzt) + B(t2) f(t) + B(t)g(z)e(?).
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Similarly, we can obtain

(2.11) g(tzt) = g(t)a(zt) + B(tz)g(t) + B(E) f(2)a(t).

Now put t = 1,z = z in Egs.(2.10),(2.11) and use the fact that «(1) =1, g(1) =1
together with (2.5), we get

(2.12) f(x) = f(Da(z) + B(x)f(1) + g(x),

(2.13) 9(x) = g(Ma(z) + B(x)g(1) + f(z).

Again taking t = z,z = 1 in Eqgs.(2.10),(2.11) and using the fact that a(l) =
1, B(1) =1 and f(1) = —g(1) we obtain

(2.14) f@?) = f(@)a(z) + B(z) f(z) = B(x) f(1a(z),
Also, we can obtain
(2.15) g9(a?) = g(x)a(z) + B(z)g(x) — Bla)g(1)a(x).

Adding Egs. (2.14) and (2.15), and using the fact that f and g are additive, we
arrive at

(2.16) (f +9)(@?) = (f + g)(@)a(z) + B(z)(f + 9)(z) — Bx)(f(1) + g(1)a(z).

Since f and g are additive maps, so we take h = f + g and we obtain

h(z?) = h(z)a(z) + B(a)h(z) — B(z)(f(1) + g(1))a(z).
Application of (2.5) gives
(2.17) h(x?) = h(x)a(z) + B(x)h(z) for all z € D*.

Thus h is a Jordan («, 3)-derivation on D. Hence, in view of [ [7], Corollary 1] we
conclude that h is an (a, 8)-derivation on D. Adding f(z) to the both sides of Eq.
(2.12), we get

(2.18) 2f(x) = 26(2) f(1) + [f(1), 2]a,p + h(z)

where [f(1),2]a,s = f(1)a(z) — B(x)f(1) for all x € D*. In view of Fact 1.3, we
set the (a, f)-derivation § : D — D by 26(z) = [f(1),z]a,p + h(x)) for all x € D*.
Then, we find that f(x) = 8(z)q + d(z) and g(z) = —ga(z) + §(z) for all z € D*,
where ¢ := f(1). This completes the proof of theorem. O

Following are the immediate consequences of above theorem.

Corollary 2.2. Let D be a division ring with char(D) # 2, o,8 : D — D be
automorphisms. Next, let f : D — D be an additive map satisfying the identity

(2.19) f@)a(z™) + B(x)f(z™) =0 for all z € D*.
Then, f is an («, 3)-derivation.

Corollary 2.3. Let D be a division ring with char(D) # 2 and o : D — D be an
automorphism of D. Next, let f: D — D be additive map satisfying the identity

(2.20) f@a@™) +xf(x™) =0 for all z € D*.

Then, f is an a-derivation (skew derivation) associated with the automorphism a.
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Corollary 2.4. Let D be a division ring with char(D) # 2 and 8: D — D be an
automorphism of D. Next, let f: D — D be additive map satisfying the identity

(2.21) f@)z™t + B(z)f(z™') =0 for all x € D*.
Then, f is a -derivation(skew derivation) associated with the automorphism g.

Corollary 2.5 ( [2], Theorem 1). Let D be a division ring with char(D) # 2.
Next, let f,g: D — D be additive maps satisfying the identity

f(x)z™t +xg(z™") =0 for all z € D*.
Then f(z) = zq + §(z) and g(z) = —qz + d(z), where § : D — D is a derivation
and ¢ € D is a fixed element.

Our next theorem deals with the matrix case.

Theorem 2.6. Let D be a division ring with char(D) # 2,3. Let R = M,,(D) be
the ring of n x n matrices over D with n > 2 and «, § : R — R be automorphisms
of D. If f,g: R — R are additive maps satisfying the identity
(2.22) f@)a(x™h) + B(x)g(z™) =0 for all € R*

where R* is the set of invertible elements of R. Then f(z) = S(z)g + d(z) and
g(z) = —qa(x) + 6(x), where 6 : R — R is an (a, 8)-derivation and ¢ € R is a fixed
element.

To prove the above theorem, we need the following result.

Proposition 2.7. Let D be a unital ring which contains the elements 2, 3 and their
inverses and «, 5 : D — D be automorphisms of D. Next, let

H ={z € R: z and z + care invertable for everyc = 1,2or 3}. If additive maps
f,9: D — D satisfying the identity

(2.23) f(z)alz™) + B(x)g(z™") = 0 for all 2 € DX,
then an additive map h := f 4+ ¢g must of the form
(2.24) h(x?) = h(x)a(z) + B(x)h(z) for all z € H.

Proof. We follow the arguments of [2, Lemma 7]. Let  and x + ¢ be two elements
as given in the statement of the proposition. We note that 27! — (z + ¢)7! =
cx~1(x + ¢)~!, which leads to

(2.25) (7' —(z+eo)™H) P =c 2?4 a.

Then, for any a,b € D, we have f(a—b) = f(a) — f(b), since f is an additive map.
Presently, assuming that a and b are both invertible elements of D and utilizing
Eq. (2.3), which is the equal type of the property expected in the proposition, then
we can see that

(2.26) Bla—b)g((a—b)""a(a—b) = Ba)gla™)ala) — Bb)g(b™)a(b).

Multiplying by 8((a — b)~1) from left and by a((a — b)~!) from right to the above
relation and using the fact that a(1) =1 = (1), we get

g(la=b)7") = Blla—b)"B(a)gla™a(a)a((a—b)™")
= B(a=0)"")Bb)g(b™ Ha(b)a((a—b)™).
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Replace a by 7! and b by (z + ¢)~! in the pervious equation and use Eq. (2.25)
to get

(2.27) g(c'2® +2) = B(cre + Dg(x)a(c 2+ 1) — Blc 'a)g(z + c)a(c ).
This implies that

clg(@®) +g(z) = Bl a)g(@)alc a) + B(c w)g(z) + g(w)alc ) + g(x)
— Blc'2)g(@)al(ctz) — Blc z)g(Da(c z).

But by using a(c) = 8(¢) = ¢ and simplifying the last equation gives us identity
(2.15). Replacing z with 27! and using Eq. (2.6) gives us identity (2.14). Now
define h = f 4 ¢g and summing Eqgs. (2.14) and (2.15), we can see that

(2.28) h(z?) = B(z)h(z) + h(z)a(z) + B(z)h(1)a(z).

Now, substituting = 1 in above expression, we get h(1) = 3h(1) and therefore
2h(1) = 0. This implies that (1) = 0, since R contains the element 271, Hence, we
arrive at

(2.29) h(z?) = B(z)h(x) + h(z)a(z) for allz € H.
This proves the proposition. O

Now we are ready to prove our second main result. Here it is important to
mention that a careful scrutiny of the proof of Theorem 2.6 below shows that the
proof runs on similar lines to [ [2], Theorem 4] with necessary variations, but we
write here just for sake of completeness.

Proof. of Theorem 2.6. Let D be a division ring, R = M, (D), and f,g: R — R be
additive maps such that

(2.30) f@)a(z™) + B(x)g(z™") = 0 for all 2 € R*.

Let us define (a;;) € R be such that the (¢, j) entry is an invertible element a of D
and all other entries are zero. Now as in the proof of [ [2], Theorem 4] we get at
least three of I+ (a;;), 21 + (aij), 31 + (aij), 41 + (a;;) are invertible. If col + (a;;) is
not invertible for ¢y € {1,2,3, 4}, then we conclude that det(col + (a;;)) = 0, where
by ”det” we mean the Dieudonne determinant. Since there is at most one nonzero
entry that does not occur along the main diagonal, we know det(col + (ai;)) is
exactly the product of the elements along the main diagonal of ¢y + (a;;). Hence,
det(col + (a;5)) = 0 implies one of the diagonal entries of col + (a;;) is zero; that
is, i = j and ¢g + a = 0. Suppose that ¢ € {1,2,3,4} is different from c¢g, then we
have ¢+ a # 0, and thus, we have det(cl + (a;;)) # 0; that is, cI + a,; is invertible
for every c € {1,2,3,4} — {co}, as desired.

Also we have if I + (a;;) and ¢ T + (a;;) for ;¢ € {1,2,3}, then (c+ ¢ )T + (aij)
is invertible. In view of Proposition 2.7 and definition of Jordan («, 3)-derivation,
we find that

(2.31) (el + (aig))?) = hlel + (ai))alel + (aiz)) + Bel + (ai)h(cl + (aij))
Since h is additive, the above expression yields

(2.32) h((cI+(aij))?) = (ch(I)+h(ai;))(cI+a(ai;))+(cl+B((ai;)) (ch(I)+h(ai;))
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The above relation gives

h((cI + (ai3))?) = 2¢°h(I) + 2ch((ai;)) + B((ai;))ch(I) + ch(I)a((ai;))
+ B((aij)))h((aiz)) + h((ai))a((aiz))-

This implies that

(2.33) (el + (aij))?) = 2¢h((ai)) + B((aiz))h((aiz)) + h((aiz))a((aiy))-
On the other hand, we also have

(2.34) h((cI + (ai;))?) = h(c*I) + 2h(c(ai;)) + h((ai;)?).

From relations (2.33) and (2.34), we obtain

(2.35) h((ai;)?) = h((ai;))e((aiz)) + B((ai;))h((ai;)).

In the view of proof of [2, Theorem 4] we get at least two of I + (a;;) + (bw1),2I +
(@iz) + (brr), 31 + (@i;) + (br1), 41 + (ai;) + (br) are invertible. Indeed, assume that
col + (aij) + (bi1) is not invertible for ¢y € {1,2,3,4}. Let 0 # a € D be the 4, j
entry of (a;;) and let 0 # b € D be the k, [ entry of (by;). There are some cases that
can occur (throughout these cases, we assume ¢ € {1,2,3,4} — {co}).

Case 1: ¢ = j = k = . In this case, we can see that col + (ai;) + (b)) = col +
(aii) + (bii), so that det(col + (ai) + (bi)) = e~ (co + a +b) = 0, which implies
that cg = —(a + b). However, det(cl + (ai;) + (b)) # 0, and so eI + (a;;) + (by;) is
invertible for three values of c.

Case 2: i = j,k # . Here, since the k,[ entry is the only nonzero entry outside
of the main diagonal, we know det(col + (as) + (brt)) = co~ ' (co + a) = 0 and
hence, we must have ¢y = —a. Again, we have det(cl + (a;;) + (bxr)) # 0, and so
el + (ai;) + (byy) is invertible for three values of c.

Case 3: i = j,k = 1,7 # k. In this case, det(col + (ai) + (brx)) equals ¢f~2(co +
a)(co+b) or ¢f2(co+b)(co +a). Either way, this implies that co = —a or ¢y = —b.
Without loss of generality assume ¢y = —a. Then we have ¢l + (a;;) + (bg) is
invertible for ¢ # —b; that is, ¢l + (a;;) + (brk) is invertible for at least two values
of c.

Case 4: i # j,k # l. Suppose det(col + (a;;) + (b)) = 0, we must have that
i =1,j =k, in which case, det(col + (a;;) + (bj;)) equals ¢f (3 + (—1)"*Iab) or
e 2(c2 + (—1)"*7ba). This forces that ¢ equals —(—1)"*/ab or —(—1)"*/ba. If the
characteristic of D is 5 or 7, then we have that 12 = 42 or 32 = 42, respectively,
which implies that ¢ + (a;;) + (bj;) is invertible for at least two values of c. For any
other characteristic, we have that ¢l + (a;;) + (b;;) is invertible for three values of c.
In any case, we can see that at least two of I + (a;;) + (bxt), 21 + (as;) + (brt), 31 +
(aij) + (brr), 41 + (ai;) + (bg) are invertible.

Also if el + (aij) + (be) and ¢ T 4 (aij) + () for ¢,¢ € {1,2,3}, then (c+¢ )T +
(ai;) + (bwr) is invertible ¢ € {1,2,3}. Now by using the additivity of h and the
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fact that h(I) = 0, we obtain

h((el + (aiz) + (bi))?) = Blel + (aij) + (b)) h(el + (aij) + (bar))
+  hlcl + (au) (brt)) + alel + (al]) (br1))
= (el + B(ay;) + B(br))(ch(I) + hai;) + h(bk))
+  (ch(I) + h(ai;) + h(br))(cI + aaij) + (b))

+ B(bri)h(ais) + h(aij)o(brr)) + h(br)a(ai;).

On the other hand, we can find that
h((el + (aij) + (bia))?)

2ch((aij)) + 2¢h (b)) + h((aij)?) + h((bri)?)
+ h(aijbkl + bklaij)c

Combing the above two systems we arrive at
(2.36) h(aijbri+braij) = hlaij)o(br))+B(ai;)h(brr) +h(bri)a(ais) + B (bei) h(ais).

Thus, h is a Jordan (a, 8)-derivation. Thus by [7, Corollary 1], we find that h is an
(c, B) derivation. Henceforward, the proof is follows by the last paragraph of the
proof of Theorem 2.1. The proof of the theorem is completed. O

The next result is a generalization of [2, Corollary 5].

Corollary 2.8. Let D be a division ring with char(D) # 2,3. Let R = M,,(D) be
the ring of n x n matrices over D with n > 2 and «, § : R — R be automorphisms
of D. If f: R — R is an additive map satisfying the identity

(2.37) f(@)a(z™h) + B(x)f(x~1) =0, for all z € R*.
Then, f is an («, 8)-derivation.

Corollary 2.9. Let D be a division ring with char(D) # 2,3. Let R = M,,(D) be
the ring of n X n matrices over D with n > 2 and a : R — R be automorphisms of
D. If f: R— R is an additive map satisfying the identity

(2.38) f@)z™ 4+ B(z)f(z~') =0, for all x € R*.
Then, f is a S-derivation (skew derivation) associated with the automorphism /.
The following corollary is a generalization of [2, Corollary 6].

Corollary 2.10. Let R be a simple Artinian ring with char(R) # 2,3. Let «, 3 :
R — R be automorphisms of D. If f,g : R — R are additive maps satisfying the
identity

(2.39) f(@)a(z™) + B(x)g(x~") = 0 for all 2 € R*.

Then, f(z) = B(x)q + d(z) and g(z) = —qa(z) + §(x), where § : R — R is an
(a, B)-derivation and ¢ € R is a fixed element.

The next theorem is a common generalization of [3, Theorem 1].

R(PT + 2¢(aij) + 2¢(br) + (aij)? + (bk1)? + (aij) (b)) +

2ch((as;)) + 2ch(br) + h((ai;)?) + h((br:)?) + Blaij)h(br:)

(br1) (aij))
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Theorem 2.11. Let D be a division ring with center Z (D) such that char(D) # 2.
Next, let o, 8 : D — D be automorphisms of D and [ € D, a € D* be fixed
elements. Suppose f: D — D is an additive map satisfying the identity

f(@)a(y) + B(z)f(y) =1 for all x,y € D such that zy = a.

Then f(x) = B(x)q + 0(z) for all z € D, where § : D — D is an (a, §)-derivation
and g € Z(D).

Proof. By the assumption, we have

(2.40) f(@)a(y) + B(z)f(y) =1 for all z,y € D.
Substituting z~'a for y in the above relation, we obtain
(2.41) f@)a(z™ a) + Blx) f(zta) =1

Multiplying both sides of the pervious expressions from the right-hand side by
a(a™1), we obtain

(2.42) fl@a(z™) + B(2)f(z a)a(a™) = la(a™").

This implies that

(2.43) f@)a(@™) + Blz)(f(z ™ a)a(a™) = Bla™H)la(a™)) = 0.

Since f, o and 3 are additive maps, we define g(x) = f(za)a(a™!) — B(x)la(a™1).
Then, the above relation reduces to

(2.44) f(@)a(z™h) + B(x)g(z™) = 0 for all z € D*.

In view of Theorem 2.1, we conclude that f(x) = B(z)g + 6(z) where ¢ is a fixed
element of D and 6 : D — D is an («, §)-derivation. Now it remains to prove that
g € Z(D). From Eq. (2.40), we find that

I = f@aa(za) +fz™")f(za),
= (Ba g+ d(z7))a(za) + B(a™")(B(za)g + d(za)))
)

= Bla)ga(za) + 6(z~ )a(za) + Ba)g + B(z~")é(za)

= Blaga(za) +(z~ )a(za) + Bz~ 1)d(x)a(a) + B(a)g + 6(a)
= BlaNga(za) + (6(z~ () + Blz~1)d(x))a(a) + B(a)g + (a)
= Bla”ga(za) + (5(z~ x))a(a) + Bla)g + d(a)

= B(z7Y)ga(za) +6(1)a(a) + B(a)g + &(a)

= Bz YHga(za) + f(a) for all z € D*.

Notice that for any (a,3)-derivation 6, 0 = 6(1) = §(z.x™!) = §(x)a(z™1) +
B(z)d(x~1t). Therefore, the above expression gives f(z~1)ga(xa) = | — f(a). This
gives qa(za) = B(x)b, where we set b = [ — f(a). Substituting tx for x where t € D*,
we obtain

qoltza) = Bl
qa(t)a(z)ala) = p(t)SB(x)b
= B(t)ga(za).

This implies that (ga(t) — B(t)q)a(x)a(a) = 0 for all z,t € D, ie., (qa(t) —
B(t)g)Da(a) = {0}. Since « is an automorphism and ¢ € D*, the last relation
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gives qa(t) = B(t)q for all ¢ € D* id.e., [g,tlag = 0 for all ¢ € D*. In view
of [8, Lemma 2.5], for U = R, we conclude that ¢ € Z(D). This proves the theorem
completely. O

Corollary 2.12. Let D be a division ring with center Z(D) such that char(D) # 2.
Next, let o, 8 : D — D be automorphisms, a € D* be a fixed element, and let
f D — D be an additive map satisfying the identity

(2.45) f(@)a(y) + B(z)f(y) = f(a) for all z,y € D such that zy = a.

Then, f is an (a, 8)-derivation.

Corollary 2.13. Let D be a division ring with center Z(D) such that char(D) # 2.
Next, let « : D — D be automorphisms, a € D* be fixed elements, and let
f: D — D be an additive map satisfying the identity

(2.46) f(@)a(y) +zf(y) = f(a) for all z,y € D such that zy = a.

Then, f is an a-derivation(skew derivation).

Corollary 2.14. Let D be a division ring with center Z(D) such that char(D) # 2.
Next, let a € D* be fixed elements and f : D — D be an additive map satisfying
the identity

(2.47) f@)y+zf(y) = f(a) for all x,y € D such that zy = a.

Then, f is a derivation.
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