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ON SOME ADDITIVE MAPPINGS ON DIVISION RINGS

A. Y. ABDELWANIS AND S. ALI

Abstract. Let D be a division ring such that char(D) 6= 2 and α, β : D → D

be automorphisms of D. The main purpose of this paper is to characterizes
additive maps f and g satisfying the identity f(x)α(x−1) + β(x)g(x−1) = 0

for all 0 6= x ∈ D. As an application, we describe the structure of an additive

map f satisfying the identity f(x)α(y) + β(x)f(y) = l for all x, y ∈ D such
that xy = a, where l, a ∈ D and a is nonzero. With this, many known results

can be either generalized or deduced. In particular, we generalized the results
proved in [2] and [3], respectively.

1. Introduction

Throughout, D will represent a division ring with a center Z(D). For any x, y ∈
D, the symbol [x, y] will denote the commutator xy− yx while the symbol [x, y]α,β
will denote the (α, β)-commutator xα(y)−β(y)x, where α and β are endomorphisms
of D. Recall that a derivation of a ring D is an additive map δ : D → D if
δ(xy) = δ(x)y + xδ(y) for all x, y ∈ D. A derivation δ is said to be inner if there
exists a ∈ D such that δ(x) = [a, x] for all x ∈ D.

Let α and β be the endomorphisms of D. An additive map δ : D → D is
called an α-derivation if δ(xy) = δ(x)α(y) + xδ(y) for all x, y ∈ D. In literature,
α-derivations are also called skew derivations(see [6] for details). Given a ∈ D, the
map δ : D → D such that δ(x) = aα(x) − xa for all x ∈ D. Obviously defines
an α-derivation, called the inner α-derivation associated with a ∈ D. Analogously,
we define β-derivations and the inner β-derivations. Note that for ID the identity
map on D, α-derivations (respectively, β-derivations) are merely ordinary deriva-
tions. Moreover, if α 6= ID, then δ = ID − α is an α-derivation. An additive
map δ : D → D is called an (α, β)-derivation if δ(xy) = δ(x)α(y) + β(x)δ(y) for
all x, y ∈ D. An additive map δ : D → D is called a Jordan (α, β)-derivation if
δ(x2) = δ(x)α(x) + β(x)δ(x) for all x ∈ D(see [5] for details). For a fixed element
a ∈ D, the map δa : D → D is given by δa(x) = [a, x]α,β for all x ∈ D, is an (α, β)-

MSC(2010): 16R60, 16W10

Keywords: Division ring, derivation, (α, β)-derivation, functional identity

Received: 11 March 2021, Accepted: 13 September 2021.

∗Corresponding author .

101



102 ABDELWANIS AND ALI

derivation which is said to be an inner (α, β)-derivation. An (ID, ID)-derivation
is just a derivation. It is clear that every derivation is an (α, β)-derivation with
α = β = ID. However, the converse need not be true in general. For example, if
D has a nontrivial central idempotent e and take δ(x) = ex for all x ∈ D. Next,
consider α(x) = (1 − e)x for all x ∈ D and β = ID. Then, it is straightforward
to check that δ is an (α, β)-derivation, but not a derivation. Clearly, this notion
includes those of α-derivations (β-derivations) when β = ID(respectively, α = ID)
and of derivation which is the case when α = β = ID.

In [2], Catalano studied special types of functional identities (see [1] for details)
and characterized additive maps f and g satisfying the identity of the form

(1.1) f(x)x−1 + xg(x−1) = 0 for all 0 6= x ∈ D
on a division and a simple Artinian ring. It follows from Catalano result [2, Theo-
rems 1, 4] that the additive maps f and g that satisfy identity (1.1) on a division ring
or a simple Artinian ring D must be of the form f(x) = xq+δ(x), g(x) = −qx+δ(x)
where q is a fixed element of D and δ : D → D is a derivation. In fact, if g = f it
follows from [2, Corollary 3] that f is a derivation. Further, he studied the identity
of the form

(1.2) f(x)y + xf(y) = l for all x, y ∈ D,
where l, a ∈ D are fixed elements such that xy = a 6= 0. It follows from Catalano
result [3, Theorem 1] that the additive map f that satisfy identity (1.2) on a division
ring D must be of the form f(x) = xq + δ(x). where q is a fixed element of D and
δ : D → D is a derivation. In case f is derivable at a i.e., f satisfies the identity (1.2)
with l = f(a) and a = xy, it follows from [ [3], Corollary 2] that f is a derivation.
This study showed that the above functional identities have close connection with
derivations and Jordan derivations (viz.; [5]).

The present paper is motivated by the above mentioned identities. Our goal
is to study some suitable generalizations of these results. More precisely, we study
following identity

(1.3) f(x)α(x−1) + β(x)g(x−1) = 0 for all 0 6= x ∈ D,
where α, β : D → D are automorphisms of D. We also discuss the case when g = f
and conclude that f is an (α, β)-derivation.

In the second part, we consider the functional identity of the form

(1.4) f(x)α(y) + β(x)f(y) = l,

on a division ring D for all x, y ∈ D where l, a ∈ D are fixed elements such that
0 6= a = xy, and α, β : D → D are automorphisms. Further, we consider the case
when additive map f satisfies the identity (1.4) with l = f(a) and xy = a, f is
an (α, β)-derivable, and we find that f is an (α, β)-derivation. In fact, our results
unify, extend and complement those theorems obtained in [2] and [3], respectively.

The following facts are important and pertinent in our discussions. First one
is a well known identity due to Hua’s [4] whereas the last one is the commutator
identity.

Fact 1.1. Let t, z be any two elements of a division ring D with tz 6= 0, 1. Then,

t− (t−1 + (z−1 − t)−1)−1 = tzt.
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Fact 1.2. Replacing z by −z−1 gives another equivalent form of above identity

(t+ tz−1t)−1 + (t+ z)−1 = t−1.

Fact 1.3. Let r, s, t be any three elements of a division ring D and automorphisms
α, β of D. Then,

[r, st]α,β = [r, s]α,βα(t) + β(s)[r, t]α,β and

[rs, t]α,β = r[s, t]α,β + [r, β(t)]s = r[s, α(t)] + [r, t]α,βs.

2. Main Results

We begin the discussions with our first main result of the present paper.

Theorem 2.1. Let D be a division ring with char(D) 6= 2, α, β : D → D be
automorphisms of D and let f, g : D → D be additive maps satisfying the identity

(2.1) f(x)α(x−1) + β(x)g(x−1) = 0

for all x ∈ D×, where D× is the set of invertible elements of D. Then f(x) =
β(x)q + δ(x) and g(x) = −qα(x) + δ(x) for all x ∈ D×, where δ : D → D is an
(α, β)-derivation and q ∈ D is a fixed element.

Proof. We are given that f, g : D → D be additive maps and α, β : D → D are
automorphisms such that

(2.2) f(x)α(x−1) + β(x)g(x−1) = 0

for every x ∈ D×. Since α and β are automorphisms of D, the above expression
yield the following

(2.3) f(x) = −β(x)g(x−1)(α(x−1))−1 = −β(x)g(x−1)α(x),

(2.4) g(x−1) = −(β(x))−1f(x)α(x−1) = −β(x−1)f(x)α(x−1)

(2.5) f(1) = −g(1).

In view of Fact 1.1, substitute c = t − tzt for x and c−1 = t−1 + (z−1 − t)−1 for
some elements t, z ∈ D×, where tz 6= 1 in Eq. (2.3), to get

f(c) = −β(c)g(t−1 + (z−1 − t)−1)α(c).

Since g is additive, the above expression gives

f(c) = −β(c)g(t−1)α(c)− β(c)g((z−1 − t)−1)α(c).(2.6)

Expelling g from the equation by applying (2.4), we obtain
(2.7)
f(c) = β(c)β(t−1)f(t)α(t−1)α(c)+β(c)β((z−1− t)−1)f(z−1− t)α((z−1− t)−1)α(c).

In view of Fact (1.1), we have (z−1 − t)−1 = c−1 − t−1 (where c = t − tzt) and
hence we conclude that
(2.8)
f(t− tzt) = f(t)− f(t)α(zt)− β(tz)f(t) + β(tz)f(t)α(zt) + β(tz)f(z−1 − t)α(zt).

This implies that

(2.9) f(tzt) = f(t)α(zt) + β(tz)f(t)− β(tz)f(z−1)α(zt).

Application of (2.3) yields

(2.10) f(tzt) = f(t)α(zt) + β(tz)f(t) + β(t)g(z)α(t).



104 ABDELWANIS AND ALI

Similarly, we can obtain

(2.11) g(tzt) = g(t)α(zt) + β(tz)g(t) + β(t)f(z)α(t).

Now put t = 1, z = x in Eqs.(2.10),(2.11) and use the fact that α(1) = 1, β(1) = 1
together with (2.5), we get

(2.12) f(x) = f(1)α(x) + β(x)f(1) + g(x),

(2.13) g(x) = g(1)α(x) + β(x)g(1) + f(x).

Again taking t = x, z = 1 in Eqs.(2.10),(2.11) and using the fact that α(1) =
1, β(1) = 1 and f(1) = −g(1) we obtain

(2.14) f(x2) = f(x)α(x) + β(x)f(x)− β(x)f(1)α(x),

Also, we can obtain

(2.15) g(x2) = g(x)α(x) + β(x)g(x)− β(x)g(1)α(x).

Adding Eqs. (2.14) and (2.15), and using the fact that f and g are additive, we
arrive at

(2.16) (f + g)(x2) = (f + g)(x)α(x) + β(x)(f + g)(x)− β(x)(f(1) + g(1))α(x).

Since f and g are additive maps, so we take h = f + g and we obtain

h(x2) = h(x)α(x) + β(x)h(x)− β(x)(f(1) + g(1))α(x).

Application of (2.5) gives

(2.17) h(x2) = h(x)α(x) + β(x)h(x) for all x ∈ D×.

Thus h is a Jordan (α, β)-derivation on D. Hence, in view of [ [7], Corollary 1] we
conclude that h is an (α, β)-derivation on D. Adding f(x) to the both sides of Eq.
(2.12), we get

(2.18) 2f(x) = 2β(x)f(1) + [f(1), x]α,β + h(x)

where [f(1), x]α,β = f(1)α(x) − β(x)f(1) for all x ∈ D×. In view of Fact 1.3, we
set the (α, β)-derivation δ : D → D by 2δ(x) = [f(1), x]α,β + h(x)) for all x ∈ D×.
Then, we find that f(x) = β(x)q + δ(x) and g(x) = −qα(x) + δ(x) for all x ∈ D×,
where q := f(1). This completes the proof of theorem. �

Following are the immediate consequences of above theorem.

Corollary 2.2. Let D be a division ring with char(D) 6= 2, α, β : D → D be
automorphisms. Next, let f : D → D be an additive map satisfying the identity

(2.19) f(x)α(x−1) + β(x)f(x−1) = 0 for all x ∈ D×.

Then, f is an (α, β)-derivation.

Corollary 2.3. Let D be a division ring with char(D) 6= 2 and α : D → D be an
automorphism of D. Next, let f : D → D be additive map satisfying the identity

(2.20) f(x)α(x−1) + xf(x−1) = 0 for all x ∈ D×.

Then, f is an α-derivation (skew derivation) associated with the automorphism α.
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Corollary 2.4. Let D be a division ring with char(D) 6= 2 and β : D → D be an
automorphism of D. Next, let f : D → D be additive map satisfying the identity

(2.21) f(x)x−1 + β(x)f(x−1) = 0 for all x ∈ D×.

Then, f is a β-derivation(skew derivation) associated with the automorphism β.

Corollary 2.5 ( [2], Theorem 1). Let D be a division ring with char(D) 6= 2.
Next, let f, g : D → D be additive maps satisfying the identity

f(x)x−1 + xg(x−1) = 0 for all x ∈ D×.

Then f(x) = xq + δ(x) and g(x) = −qx + δ(x), where δ : D → D is a derivation
and q ∈ D is a fixed element.

Our next theorem deals with the matrix case.

Theorem 2.6. Let D be a division ring with char(D) 6= 2, 3. Let R = Mn(D) be
the ring of n× n matrices over D with n ≥ 2 and α, β : R→ R be automorphisms
of D. If f, g : R→ R are additive maps satisfying the identity

(2.22) f(x)α(x−1) + β(x)g(x−1) = 0 for all ∈ R×

where R× is the set of invertible elements of R. Then f(x) = β(x)q + δ(x) and
g(x) = −qα(x) + δ(x), where δ : R→ R is an (α, β)-derivation and q ∈ R is a fixed
element.

To prove the above theorem, we need the following result.

Proposition 2.7. Let D be a unital ring which contains the elements 2, 3 and their
inverses and α, β : D → D be automorphisms of D. Next, let
H = {x ∈ R : x and x + c are invertable for every c = 1, 2 or 3}. If additive maps
f, g : D → D satisfying the identity

(2.23) f(x)α(x−1) + β(x)g(x−1) = 0 for all x ∈ D×,

then an additive map h := f + g must of the form

(2.24) h(x2) = h(x)α(x) + β(x)h(x) for all x ∈ H.

Proof. We follow the arguments of [2, Lemma 7]. Let x and x+ c be two elements
as given in the statement of the proposition. We note that x−1 − (x + c)−1 =
cx−1(x+ c)−1, which leads to

(2.25) (x−1 − (x+ c)−1)−1 = c−1x2 + x.

Then, for any a, b ∈ D, we have f(a− b) = f(a)− f(b), since f is an additive map.
Presently, assuming that a and b are both invertible elements of D and utilizing
Eq. (2.3), which is the equal type of the property expected in the proposition, then
we can see that

(2.26) β(a− b)g((a− b)−1)α(a− b) = β(a)g(a−1)α(a)− β(b)g(b−1)α(b).

Multiplying by β((a− b)−1) from left and by α((a− b)−1) from right to the above
relation and using the fact that α(1) = 1 = β(1), we get

g((a− b)−1) = β((a− b)−1)β(a)g(a−1)α(a)α((a− b)−1)

− β((a− b)−1)β(b)g(b−1)α(b)α((a− b)−1).
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Replace a by x−1 and b by (x + c)−1 in the pervious equation and use Eq. (2.25)
to get

(2.27) g(c−1x2 + x) = β(c−1x+ 1)g(x)α(c−1x+ 1)− β(c−1x)g(x+ c)α(c−1x).

This implies that

c−1g(x2) + g(x) = β(c−1x)g(x)α(c−1x) + β(c−1x)g(x) + g(x)α(c−1x) + g(x)

− β(c−1x)g(x)α(c−1x)− β(c−1x)g(1)α(c−1x).

But by using α(c) = β(c) = c and simplifying the last equation gives us identity
(2.15). Replacing x with x−1 and using Eq. (2.6) gives us identity (2.14). Now
define h = f + g and summing Eqs. (2.14) and (2.15), we can see that

(2.28) h(x2) = β(x)h(x) + h(x)α(x) + β(x)h(1)α(x).

Now, substituting x = 1 in above expression, we get h(1) = 3h(1) and therefore
2h(1) = 0. This implies that h(1) = 0, since R contains the element 2−1. Hence, we
arrive at

(2.29) h(x2) = β(x)h(x) + h(x)α(x) for allx ∈ H.

This proves the proposition. �

Now we are ready to prove our second main result. Here it is important to
mention that a careful scrutiny of the proof of Theorem 2.6 below shows that the
proof runs on similar lines to [ [2], Theorem 4] with necessary variations, but we
write here just for sake of completeness.

Proof. of Theorem 2.6. Let D be a division ring, R = Mn(D), and f, g : R→ R be
additive maps such that

(2.30) f(x)α(x−1) + β(x)g(x−1) = 0 for all x ∈ R×.

Let us define (aij) ∈ R be such that the (i, j) entry is an invertible element a of D
and all other entries are zero. Now as in the proof of [ [2], Theorem 4] we get at
least three of I+(aij), 2I+(aij), 3I+(aij), 4I+(aij) are invertible. If c0I+(aij) is
not invertible for c0 ∈ {1, 2, 3, 4}, then we conclude that det(c0I+(aij)) = 0, where
by ”det” we mean the Dieudonne determinant. Since there is at most one nonzero
entry that does not occur along the main diagonal, we know det(c0I + (aij)) is
exactly the product of the elements along the main diagonal of c0I + (aij). Hence,
det(c0I + (aij)) = 0 implies one of the diagonal entries of c0I + (aij) is zero; that
is, i = j and c0 + a = 0. Suppose that c ∈ {1, 2, 3, 4} is different from c0, then we
have c+ a 6= 0, and thus, we have det(cI + (aij)) 6= 0; that is, cI + aij is invertible
for every c ∈ {1, 2, 3, 4} − {c0}, as desired.

Also we have if cI + (aij) and c
′
I + (aij) for c, c

′ ∈ {1, 2, 3}, then (c+ c
′
)I + (aij)

is invertible. In view of Proposition 2.7 and definition of Jordan (α, β)-derivation,
we find that

(2.31) h((cI + (aij))
2) = h(cI + (aij))α(cI + (aij)) + β(cI + (aij))h(cI + (aij))

Since h is additive, the above expression yields

(2.32) h((cI+(aij))
2) = (ch(I)+h(aij))(cI+α(aij))+(cI+β((aij))(ch(I)+h(aij))



ON SOME ADDITIVE MAPPINGS ON DIVISION RINGS 107

The above relation gives

h((cI + (aij))
2) = 2c2h(I) + 2ch((aij)) + β((aij))ch(I) + ch(I)α((aij))

+ β((aij)))h((aij)) + h((aij))α((aij)).

This implies that

(2.33) h((cI + (aij))
2) = 2ch((aij)) + β((aij)))h((aij)) + h((aij))α((aij)).

On the other hand, we also have

(2.34) h((cI + (aij))
2) = h(c2I) + 2h(c(aij)) + h((aij)

2).

From relations (2.33) and (2.34), we obtain

(2.35) h((aij)
2) = h((aij))α((aij)) + β((aij))h((aij)).

In the view of proof of [2, Theorem 4] we get at least two of I + (aij) + (bkl), 2I +
(aij) + (bkl), 3I + (aij) + (bkl), 4I + (aij) + (bkl) are invertible. Indeed, assume that
c0I + (aij) + (bkl) is not invertible for c0 ∈ {1, 2, 3, 4}. Let 0 6= a ∈ D be the i, j
entry of (aij) and let 0 6= b ∈ D be the k, l entry of (bkl). There are some cases that
can occur (throughout these cases, we assume c ∈ {1, 2, 3, 4} − {c0}).
Case 1: i = j = k = l. In this case, we can see that c0I + (aij) + (bkl) = c0I +

(aii) + (bii), so that det(c0I + (aii) + (bii)) = cn−1
0 (c0 + a + b) = 0, which implies

that c0 = −(a+ b). However, det(cI + (aii) + (bii)) 6= 0, and so cI + (aii) + (bii) is
invertible for three values of c.
Case 2: i = j, k 6= l. Here, since the k, l entry is the only nonzero entry outside
of the main diagonal, we know det(c0I + (aii) + (bkl)) = cn−1

0 (c0 + a) = 0 and
hence, we must have c0 = −a. Again, we have det(cI + (aii) + (bkk)) 6= 0, and so
cI + (aii) + (bkk) is invertible for three values of c.
Case 3: i = j, k = l, i 6= k. In this case, det(c0I + (aii) + (bkk)) equals cn−2

0 (c0 +
a)(c0 + b) or cn−2

0 (c0 + b)(c0 +a). Either way, this implies that c0 = −a or c0 = −b.
Without loss of generality assume c0 = −a. Then we have cI + (aii) + (bkk) is
invertible for c 6= −b; that is, cI + (aii) + (bkk) is invertible for at least two values
of c.
Case 4: i 6= j, k 6= l. Suppose det(c0I + (aij) + (bkl)) = 0, we must have that

i = l, j = k, in which case, det(c0I + (aij) + (bji)) equals cn−2
0 (c20 + (−1)i+jab) or

cn−2
0 (c20 + (−1)i+jba). This forces that c20 equals −(−1)i+jab or −(−1)i+jba. If the

characteristic of D is 5 or 7, then we have that 12 = 42 or 32 = 42, respectively,
which implies that cI+(aij)+(bji) is invertible for at least two values of c. For any
other characteristic, we have that cI+(aij)+(bji) is invertible for three values of c.
In any case, we can see that at least two of I + (aij) + (bkl), 2I + (aij) + (bkl), 3I +
(aij) + (bkl), 4I + (aij) + (bkl) are invertible.

Also if cI + (aij) + (bkl) and c
′
I + (aij) + (bkl) for c, c

′ ∈ {1, 2, 3}, then (c+ c
′
)I +

(aij) + (bkl) is invertible c
′ ∈ {1, 2, 3}. Now by using the additivity of h and the
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fact that h(I) = 0, we obtain

h((cI + (aij) + (bkl))
2) = β(cI + (aij) + (bkl))h(cI + (aij) + (bkl))

+ h(cI + (aij) + (bkl)) + α(cI + (aij) + (bkl))

= (cI + β(aij) + β(bkl))(ch(I) + h(aij) + h(bkl))

+ (ch(I) + h(aij) + h(bkl))(cI + α(aij) + α(bkl))

= 2ch((aij)) + 2ch(bkl) + h((aij)
2) + h((bkl)

2) + β(aij)h(bkl)

+ β(bkl)h(aij) + h(aij)α(bkl)) + h(bkl)α(aij).

On the other hand, we can find that

h((cI + (aij) + (bkl))
2) = h(c2I + 2c(aij) + 2c(bkl) + (aij)

2 + (bkl)
2 + (aij)(bkl) + (bkl)(aij))

= 2ch((aij)) + 2ch((bkl)) + h((aij)
2) + h((bkl)

2)

+ h(aijbkl + bklaij).

Combing the above two systems we arrive at

(2.36) h(aijbkl+bklaij) = h(aij)α(bkl))+β(aij)h(bkl)+h(bkl)α(aij)+β(bkl)h(aij).

Thus, h is a Jordan (α, β)-derivation. Thus by [7, Corollary 1], we find that h is an
(α, β) derivation. Henceforward, the proof is follows by the last paragraph of the
proof of Theorem 2.1. The proof of the theorem is completed. �

The next result is a generalization of [2, Corollary 5].

Corollary 2.8. Let D be a division ring with char(D) 6= 2, 3. Let R = Mn(D) be
the ring of n× n matrices over D with n ≥ 2 and α, β : R→ R be automorphisms
of D. If f : R→ R is an additive map satisfying the identity

(2.37) f(x)α(x−1) + β(x)f(x−1) = 0, for all x ∈ R×.

Then, f is an (α, β)-derivation.

Corollary 2.9. Let D be a division ring with char(D) 6= 2, 3. Let R = Mn(D) be
the ring of n× n matrices over D with n ≥ 2 and α : R→ R be automorphisms of
D. If f : R→ R is an additive map satisfying the identity

(2.38) f(x)x−1 + β(x)f(x−1) = 0, for all x ∈ R×.

Then, f is a β-derivation (skew derivation) associated with the automorphism β.

The following corollary is a generalization of [2, Corollary 6].

Corollary 2.10. Let R be a simple Artinian ring with char(R) 6= 2, 3. Let α, β :
R → R be automorphisms of D. If f, g : R → R are additive maps satisfying the
identity

(2.39) f(x)α(x−1) + β(x)g(x−1) = 0 for all x ∈ R×.

Then, f(x) = β(x)q + δ(x) and g(x) = −qα(x) + δ(x), where δ : R → R is an
(α, β)-derivation and q ∈ R is a fixed element.

The next theorem is a common generalization of [3, Theorem 1].
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Theorem 2.11. Let D be a division ring with center Z(D) such that char(D) 6= 2.
Next, let α, β : D → D be automorphisms of D and l ∈ D, a ∈ D× be fixed
elements. Suppose f : D → D is an additive map satisfying the identity

f(x)α(y) + β(x)f(y) = l for all x, y ∈ D such that xy = a.

Then f(x) = β(x)q + δ(x) for all x ∈ D, where δ : D → D is an (α, β)-derivation
and q ∈ Z(D).

Proof. By the assumption, we have

(2.40) f(x)α(y) + β(x)f(y) = l for all x, y ∈ D.
Substituting x−1a for y in the above relation, we obtain

(2.41) f(x)α(x−1a) + β(x)f(x−1a) = l

Multiplying both sides of the pervious expressions from the right-hand side by
α(a−1), we obtain

(2.42) f(x)α(x−1) + β(x)f(x−1a)α(a−1) = lα(a−1).

This implies that

(2.43) f(x)α(x−1) + β(x)(f(x−1a)α(a−1)− β(x−1)lα(a−1)) = 0.

Since f, α and β are additive maps, we define g(x) = f(xa)α(a−1)− β(x)lα(a−1).
Then, the above relation reduces to

(2.44) f(x)α(x−1) + β(x)g(x−1) = 0 for all x ∈ D×.

In view of Theorem 2.1, we conclude that f(x) = β(x)q + δ(x) where q is a fixed
element of D and δ : D → D is an (α, β)-derivation. Now it remains to prove that
q ∈ Z(D). From Eq. (2.40), we find that

l = f(x−1)α(xa) + β(x−1)f(xa),

= (β(x−1)q + δ(x−1))α(xa) + β(x−1)(β(xa)q + δ(xa)))

= β(x−1)qα(xa) + δ(x−1)α(xa) + β(a)q + β(x−1)δ(xa)

= β(x−1)qα(xa) + δ(x−1)α(xa) + β(x−1)δ(x)α(a) + β(a)q + δ(a)

= β(x−1)qα(xa) + (δ(x−1)α(x) + β(x−1)δ(x))α(a) + β(a)q + δ(a)

= β(x−1)qα(xa) + (δ(x−1x))α(a) + β(a)q + δ(a)

= β(x−1)qα(xa) + δ(1)α(a) + β(a)q + δ(a)

= β(x−1)qα(xa) + f(a) for all x ∈ D×.

Notice that for any (α, β)-derivation δ, 0 = δ(1) = δ(x.x−1) = δ(x)α(x−1) +
β(x)δ(x−1). Therefore, the above expression gives β(x−1)qα(xa) = l − f(a). This
gives qα(xa) = β(x)b, where we set b = l−f(a). Substituting tx for x where t ∈ D×,
we obtain

qα(txa) = β(tx)b,

qα(t)α(x)α(a) = β(t)β(x)b

= β(t)qα(xa).

This implies that (qα(t) − β(t)q)α(x)α(a) = 0 for all x, t ∈ D, i.e., (qα(t) −
β(t)q)Dα(a) = {0}. Since α is an automorphism and a ∈ D×, the last relation
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gives qα(t) = β(t)q for all t ∈ D× i.e., [q, t]α,β = 0 for all t ∈ D×. In view
of [8, Lemma 2.5], for U = R, we conclude that q ∈ Z(D). This proves the theorem
completely. �

Corollary 2.12. Let D be a division ring with center Z(D) such that char(D) 6= 2.
Next, let α, β : D → D be automorphisms, a ∈ D× be a fixed element, and let
f : D → D be an additive map satisfying the identity

(2.45) f(x)α(y) + β(x)f(y) = f(a) for all x, y ∈ D such that xy = a.

Then, f is an (α, β)-derivation.

Corollary 2.13. Let D be a division ring with center Z(D) such that char(D) 6= 2.
Next, let α : D → D be automorphisms, a ∈ D× be fixed elements, and let
f : D → D be an additive map satisfying the identity

(2.46) f(x)α(y) + xf(y) = f(a) for all x, y ∈ D such that xy = a.

Then, f is an α-derivation(skew derivation).

Corollary 2.14. Let D be a division ring with center Z(D) such that char(D) 6= 2.
Next, let a ∈ D× be fixed elements and f : D → D be an additive map satisfying
the identity

(2.47) f(x)y + xf(y) = f(a) for all x, y ∈ D such that xy = a.

Then, f is a derivation.
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