ON SOME ADDITIVE MAPPINGS ON DIVISION RINGS

A. Y. ABDELWANIS AND S. ALI

ABSTRACT. Let *D* be a division ring such that $\operatorname{char}(D) \neq 2$ and $\alpha, \beta : D \to D$ be automorphisms of *D*. The main purpose of this paper is to characterizes additive maps *f* and *g* satisfying the identity $f(x)\alpha(x^{-1}) + \beta(x)g(x^{-1}) = 0$ for all $0 \neq x \in D$. As an application, we describe the structure of an additive map *f* satisfying the identity $f(x)\alpha(y) + \beta(x)f(y) = l$ for all $x, y \in D$ such that xy = a, where $l, a \in D$ and *a* is nonzero. With this, many known results can be either generalized or deduced. In particular, we generalized the results proved in [2] and [3], respectively.

1. INTRODUCTION

Throughout, D will represent a division ring with a center Z(D). For any $x, y \in D$, the symbol [x, y] will denote the commutator xy - yx while the symbol $[x, y]_{\alpha,\beta}$ will denote the (α, β) -commutator $x\alpha(y) - \beta(y)x$, where α and β are endomorphisms of D. Recall that a *derivation* of a ring D is an additive map $\delta : D \to D$ if $\delta(xy) = \delta(x)y + x\delta(y)$ for all $x, y \in D$. A derivation δ is said to be *inner* if there exists $a \in D$ such that $\delta(x) = [a, x]$ for all $x \in D$.

Let α and β be the endomorphisms of D. An additive map $\delta : D \to D$ is called an α -derivation if $\delta(xy) = \delta(x)\alpha(y) + x\delta(y)$ for all $x, y \in D$. In literature, α -derivations are also called skew derivations(see [6] for details). Given $a \in D$, the map $\delta : D \to D$ such that $\delta(x) = a\alpha(x) - xa$ for all $x \in D$. Obviously defines an α -derivation, called the inner α -derivation associated with $a \in D$. Analogously, we define β -derivations and the inner β -derivations. Note that for I_D the identity map on D, α -derivations (respectively, β -derivations) are merely ordinary derivations. Moreover, if $\alpha \neq I_D$, then $\delta = I_D - \alpha$ is an α -derivation. An additive map $\delta : D \to D$ is called an (α, β) -derivation if $\delta(xy) = \delta(x)\alpha(y) + \beta(x)\delta(y)$ for all $x, y \in D$. An additive map $\delta : D \to D$ is called a Jordan (α, β) -derivation if $\delta(x^2) = \delta(x)\alpha(x) + \beta(x)\delta(x)$ for all $x \in D$ (see [5] for details). For a fixed element $a \in D$, the map $\delta_a : D \to D$ is given by $\delta_a(x) = [a, x]_{\alpha,\beta}$ for all $x \in D$, is an (α, β) -

MSC(2010): 16R60, 16W10

Keywords: Division ring, derivation, (α, β) -derivation, functional identity Received: 11 March 2021, Accepted: 13 September 2021. *Corresponding author .

derivation which is said to be an inner (α, β) -derivation. An (I_D, I_D) -derivation is just a derivation. It is clear that every derivation is an (α, β) -derivation with $\alpha = \beta = I_D$. However, the converse need not be true in general. For example, if D has a nontrivial central idempotent e and take $\delta(x) = ex$ for all $x \in D$. Next, consider $\alpha(x) = (1 - e)x$ for all $x \in D$ and $\beta = I_D$. Then, it is straightforward to check that δ is an (α, β) -derivation, but not a derivation. Clearly, this notion includes those of α -derivations (β -derivations) when $\beta = I_D$ (respectively, $\alpha = I_D$) and of derivation which is the case when $\alpha = \beta = I_D$.

In [2], Catalano studied special types of functional identities (see [1] for details) and characterized additive maps f and g satisfying the identity of the form

(1.1)
$$f(x)x^{-1} + xg(x^{-1}) = 0 \text{ for all } 0 \neq x \in D$$

on a division and a simple Artinian ring. It follows from Catalano result [2, Theorems 1, 4] that the additive maps f and g that satisfy identity (1.1) on a division ring or a simple Artinian ring D must be of the form $f(x) = xq + \delta(x), g(x) = -qx + \delta(x)$ where q is a fixed element of D and $\delta : D \to D$ is a derivation. In fact, if g = f it follows from [2, Corollary 3] that f is a derivation. Further, he studied the identity of the form

(1.2)
$$f(x)y + xf(y) = l \text{ for all } x, y \in D,$$

where $l, a \in D$ are fixed elements such that $xy = a \neq 0$. It follows from Catalano result [3, Theorem 1] that the additive map f that satisfy identity (1.2) on a division ring D must be of the form $f(x) = xq + \delta(x)$, where q is a fixed element of D and $\delta: D \to D$ is a derivation. In case f is derivable at a i.e., f satisfies the identity (1.2) with l = f(a) and a = xy, it follows from [3], Corollary 2] that f is a derivation. This study showed that the above functional identities have close connection with derivations and Jordan derivations (viz.; [5]).

The present paper is motivated by the above mentioned identities. Our goal is to study some suitable generalizations of these results. More precisely, we study following identity

(1.3)
$$f(x)\alpha(x^{-1}) + \beta(x)g(x^{-1}) = 0 \text{ for all } 0 \neq x \in D,$$

where $\alpha, \beta: D \to D$ are automorphisms of D. We also discuss the case when g = f and conclude that f is an (α, β) -derivation.

In the second part, we consider the functional identity of the form

(1.4)
$$f(x)\alpha(y) + \beta(x)f(y) = l,$$

on a division ring D for all $x, y \in D$ where $l, a \in D$ are fixed elements such that $0 \neq a = xy$, and $\alpha, \beta : D \to D$ are automorphisms. Further, we consider the case when additive map f satisfies the identity (1.4) with l = f(a) and xy = a, f is an (α, β) -derivable, and we find that f is an (α, β) -derivation. In fact, our results unify, extend and complement those theorems obtained in [2] and [3], respectively.

The following facts are important and pertinent in our discussions. First one is a well known identity due to Hua's [4] whereas the last one is the commutator identity.

Fact 1.1. Let t, z be any two elements of a division ring D with $tz \neq 0, 1$. Then, $t - (t^{-1} + (z^{-1} - t)^{-1})^{-1} = tzt.$ Fact 1.2. Replacing z by $-z^{-1}$ gives another equivalent form of above identity $(t + tz^{-1}t)^{-1} + (t + z)^{-1} = t^{-1}.$

Fact 1.3. Let r, s, t be any three elements of a division ring D and automorphisms α, β of D. Then,

$$\begin{split} [r,st]_{\alpha,\beta} &= [r,s]_{\alpha,\beta}\alpha(t) + \beta(s)[r,t]_{\alpha,\beta} \ and \\ [rs,t]_{\alpha,\beta} &= r[s,t]_{\alpha,\beta} + [r,\beta(t)]s = r[s,\alpha(t)] + [r,t]_{\alpha,\beta}s. \end{split}$$

2. Main Results

We begin the discussions with our first main result of the present paper.

Theorem 2.1. Let *D* be a division ring with $char(D) \neq 2$, $\alpha, \beta : D \to D$ be automorphisms of *D* and let $f, g : D \to D$ be additive maps satisfying the identity (2.1) $f(x)\alpha(x^{-1}) + \beta(x)g(x^{-1}) = 0$

for all $x \in D^{\times}$, where D^{\times} is the set of invertible elements of D. Then $f(x) = \beta(x)q + \delta(x)$ and $g(x) = -q\alpha(x) + \delta(x)$ for all $x \in D^{\times}$, where $\delta : D \to D$ is an (α, β) -derivation and $q \in D$ is a fixed element.

Proof. We are given that $f,g:D\to D$ be additive maps and $\alpha,\beta:D\to D$ are automorphisms such that

(2.2)
$$f(x)\alpha(x^{-1}) + \beta(x)g(x^{-1}) = 0$$

for every $x \in D^{\times}$. Since α and β are automorphisms of D, the above expression yield the following

(2.3)
$$f(x) = -\beta(x)g(x^{-1})(\alpha(x^{-1}))^{-1} = -\beta(x)g(x^{-1})\alpha(x),$$

(2.4)
$$g(x^{-1}) = -(\beta(x))^{-1} f(x) \alpha(x^{-1}) = -\beta(x^{-1}) f(x) \alpha(x^{-1})$$

(2.5)
$$f(1) = -g(1).$$

In view of Fact 1.1, substitute c = t - tzt for x and $c^{-1} = t^{-1} + (z^{-1} - t)^{-1}$ for some elements $t, z \in D^{\times}$, where $tz \neq 1$ in Eq. (2.3), to get

$$f(c) = -\beta(c)g(t^{-1} + (z^{-1} - t)^{-1})\alpha(c).$$

Since g is additive, the above expression gives

(2.6)
$$f(c) = -\beta(c)g(t^{-1})\alpha(c) - \beta(c)g((z^{-1} - t)^{-1})\alpha(c).$$

Expelling g from the equation by applying (2.4), we obtain (2.7)

 $f(c) = \beta(c)\beta(t^{-1})f(t)\alpha(t^{-1})\alpha(c) + \beta(c)\beta((z^{-1}-t)^{-1})f(z^{-1}-t)\alpha((z^{-1}-t)^{-1})\alpha(c).$ In view of Fact (1.1), we have $(z^{-1}-t)^{-1} = c^{-1} - t^{-1}$ (where c = t - tzt) and hence we conclude that (2.8)

$$f(t - tzt) = f(t) - f(t)\alpha(zt) - \beta(tz)f(t) + \beta(tz)f(t)\alpha(zt) + \beta(tz)f(z^{-1} - t)\alpha(zt)$$

This implies that

(2.9)
$$f(tzt) = f(t)\alpha(zt) + \beta(tz)f(t) - \beta(tz)f(z^{-1})\alpha(zt).$$

Application of (2.3) yields

(2.10)
$$f(tzt) = f(t)\alpha(zt) + \beta(tz)f(t) + \beta(t)g(z)\alpha(t).$$

Similarly, we can obtain

(2.11)
$$g(tzt) = g(t)\alpha(zt) + \beta(tz)g(t) + \beta(t)f(z)\alpha(t)$$

Now put t = 1, z = x in Eqs.(2.10),(2.11) and use the fact that $\alpha(1) = 1, \beta(1) = 1$ together with (2.5), we get

(2.12)
$$f(x) = f(1)\alpha(x) + \beta(x)f(1) + g(x),$$

(2.13)
$$g(x) = g(1)\alpha(x) + \beta(x)g(1) + f(x).$$

Again taking t = x, z = 1 in Eqs.(2.10),(2.11) and using the fact that $\alpha(1) = 1$, $\beta(1) = 1$ and f(1) = -g(1) we obtain

(2.14)
$$f(x^2) = f(x)\alpha(x) + \beta(x)f(x) - \beta(x)f(1)\alpha(x),$$

Also, we can obtain

(2.15)
$$g(x^2) = g(x)\alpha(x) + \beta(x)g(x) - \beta(x)g(1)\alpha(x).$$

Adding Eqs. (2.14) and (2.15), and using the fact that f and g are additive, we arrive at

$$(2.16) \quad (f+g)(x^2) = (f+g)(x)\alpha(x) + \beta(x)(f+g)(x) - \beta(x)(f(1)+g(1))\alpha(x).$$

Since f and g are additive maps, so we take h = f + g and we obtain

$$h(x^{2}) = h(x)\alpha(x) + \beta(x)h(x) - \beta(x)(f(1) + g(1))\alpha(x).$$

Application of (2.5) gives

(2.17)
$$h(x^2) = h(x)\alpha(x) + \beta(x)h(x) \text{ for all } x \in D^{\times}$$

Thus h is a Jordan (α, β) -derivation on D. Hence, in view of [[7], Corollary 1] we conclude that h is an (α, β) -derivation on D. Adding f(x) to the both sides of Eq. (2.12), we get

(2.18)
$$2f(x) = 2\beta(x)f(1) + [f(1), x]_{\alpha,\beta} + h(x)$$

where $[f(1), x]_{\alpha,\beta} = f(1)\alpha(x) - \beta(x)f(1)$ for all $x \in D^{\times}$. In view of Fact 1.3, we set the (α, β) -derivation $\delta : D \to D$ by $2\delta(x) = [f(1), x]_{\alpha,\beta} + h(x))$ for all $x \in D^{\times}$. Then, we find that $f(x) = \beta(x)q + \delta(x)$ and $g(x) = -q\alpha(x) + \delta(x)$ for all $x \in D^{\times}$, where q := f(1). This completes the proof of theorem.

Following are the immediate consequences of above theorem.

Corollary 2.2. Let *D* be a division ring with $char(D) \neq 2$, $\alpha, \beta : D \to D$ be automorphisms. Next, let $f : D \to D$ be an additive map satisfying the identity

(2.19)
$$f(x)\alpha(x^{-1}) + \beta(x)f(x^{-1}) = 0 \text{ for all } x \in D^{\times}.$$

Then, f is an (α, β) -derivation.

Corollary 2.3. Let D be a division ring with $char(D) \neq 2$ and $\alpha : D \to D$ be an automorphism of D. Next, let $f : D \to D$ be additive map satisfying the identity

(2.20)
$$f(x)\alpha(x^{-1}) + xf(x^{-1}) = 0 \text{ for all } x \in D^{\times}.$$

Then, f is an α -derivation (skew derivation) associated with the automorphism α .

Corollary 2.4. Let D be a division ring with $char(D) \neq 2$ and $\beta : D \to D$ be an automorphism of D. Next, let $f : D \to D$ be additive map satisfying the identity

(2.21)
$$f(x)x^{-1} + \beta(x)f(x^{-1}) = 0 \text{ for all } x \in D^{\times}$$

Then, f is a β -derivation(skew derivation) associated with the automorphism β .

Corollary 2.5 ([2], Theorem 1). Let D be a division ring with $char(D) \neq 2$. Next, let $f, g: D \to D$ be additive maps satisfying the identity

 $f(x)x^{-1} + xg(x^{-1}) = 0$ for all $x \in D^{\times}$.

Then $f(x) = xq + \delta(x)$ and $g(x) = -qx + \delta(x)$, where $\delta : D \to D$ is a derivation and $q \in D$ is a fixed element.

Our next theorem deals with the matrix case.

Theorem 2.6. Let D be a division ring with $char(D) \neq 2, 3$. Let $R = M_n(D)$ be the ring of $n \times n$ matrices over D with $n \geq 2$ and $\alpha, \beta : R \to R$ be automorphisms of D. If $f, g : R \to R$ are additive maps satisfying the identity

(2.22)
$$f(x)\alpha(x^{-1}) + \beta(x)g(x^{-1}) = 0 \text{ for all } \in \mathbb{R}^{\times}$$

where R^{\times} is the set of invertible elements of R. Then $f(x) = \beta(x)q + \delta(x)$ and $g(x) = -q\alpha(x) + \delta(x)$, where $\delta : R \to R$ is an (α, β) -derivation and $q \in R$ is a fixed element.

To prove the above theorem, we need the following result.

Proposition 2.7. Let *D* be a unital ring which contains the elements 2, 3 and their inverses and $\alpha, \beta: D \to D$ be automorphisms of *D*. Next, let

 $H = \{x \in R : x \text{ and } x + c \text{ are invertable for every } c = 1, 2 \text{ or } 3\}$. If additive maps $f, g: D \to D$ satisfying the identity

(2.23)
$$f(x)\alpha(x^{-1}) + \beta(x)g(x^{-1}) = 0 \text{ for all } x \in D^{\times},$$

then an additive map h := f + g must of the form

(2.24)
$$h(x^2) = h(x)\alpha(x) + \beta(x)h(x) \text{ for all } x \in H.$$

Proof. We follow the arguments of [2, Lemma 7]. Let x and x + c be two elements as given in the statement of the proposition. We note that $x^{-1} - (x + c)^{-1} = cx^{-1}(x + c)^{-1}$, which leads to

(2.25)
$$(x^{-1} - (x+c)^{-1})^{-1} = c^{-1}x^2 + x.$$

Then, for any $a, b \in D$, we have f(a-b) = f(a) - f(b), since f is an additive map. Presently, assuming that a and b are both invertible elements of D and utilizing Eq. (2.3), which is the equal type of the property expected in the proposition, then we can see that

(2.26)
$$\beta(a-b)g((a-b)^{-1})\alpha(a-b) = \beta(a)g(a^{-1})\alpha(a) - \beta(b)g(b^{-1})\alpha(b).$$

Multiplying by $\beta((a-b)^{-1})$ from left and by $\alpha((a-b)^{-1})$ from right to the above relation and using the fact that $\alpha(1) = 1 = \beta(1)$, we get

$$g((a-b)^{-1}) = \beta((a-b)^{-1})\beta(a)g(a^{-1})\alpha(a)\alpha((a-b)^{-1}) - \beta((a-b)^{-1})\beta(b)g(b^{-1})\alpha(b)\alpha((a-b)^{-1}).$$

ABDELWANIS AND ALI

Replace a by x^{-1} and b by $(x+c)^{-1}$ in the pervious equation and use Eq. (2.25) to get

$$(2.27) \quad g(c^{-1}x^2 + x) = \beta(c^{-1}x + 1)g(x)\alpha(c^{-1}x + 1) - \beta(c^{-1}x)g(x + c)\alpha(c^{-1}x).$$

This implies that

$$c^{-1}g(x^{2}) + g(x) = \beta(c^{-1}x)g(x)\alpha(c^{-1}x) + \beta(c^{-1}x)g(x) + g(x)\alpha(c^{-1}x) + g(x)$$

- $\beta(c^{-1}x)g(x)\alpha(c^{-1}x) - \beta(c^{-1}x)g(1)\alpha(c^{-1}x).$

But by using $\alpha(c) = \beta(c) = c$ and simplifying the last equation gives us identity (2.15). Replacing x with x^{-1} and using Eq. (2.6) gives us identity (2.14). Now define h = f + g and summing Eqs. (2.14) and (2.15), we can see that

(2.28)
$$h(x^2) = \beta(x)h(x) + h(x)\alpha(x) + \beta(x)h(1)\alpha(x).$$

Now, substituting x = 1 in above expression, we get h(1) = 3h(1) and therefore 2h(1) = 0. This implies that h(1) = 0, since R contains the element 2^{-1} . Hence, we arrive at

(2.29)
$$h(x^2) = \beta(x)h(x) + h(x)\alpha(x) \text{ for all } x \in H.$$

This proves the proposition.

Proof. of Theorem 2.6. Let D be a division ring, $R = M_n(D)$, and $f, g: R \to R$ be additive maps such that

(2.30)
$$f(x)\alpha(x^{-1}) + \beta(x)g(x^{-1}) = 0 \text{ for all } x \in \mathbb{R}^{\times}.$$

Let us define $(a_{ij}) \in R$ be such that the (i, j) entry is an invertible element a of Dand all other entries are zero. Now as in the proof of [[2], Theorem 4] we get at least three of $I + (a_{ij}), 2I + (a_{ij}), 3I + (a_{ij}), 4I + (a_{ij})$ are invertible. If $c_0I + (a_{ij})$ is not invertible for $c_0 \in \{1, 2, 3, 4\}$, then we conclude that $det(c_0I + (a_{ij})) = 0$, where by "det" we mean the Dieudonne determinant. Since there is at most one nonzero entry that does not occur along the main diagonal, we know $det(c_0I + (a_{ij}))$ is exactly the product of the elements along the main diagonal of $c_0I + (a_{ij})$. Hence, $det(c_0I + (a_{ij})) = 0$ implies one of the diagonal entries of $c_0I + (a_{ij})$ is zero; that is, i = j and $c_0 + a = 0$. Suppose that $c \in \{1, 2, 3, 4\}$ is different from c_0 , then we have $c + a \neq 0$, and thus, we have $det(cI + (a_{ij})) \neq 0$; that is, $cI + a_{ij}$ is invertible for every $c \in \{1, 2, 3, 4\} - \{c_0\}$, as desired.

Also we have if $cI + (a_{ij})$ and $c'I + (a_{ij})$ for $c, c' \in \{1, 2, 3\}$, then $(c + c')I + (a_{ij})$ is invertible. In view of Proposition 2.7 and definition of Jordan (α, β) -derivation, we find that

$$(2.31) \quad h((cI + (a_{ij}))^2) = h(cI + (a_{ij}))\alpha(cI + (a_{ij})) + \beta(cI + (a_{ij}))h(cI + (a_{ij}))$$

Since h is additive, the above expression yields

$$(2.32) \ h((cI+(a_{ij}))^2) = (ch(I)+h(a_{ij}))(cI+\alpha(a_{ij}))+(cI+\beta((a_{ij}))(ch(I)+h(a_{ij})))$$

The above relation gives

$$h((cI + (a_{ij}))^2) = 2c^2h(I) + 2ch((a_{ij})) + \beta((a_{ij}))ch(I) + ch(I)\alpha((a_{ij})) + \beta((a_{ij}))h((a_{ij})) + h((a_{ij}))\alpha((a_{ij})).$$

This implies that

(2.33)
$$h((cI + (a_{ij}))^2) = 2ch((a_{ij})) + \beta((a_{ij}))h((a_{ij})) + h((a_{ij}))\alpha((a_{ij})).$$

On the other hand, we also have

(2.34)
$$h((cI + (a_{ij}))^2) = h(c^2I) + 2h(c(a_{ij})) + h((a_{ij})^2).$$

From relations (2.33) and (2.34), we obtain

(2.35)
$$h((a_{ij})^2) = h((a_{ij}))\alpha((a_{ij})) + \beta((a_{ij}))h((a_{ij})).$$

In the view of proof of [2, Theorem 4] we get at least two of $I + (a_{ij}) + (b_{kl}), 2I + (a_{ij}) + (b_{kl}), 3I + (a_{ij}) + (b_{kl}), 4I + (a_{ij}) + (b_{kl})$ are invertible. Indeed, assume that $c_0I + (a_{ij}) + (b_{kl})$ is not invertible for $c_0 \in \{1, 2, 3, 4\}$. Let $0 \neq a \in D$ be the i, j entry of (a_{ij}) and let $0 \neq b \in D$ be the k, l entry of (b_{kl}) . There are some cases that can occur (throughout these cases, we assume $c \in \{1, 2, 3, 4\} - \{c_0\}$).

Case 1: i = j = k = l. In this case, we can see that $c_0I + (a_{ij}) + (b_{kl}) = c_0I + (a_{ii}) + (b_{ii})$, so that $det(c_0I + (a_{ii}) + (b_{ii})) = c_0^{n-1}(c_0 + a + b) = 0$, which implies that $c_0 = -(a + b)$. However, $det(cI + (a_{ii}) + (b_{ii})) \neq 0$, and so $cI + (a_{ii}) + (b_{ii})$ is invertible for three values of c.

Case 2: $i = j, k \neq l$. Here, since the k, l entry is the only nonzero entry outside of the main diagonal, we know $det(c_0I + (a_{ii}) + (b_{kl})) = c_0^{n-1}(c_0 + a) = 0$ and hence, we must have $c_0 = -a$. Again, we have $det(cI + (a_{ii}) + (b_{kk})) \neq 0$, and so $cI + (a_{ii}) + (b_{kk})$ is invertible for three values of c.

Case 3: $i = j, k = l, i \neq k$. In this case, $det(c_0I + (a_{ii}) + (b_{kk}))$ equals $c_0^{n-2}(c_0 + a)(c_0 + b)$ or $c_0^{n-2}(c_0 + b)(c_0 + a)$. Either way, this implies that $c_0 = -a$ or $c_0 = -b$. Without loss of generality assume $c_0 = -a$. Then we have $cI + (a_{ii}) + (b_{kk})$ is invertible for $c \neq -b$; that is, $cI + (a_{ii}) + (b_{kk})$ is invertible for at least two values of c.

Case 4: $i \neq j, k \neq l$. Suppose $det(c_0I + (a_{ij}) + (b_{kl})) = 0$, we must have that i = l, j = k, in which case, $det(c_0I + (a_{ij}) + (b_{ji}))$ equals $c_0^{n-2}(c_0^2 + (-1)^{i+j}ab)$ or $c_0^{n-2}(c_0^2 + (-1)^{i+j}ba)$. This forces that c_0^2 equals $-(-1)^{i+j}ab$ or $-(-1)^{i+j}ba$. If the characteristic of D is 5 or 7, then we have that 12 = 42 or 32 = 42, respectively, which implies that $cI + (a_{ij}) + (b_{ji})$ is invertible for at least two values of c. For any other characteristic, we have that $cI + (a_{ij}) + (b_{ji})$ is invertible for three values of c. In any case, we can see that at least two of $I + (a_{ij}) + (b_{kl}), 2I + (a_{ij}) + (b_{kl}), 3I + (a_{ij}) + (b_{kl}), 4I + (a_{ij}) + (b_{kl})$ are invertible.

Also if $cI + (a_{ij}) + (b_{kl})$ and $c'I + (a_{ij}) + (b_{kl})$ for $c, c' \in \{1, 2, 3\}$, then $(c + c')I + (a_{ij}) + (b_{kl})$ is invertible $c' \in \{1, 2, 3\}$. Now by using the additivity of h and the

fact that h(I) = 0, we obtain

$$\begin{split} h((cI + (a_{ij}) + (b_{kl}))^2) &= \beta(cI + (a_{ij}) + (b_{kl}))h(cI + (a_{ij}) + (b_{kl})) \\ &+ h(cI + (a_{ij}) + (b_{kl})) + \alpha(cI + (a_{ij}) + (b_{kl})) \\ &= (cI + \beta(a_{ij}) + \beta(b_{kl}))(ch(I) + h(a_{ij}) + h(b_{kl})) \\ &+ (ch(I) + h(a_{ij}) + h(b_{kl}))(cI + \alpha(a_{ij}) + \alpha(b_{kl})) \\ &= 2ch((a_{ij})) + 2ch(b_{kl}) + h((a_{ij})^2) + h((b_{kl})^2) + \beta(a_{ij})h(b_{kl}) \\ &+ \beta(b_{kl})h(a_{ij}) + h(a_{ij})\alpha(b_{kl})) + h(b_{kl})\alpha(a_{ij}). \end{split}$$

On the other hand, we can find that

$$h((cI + (a_{ij}) + (b_{kl}))^2) = h(c^2I + 2c(a_{ij}) + 2c(b_{kl}) + (a_{ij})^2 + (b_{kl})^2 + (a_{ij})(b_{kl}) + (b_{kl})(a_{ij}))$$

= $2ch((a_{ij})) + 2ch((b_{kl})) + h((a_{ij})^2) + h((b_{kl})^2)$
+ $h(a_{ij}b_{kl} + b_{kl}a_{ij}).$

Combing the above two systems we arrive at

 $(2.36) \ h(a_{ij}b_{kl}+b_{kl}a_{ij}) = h(a_{ij})\alpha(b_{kl}) + \beta(a_{ij})h(b_{kl}) + h(b_{kl})\alpha(a_{ij}) + \beta(b_{kl})h(a_{ij}).$

Thus, h is a Jordan (α, β) -derivation. Thus by [7, Corollary 1], we find that h is an (α, β) derivation. Henceforward, the proof is follows by the last paragraph of the proof of Theorem 2.1. The proof of the theorem is completed.

The next result is a generalization of [2, Corollary 5].

Corollary 2.8. Let *D* be a division ring with $char(D) \neq 2, 3$. Let $R = M_n(D)$ be the ring of $n \times n$ matrices over *D* with $n \geq 2$ and $\alpha, \beta : R \to R$ be automorphisms of *D*. If $f : R \to R$ is an additive map satisfying the identity

(2.37)
$$f(x)\alpha(x^{-1}) + \beta(x)f(x^{-1}) = 0$$
, for all $x \in \mathbb{R}^{\times}$

Then, f is an (α, β) -derivation.

Corollary 2.9. Let *D* be a division ring with $char(D) \neq 2, 3$. Let $R = M_n(D)$ be the ring of $n \times n$ matrices over *D* with $n \geq 2$ and $\alpha : R \to R$ be automorphisms of *D*. If $f: R \to R$ is an additive map satisfying the identity

(2.38)
$$f(x)x^{-1} + \beta(x)f(x^{-1}) = 0$$
, for all $x \in \mathbb{R}^{\times}$.

Then, f is a β -derivation (skew derivation) associated with the automorphism β .

The following corollary is a generalization of [2, Corollary 6].

Corollary 2.10. Let R be a simple Artinian ring with $char(R) \neq 2, 3$. Let $\alpha, \beta : R \to R$ be automorphisms of D. If $f, g : R \to R$ are additive maps satisfying the identity

(2.39)
$$f(x)\alpha(x^{-1}) + \beta(x)g(x^{-1}) = 0 \text{ for all } x \in \mathbb{R}^{\times}.$$

Then, $f(x) = \beta(x)q + \delta(x)$ and $g(x) = -q\alpha(x) + \delta(x)$, where $\delta : R \to R$ is an (α, β) -derivation and $q \in R$ is a fixed element.

The next theorem is a common generalization of [3, Theorem 1].

Theorem 2.11. Let *D* be a division ring with center Z(D) such that $char(D) \neq 2$. Next, let $\alpha, \beta : D \to D$ be automorphisms of *D* and $l \in D$, $a \in D^{\times}$ be fixed elements. Suppose $f : D \to D$ is an additive map satisfying the identity

$$f(x)\alpha(y) + \beta(x)f(y) = l$$
 for all $x, y \in D$ such that $xy = a$.

Then $f(x) = \beta(x)q + \delta(x)$ for all $x \in D$, where $\delta : D \to D$ is an (α, β) -derivation and $q \in Z(D)$.

Proof. By the assumption, we have

(2.40)
$$f(x)\alpha(y) + \beta(x)f(y) = l \text{ for all } x, y \in D.$$

Substituting $x^{-1}a$ for y in the above relation, we obtain

(2.41)
$$f(x)\alpha(x^{-1}a) + \beta(x)f(x^{-1}a) = l$$

Multiplying both sides of the pervious expressions from the right-hand side by $\alpha(a^{-1})$, we obtain

(2.42)
$$f(x)\alpha(x^{-1}) + \beta(x)f(x^{-1}a)\alpha(a^{-1}) = l\alpha(a^{-1}).$$

This implies that

(2.43)
$$f(x)\alpha(x^{-1}) + \beta(x)(f(x^{-1}a)\alpha(a^{-1}) - \beta(x^{-1})l\alpha(a^{-1})) = 0.$$

Since f, α and β are additive maps, we define $g(x) = f(xa)\alpha(a^{-1}) - \beta(x)l\alpha(a^{-1})$. Then, the above relation reduces to

(2.44)
$$f(x)\alpha(x^{-1}) + \beta(x)g(x^{-1}) = 0 \text{ for all } x \in D^{\times}.$$

In view of Theorem 2.1, we conclude that $f(x) = \beta(x)q + \delta(x)$ where q is a fixed element of D and $\delta: D \to D$ is an (α, β) -derivation. Now it remains to prove that $q \in Z(D)$. From Eq. (2.40), we find that

$$\begin{split} l &= f(x^{-1})\alpha(xa) + \beta(x^{-1})f(xa), \\ &= (\beta(x^{-1})q + \delta(x^{-1}))\alpha(xa) + \beta(x^{-1})(\beta(xa)q + \delta(xa))) \\ &= \beta(x^{-1})q\alpha(xa) + \delta(x^{-1})\alpha(xa) + \beta(a)q + \beta(x^{-1})\delta(xa) \\ &= \beta(x^{-1})q\alpha(xa) + \delta(x^{-1})\alpha(xa) + \beta(x^{-1})\delta(x)\alpha(a) + \beta(a)q + \delta(a) \\ &= \beta(x^{-1})q\alpha(xa) + (\delta(x^{-1})\alpha(x) + \beta(x^{-1})\delta(x))\alpha(a) + \beta(a)q + \delta(a) \\ &= \beta(x^{-1})q\alpha(xa) + (\delta(x^{-1}x))\alpha(a) + \beta(a)q + \delta(a) \\ &= \beta(x^{-1})q\alpha(xa) + \delta(1)\alpha(a) + \beta(a)q + \delta(a) \\ &= \beta(x^{-1})q\alpha(xa) + f(a) \text{ for all } x \in D^{\times}. \end{split}$$

Notice that for any (α, β) -derivation δ , $0 = \delta(1) = \delta(x.x^{-1}) = \delta(x)\alpha(x^{-1}) + \beta(x)\delta(x^{-1})$. Therefore, the above expression gives $\beta(x^{-1})q\alpha(xa) = l - f(a)$. This gives $q\alpha(xa) = \beta(x)b$, where we set b = l - f(a). Substituting tx for x where $t \in D^{\times}$, we obtain

$$q\alpha(txa) = \beta(tx)b,$$

$$q\alpha(t)\alpha(x)\alpha(a) = \beta(t)\beta(x)b$$

$$= \beta(t)q\alpha(xa).$$

This implies that $(q\alpha(t) - \beta(t)q)\alpha(x)\alpha(a) = 0$ for all $x, t \in D$, i.e., $(q\alpha(t) - \beta(t)q)D\alpha(a) = \{0\}$. Since α is an automorphism and $a \in D^{\times}$, the last relation

gives $q\alpha(t) = \beta(t)q$ for all $t \in D^{\times}$ *i.e.*, $[q,t]_{\alpha,\beta} = 0$ for all $t \in D^{\times}$. In view of [8, Lemma 2.5], for U = R, we conclude that $q \in Z(D)$. This proves the theorem completely.

Corollary 2.12. Let *D* be a division ring with center Z(D) such that $char(D) \neq 2$. Next, let $\alpha, \beta : D \to D$ be automorphisms, $a \in D^{\times}$ be a fixed element, and let $f: D \to D$ be an additive map satisfying the identity

(2.45) $f(x)\alpha(y) + \beta(x)f(y) = f(a) \text{ for all } x, y \in D \text{ such that } xy = a.$

Then, f is an (α, β) -derivation.

Corollary 2.13. Let D be a division ring with center Z(D) such that $char(D) \neq 2$. Next, let $\alpha : D \to D$ be automorphisms, $a \in D^{\times}$ be fixed elements, and let $f: D \to D$ be an additive map satisfying the identity

(2.46) $f(x)\alpha(y) + xf(y) = f(a)$ for all $x, y \in D$ such that xy = a.

Then, f is an α -derivation(skew derivation).

Corollary 2.14. Let D be a division ring with center Z(D) such that $char(D) \neq 2$. Next, let $a \in D^{\times}$ be fixed elements and $f: D \to D$ be an additive map satisfying the identity

(2.47) $f(x)y + xf(y) = f(a) \text{ for all } x, y \in D \text{ such that } xy = a.$

Then, f is a derivation.

Acknowledgement

The authors are deeply indebted to the learned referee(s) for their careful reading of the manuscript and useful comments. The research of second named author is supported by SERB-DST MATRICS Project under Grant No. MTR/2019/000603, India.

References

- Brešar, M. Brešar, M.A. Chebotar, and W.S. Martindale, Functional identities, Springer Science and Business Media Basel, 2007.
- [2] L. Catalano, On a certain functional identity involving inverses, Comm. Algebra, (8) 46 (2018), 3430-3435.
- [3] L. Catalano, On maps characterized by action on equal products, J. Algebra, 511 (2018), 148-154.
- [4] P. M. Cohn, Further algebra and applications, Springer Science and Business Media, 2002.
- [5] I. N. Herstein, Jordan derivations on prime rings, Proc. Amer. Math. Soc. (6) 8 (1957), 1104-1110.
- [6] V. K. Kharchenko and A. Z. Popov, Skew derivations of prime rings, Comm. Algebra, (11) 20 (1992), 3321-3345.
- [7] C. K. Liu and W. K. Shiue, Generalized Jordan triple (θ, φ)-derivations on semiprime rings, Taiwanese J. Math. (5) 11 (2007), 1397-1406.
- [8] H. Marubayashi, M. Ashraf, N. Rehman, and S. Ali, On generalized (α, β)-derivations in prime rings, Algebra Colloq. (Spec 1) 17 (2010), 865-874.

Shakir Ali

Department of Mathematics, Aligarh Muslim University, Aligarh, India. Email: shakir50@rediffmail.com

Ahmed Abdelwanis

Department of Mathematics, Cairo University, Giza, Egypt. Email: ayunis@sci.cu.edu.eg