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ON SOLUTIONS OF THE DIOPHANTINE EQUATION
Fn1 + Fn2 + Fn3 + Fn4 = 2a

P. TIEBEKABE ∗ AND I. DIOUF

Abstract. Let (Fn)n≥0 be the Fibonacci sequence given by F0 =
0, F1 = 1 and Fn+2 = Fn+1 +Fn for n ≥ 0. In this paper, we solve
all powers of two which are sums of four Fibonacci numbers with
a few exceptions that we characterize.

1. Introduction

The equation Fn − Fm = ya has been well-studied. For instance
Z. Siar and R. Keskin [1] have found all the solutions for y = 2, B.
Demirtürk et al [2] and P. Tiebekabe et al [3] have independently de-
termined all the solutions for y = 3 and finally F. Erduvan and R.
Keskin [6] determined all solutions for y = 5 and conjectured that
there are no solutions for y > 7.

There are comparatively fewer works on the equation Fn +Fm = ya.
J. J. Bravo and Luca [7] solved the case y = 2, and their result has
been generalized by Pink and Ziegler in [8]. J. J. Bravo and E. Bravo
[10] determined all solutions to the similar equation Fn +Fm +Fl = 2a;
and wrote that they expect that the equation

Fn1 + Fn2 + Fn3 + Fn4 = 2a (1.1)
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may be handled using the same method. Since the solution would
involve more cases and harder computations, they leave this equation
for other researchers. We have decided to tackle this difficult case.

Many problems similar to the one discussed in this paper have been
investigated for the Fibonacci and Lucas sequences. For example,
repdigits which are sums of at most three Fibonacci numbers were
found in [12]; repdigits as sums of four Fibonacci or Lucas numbers
were found in [15]; Fibonacci numbers which are sums of two repdigits
were obtained in [14], while factorials which are sums of at most three
Fibonacci numbers were found in [13]. In 2020, Das, A. and Saha [5],
M. determined the number of Some families of cubic graphs.

Recall that the Zeckendorf representation [11] of a positive integer
N is the representation

N = Fm1+Fm2+. . .+Fmt ; with mi−mi+1 > 2 for i = 1, . . . , t−1.

Equation (1.1) is a particular case of Zeckendorf representation with
N = 2a and t = 4.

This paper is subdivided as follows: In Section 2, we introduce aux-
iliary results used in Section 3 to prove the main theorem of this paper
stated below.

Theorem 1.1. All non-trivial solutions of the Diophantine equation
(1.1) in positive integers n1, n2, n3, n4 and a with n1 > n2 > n3 > n4

are:

F5 + 3F2 = 23 F7 + 3F2 = 24 2F4 + 2F2 = 23 F13 + F8 + 2F2 = 28

F4 + 2F3 + F2 = 23 F6 + F5 + F3 + F2 = 24 F8 + F6 + F3 + F2 = 25 F16 + F9 + F3 + F2 = 210

F10 = F5 + F4 + F2 = 26 3F5 + F2 = 24 F8 + 2F5 + F2 = 25 2F7 + F5 + F2 = 25

F9 + F8 + F6 + F2 = 26 3F8 + F2 = 26 F10 + F5 + 2F3 = 26 F6 + 2F4 + F3 = 24

F11 + F9 + F4 + F3 = 27 F13 + F7 + F6 + F3 = 28 F12 + F11 + F8 + F3 = 28 F12 + 2F10 + F3 = 28

F10 + 3F4 = 26 2F5 + 2F4 = 24 F8 + F5 + 2F4 = 25 2F7 + 2F4 = 25

F7 + 2F6 + F4 = 25 F16 + F8 + F7 + F4 = 210 F15 + F14 + F9 + F4 = 210 F13 + F7 + 2F5 = 28

F11 + F8 + F7 + F5 = 27 2F10 + F7 + F5 = 27 F10 + 2F9 + F5 = 27 F16 + F8 + 2F6 = 210

F11 + 3F7 = 27 4F6 = 25

2. Auxiliary results

In this section, we give some important known definitions, propri-
eties, theorem and lemmas.

Definition 2.1. For an algebraic number γ, we define its measure by
the following identity :

M(γ) = |ad|
d∏

i=1

max{1, |γi|},
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where γi are the roots of f(x) = ad
d∏

i=1

(x− γi), the minimal polynomial

of γ.

Let us define now another height, deduced from the last one, called
the absolute logarithmic height.

Definition 2.2. (Absolute logarithmic height). For a non-zero alge-
braic number of degree d on Q where the minimal polynomial on Z is

f(x) = ad
d∏

i=1

(x− γi), we denote by

h(γ) =
1

d

(
log |ad|+

d∑
i=1

log max{1, |γi|}

)
=

1

d
log M(γ).

the usual absolute logarithmic height of γ.

The following properties of the logarithmic height are well-known:

• h(γ ± η) ≤ h(γ) + h(η) + log 2;
• h(γη±1) ≤ h(γ) + h(η);
• h(γk) = |k|h(γ) k ∈ Z.

The nth Fibonacci number can be represented as

Fn =
αn − βn

√
5

for all n > 0.

where (α, β) := ((1 +
√

5)/2, (1−
√

5)/2). The following inequalities

αn−2 6 Fn 6 αn−1

are well-known to hold for all n > 1 and can be proved by induction
on n. The following theorem is deduced from Corollary 2.3 of Matveev
[17].

Theorem 2.1 (Matveev [17]). Let n ≥ 1 an integer. Let L be a field
of algebraic number of degree D. Let η1, . . . , ηl non-zero elements of
L and let b1, b2, . . . , bl integers,

B := max{|b1|, ..., |bl|},

and

Λ := ηb11 · · · η
bl
l − 1 =

(
l∏

i=1

ηbii

)
− 1.

Let A1, . . . , Al reals numbers such that

Aj ≥ max{Dh(ηj), | log(ηj)|, 0.16}, 1 ≤ j ≤ l.
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Assume that Λ 6= 0, So we have

log |Λ| > −3× 30l+4 × (l + 1)5.5 × d2 ×A1...Al(1 + logD)(1 + log nB).

Further, if L is real, then

log |Λ| > −1.4× 30l+3 × (l)4.5 × d2 × A1...Al(1 + logD)(1 + logB).

The following two Lemmas are due Dujella and Pethő, and to Le-
gendre respectively.

For a real number X, we write ‖X‖ := min{| X − n |: n ∈ Z} for
the distance of X to the nearest integer.

Lemma 2.1. (Dujella and Pethő, [16]) Let M a positive integer, let
p/q the convergent of the continued fraction expansion of κ such that
q > 6M and let A, B, µ real numbers such that A > 0 and B > 1. Let
ε := ‖µq‖ −M ‖κq‖.
If ε > 0 then there is no solution of the inequality

0 < mκ− n+ µ < AB−m

in integers m and n with

log(Aq/ε)

logB
6 m 6M.

Lemma 2.2. (Legendre) Let τ real number such that x, y are integers
such that ∣∣∣∣τ − x

y

∣∣∣∣ < 1

2y2
,

then
x

y
=
pk
qk

is a convergent of τ .

Further, ∣∣∣∣τ − x

y

∣∣∣∣ > 1

(qk+1 + 2)y2
.

3. Main result

Proof. Assume that

Fn1 + Fn2 + Fn3 + Fn4 = 2a

holds.
Let us first find relation between n1 and a.
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Combining equation(1.1) with the well-known inequality Fn 6 αn−1

for all n > 1, one gets that

Fn1 + Fn2 + Fn3 + Fn4 = 2a 6αn1−1 + αn2−1 + αn3−1 + αn4−1

<2n1−1 + 2n2−1 + 2n3−1 + 2n4−1 ∵ α < 2

<2n1−1
(
1 + 2n2−n1 + 2n3−n1 + 2n4−n1

)
62n1−1

(
1 + 1 + 2−1 + 2−2

)
= 2n1−1

(
2 + 2−1 + 2−2

)
<2n1+1.

Hence
2a < 2n1+1 =⇒ a < n1 + 1 =⇒ a 6 n1.

This inequality will help us to calculate some parameters.
Rewriting equation (1.1), we get

αn1

√
5
− 2a =

βn1

√
5
− (Fn2 + Fn3 + Fn4).

Taking absolute values on the above equation, we obtain∣∣∣∣αn1

√
5
− 2a

∣∣∣∣ 6 ∣∣∣∣βn1

√
5

∣∣∣∣+ (Fn2 + Fn3 + Fn4) <
|β|n1

√
5

+ (αn2 + αn3 + αn4),

and ∣∣∣∣αn1

√
5
− 2a

∣∣∣∣ < 1

2
+ (αn2 + αn3 + αn4) ,

where we used Fn 6 αn−1.
Dividing both sides of the above equation by αn1/

√
5, we get

∣∣∣1− 2a · α−n1 ·
√

5
∣∣∣ < √5

2αn1
+
(
αn2−n1 + αn3−n1 + αn4−n1

)√
5

<

√
5

2αn1
+

√
5

αn1−n2
+

√
5

αn1−n3
+

√
5

αn1−n4
.

Taking into account the assumption n4 6 n3 6 n3 6 n2 6 n1, we get

|Λ1| =
∣∣∣1− 2a · α−n1 ·

√
5
∣∣∣ < 9

αn1−n2
(3.1)

Let us apply Matveev’s theorem, with the following parameters t :=
3 and

γ1 := 2, γ2 := α, γ3 :=
√

5, b1 := a, b2 := −n, and b3 := 1.

Since γ1, γ2, γ3 ∈ K := Q(
√

5), we can take D := 2. Before applying
Matveev’s theorem, we have to check the last condition: the left-hand
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side of (3.1) is not zero. Indeed, if it were zero, we would then get that
2a
√

5 = αn. Squaring the previous relation, we get α2n = 5 ·22a = 5 ·4a.
This implies that α2n ∈ Z, which is impossible, so we conclude that
Λ1 6= 0.

The logarithmic height of γ1, γ2 and γ3 are:
h(γ1) = log 2 = 0.6931 . . ., so we can choose A1 := 1.4.

h(γ2) =
1

2
logα = 0.2406 . . ., so we can choose A2 := 0.5.

h(γ3) = log
√

5 = 0.8047 . . ., it follows that we can choose A3 := 1.7.
Since a < n1 + 1, B := max{|b1|, |b2|, |b3|} = n1. Matveev’s result

informs us that∣∣∣1− 2a · αn1 ·
√

5
∣∣∣ > exp (−c1 · (1 + log n) · 1.4 · 0.5 · 1.7) , (3.2)

where c1 := 1.4 · 306 · 34.5 · 22 · (1 + log 2) < 9.7× 1011.
Taking log in inequality (3.1), we get

log |Λ1| < log 9− (n1 − n2) logα.

Taking log in inequality (3.2), we get

log |Λ1| > 2.31× 1012 log n1.

Comparing the previous two inequalities, we get

(n1 − n2) logα− log 9 < 2.31× 1012 log n1,

where we used 1 + log n1 < 2 log n1 which holds for all n1 > 3. Then
we have

(n1 − n2) logα < 2.32× 1012 log n1. (3.3)

Let us now consider a second linear form in logarithms. We rewrite
equation (1.1) as follows

αn1

√
5

+
αn2

√
5
− 2a =

βn1

√
5

+
βn2

√
5
− (Fn3 + Fn4) .

Taking absolute values on the above equation and the fact that β =
(1−

√
5)/2, we get∣∣∣∣αn1

√
5

(
1 + αn2−n1

)
− 2a

∣∣∣∣ 6 |β|n1 + |β|n2

√
5

+ Fn3 + Fn4

<
1

3
+ αn3 + αn4 for all n1 > 5 and n2 > 5.

Dividing both sides of the above inequality by
αn1

√
5

(1 + αn2−n1), we

obtain

|Λ2| =
∣∣∣1− 2a · αn1 ·

√
5
(
1 + αn2−n1

)−1∣∣∣ < 6

αn2−n1
. (3.4)
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Let us apply Matveev’s theorem second time with the follow parameters

t := 3, γ1 := 2, γ2 := α, γ3 :=
√

5
(
1 + αn2−n1

)−1
,

b1 := a, b2 := −n1, and b3 := 1.

Since γ1, γ2, γ3 ∈ K := Q(
√

5), we can take D := 2. The left hand side
of (3.4) is not zero, otherwise, we would get the relation

2a
√

5 = αn1 + αn2 . (3.5)

Conjugating (3.5) in the field Q(
√

5), we get

− 2a
√

5 = βn1 + βn2 . (3.6)

Combining (3.5) and (3.6), we get

αn1 < αn1 + αn2 = |βn1 + βn2| 6 |β|n1 + |β|n2 < 1

which is impossible for n1 > 350. Hence Λ2 6= 0. We know that,

h(γ1) = log 2 and h(γ2) =
1

2
logα. Let us now estimate h(γ3) by first

observing that

γ3 =

√
5

1 + αn2−n1
<
√

5 and γ−13 =
1 + αn2−n1

√
5

<
2√
5
,

so that | log γ3| < 1. Using proprieties of logarithmic height stated in
Section 2, we have

h(γ3) 6 log
√

5+|n2−n1|
(

logα

2

)
+log 2 = log(2

√
5)+(n1−n2)

(
logα

2

)
.

Hence, we can takeA3 := 3+(n1−n2) logα > max{2h(γ3), | log γ3|, 0.16}.
Matveev’s theorem implies that

exp (−c2(1 + log n1) · 1.4 · 0.5 · (3 + (n1 − n2) logα))

where c2 := 1.4 · 306 · 34.5 · 22 · (1 + log 2) < 9.7× 1011.
Since (1 + log n1) < 2 log n1 hold for n1 > 3, from (3.4), we have

(n1 − n3) logα− log 6 < 1.4× 1012 log n1(3 + (n1 − n2) logα). (3.7)

Putting relation (3.3) in the right-hand side of (3.7), we get

(n1 − n3) logα < 3.29× 1024 log2 n1. (3.8)

Let us consider a third linear form in logarithms. To this end, we again
rewrite (1.1) as follows

αn1 + αn2 + αn3

√
5

− 2a =
βn1 + βn2 + βn3

√
5

− Fn4 .
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Taking absolute values on both sides, we obtain∣∣∣∣αn1

√
5

(
1 + αn2−n1 + αn3−n1

)
− 2a

∣∣∣∣ 6 |β|n1 + |β|n2 + |β|n3

√
5

+ Fn4 <
3

4
+ αn4

for all n1 > 350, and n2, n3, n4 > 1.

Thus we have

|Λ3| =
∣∣∣1− 2a · α−n1 ·

√
5
(
1 + αn2−n1 + αn3−n1

)−1∣∣∣ < 3

αn1−n4
. (3.9)

In a third application of Matveev’s theorem, we can take parameters

t := 3, γ1 := 2, γ2 := α, γ3 :=
√

5
(
1 + αn2−n1 + αn3−n1

)−1
,

b1 := a, b2 := −n, and, b3 := 1.

Since γ1, γ2, γ3 ∈ K := Q(
√

5), we can take D := 2. Suppose, for a
contradiction, that |Λ3| = 0. Then

2a
√

5 = αn1 + αn2 + αn3 .

Taking the conjugate in the field Q(
√

5), we get

−2a
√

5 = βn1 + βn2 + βn3 ,

which leads to

αn1 < αn1 + αn2 + αn3 = |βn1 + βn2 + βn3 | 6 |β|n1 + |β|n2 + |β|n3 < 1

and leads to a contradiction since n1 > 350. Hence Λ3 6= 0.
As we did before, we can take A1 := 1.4, A2 := 0.5 and B := n1. We

can also see that

γ3 =

√
5

1 + αn2−n1 + αn3−n1
<
√

5 and γ−13 =
1 + αn2−n1 + αn3−n1

√
5

<
3√
5
,

so | log γ3| < 1. Applying proprieties on logarithmic height, we estimate

h(γ3) 6 log
√

5 + |n2 − n1|
(

logα

2

)
+ |n3 − n1|

(
logα

2

)
+ log 3

= log(3
√

5) + (n1 − n2)

(
logα

2

)
+ (n1 − n3)

(
logα

2

)
;

so we can take

A3 := 4+(n1−n2) logα+(n1−n3) logα > max{2h(γ3), | log γ3|, 0.16}.
A lower bound on the left-hand side of (3.9) is

exp(−c3 · (1 + log n1) · 1.4 · 0.5 · (4 + (n1 − n2) logα+ (n1 − n3) logα))

where c3 = 1.4 · 306 · 34.5 · 22 · (1 + log 2) < 9.7× 1011.
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From inequality (3.9), we have

(n1−n4) logα < 1.4×1012 log n1 · (4+(n1−n2) logα+(n1−n3) logα).
(3.10)

Combining equation (3.3) and (3.8) in the right-most terms of equation
(3.10) and performing the respective calculations, we get

(n1 − n4) logα < 9.3× log3 n1. (3.11)

Let us now consider a fourth and last linear form in logarithms.
Rerwriting (1.1) once again by separating large terms and small terms,
we get

αn1 + αn2 + αn3 + αn4

√
5

− 2a =
βn1 + βn2 + βn3 + βn4

√
5

.

Taking absolute values on both sides, we get∣∣∣∣αn1

√
5

(
1 + αn2−n1 + αn3−n1 + αn4−n1

)
− 2a

∣∣∣∣ 6 |β|n1 + |β|n2 + |β|n3 + |β|n4

√
5

<
4

5

for all n1 > 350, and n2, n3, n4 > 1.
Dividing both sides of the above relation by the fist term of the RHS

of the previous equation, we get

|Λ4| =
∣∣∣1− 2a · α−n1 ·

√
5
(
1 + αn2−n1 + αn3−n1 + αn4−n1

)−1∣∣∣ < 2

αn1
.

(3.12)
In the last application of Matveev’s theorem, we have the following

parameters

γ1 := 2, γ2 := α, γ3 :=
√

5
(
1 + αn2−n1 + αn3−n1 + αn4−n1

)−1
,

and we can also take b1 := a, b2 := −n and b3 := 1. Since γ1, γ2, γ3 ∈
K := Q(

√
5), we can take D := 2. Suppose, for a contradiction, that

|Λ4| = 0. Then

2a
√

5 = αn1 + αn2 + αn3 + αn4 .

Conjugating the above relation in the field Q(
√

5), we get

−2a
√

5 = βn1 + βn2 + βn3 + βn4 .

Combining the above two equations, we get

αn1 < αn1 + αn2 + αn3 + αn4 = |βn1 + βn2 + βn3 + βn4|

6 |β|n1 + |β|n2 + |β|n3 + |β|n4 < 1,

which leads to a contradiction since n1 > 350.
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As before, here, we can take A1 := 1.4, A2 := 0.5 and B := n1. Let
us estimate h(γ3). We can see that,

γ3 =

√
5

1 + αn2−n1 + αn3−n1 + αn4−n1
<
√

5

and γ−13 =
1 + αn2−n1 + αn3−n1 + αn4−n1

√
5

<
4√
5
.

Hence | log γ3| < 1. Then

h(γ3) 6 log(4
√

5) + |n2 − n1|
(

logα

2

)
+ |n3 − n1|

(
logα

2

)
+ |n4 − n1|

(
logα

2

)
= log(4

√
5) + (n1 − n2)

(
logα

2

)
+ (n1 − n3)

(
logα

2

)
+ (n1 − n4)

(
logα

2

)
;

so we can take

A3 := 5 + (n1 − n2) logα + (n1 − n3) logα + (n1 − n4) logα.

Then a lower bound on the left-hand side of (3.12) is

exp(−c4·(1+log n1)·1.4·0.5·(5+(n1−n2) logα+(n1−n3) logα+(n1−n4) logα)),

where c4 = 1.4 · 306 · 34.5 · 22 · (1 + log 2) < 9.7× 1011.
So, inequality (3.12) yields

n1 logα < 1.4×1012 log n1·(5+(n1−n2) logα+(n1−n3) logα+(n1−n4) logα).
(3.13)

Using now (3.3), (3.8) and (3.11) in the right-most terms of the above
inequality (3.13) and performing the respective calculation, we find
that

n1 logα < 40.32× 1048 log4 n1.

With the help of Mathematica, we get from the previous inequality

n < 2.8× 1058.

We record what we have proved.

Lemma 3.1. If (n1, n2, n3, n4, a) is a positive solution of (1.1) with
n1 > n2 > n3 > n4, then

a 6 n1 < 2.8× 1058.
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4. Reduction the bound on n

The goal of this section is to reduce the upper bound on n to a size
that can be handled. To do this, we shall use Lemma 2.1 four times.
Let us consider

z1 := a log 2− n1 logα + log
√

5. (4.1)

From equation (4.1), (3.1) can be written as

|1− ez1| < 9

αn1−n2
. (4.2)

Associating (1.1) and Binet’s formula for the Fibonacci sequence, we
have

αn1

√
5

= Fn1 +
βn1

√
5
< Fn1 + Fn2 + Fn3 + Fn4 = 2a,

hence
αn1

√
5
< 2a,

which leads to z1 > 0. This result, together with (4.2), give

0 < z1 < ez1 − 1 <
9

αn1−n2
.

Replacing (4.1) in the inequality and dividing both sides of the resulting
inequality by logα, we get

0 < a

(
log 2

logα

)
− n+

(
log
√

5

logα

)
<

9

logα
· αn1−n2 < 19 · αn1−n2 . (4.3)

We put

τ :=
log 2

logα
, µ :=

log
√

5

logα
, A := 19, and B := α.

τ is an irrational number. We also put M := 2.8 × 1058, which is an
upper bound on a by Lemma 2.1 applied to inequality (4.3), that

n1 − n2 <
log(Aq/ε)

logB
,

where q > 6M is a denominator of a convergent of the continued frac-
tion of τ such that ε := ‖µq‖ − M ‖τq‖ > 0. A computation with
SageMath revealed that if (n1, n2, n3, n4, a) is a possible solution of the
equation 1.1, then

n1 − n2 ∈ [0, 314].

Let us now consider a second function, derived from (3.4) in order
to find an improved upper bound on n1 − n2.
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Put

z2 := a log 2− n1 logα + log Υ1(n1 − n2)

where Υ is the function given by the formula Υ(t) :=
√

5 (1 + α−t)
−1
.

From (3.4), we have

|1− ez2| < 6

αn1−n3
. (4.4)

Using (1.1) and the Binet’s formula for the Fibonacci sequence, we
have

αn1

√
5

+
αn2

√
5

= Fn1+Fn2+
βn1

√
5

+
βn2

√
5
< Fn1+Fn2+1 6 Fn1+Fn2+Fn3+Fn4

= 2a.

Therefore 1 < 2a
√

5α−n1 (1 + αn2−n1)
−1

and so z2 > 0. This with (4.4)
give

0 < z2 6 ez2 − 1 <
6

αn1−n3
.

Putting the expression of z2 in the above inequality and arguing as in
(4.3), we obtain

0 < a

(
log 2

logα

)
− n1 +

log Υ1(n1 − n2)

logα
< 13 · α−(n1−n3). (4.5)

As before, we take M := 2.8 × 1058 as the upper bound on a, and,
as explained before, we apply Lemma 2.1 to inequamity (4.5) for all
choices n1− n2 ∈ [0, 314] except when n1− n2 = 2, 6. With the help of
SageMath, we find that if (n1, n2, n3, n4, a) is a possible solution of the
equation (1.1) with n1−n2 6= 2 and n1−n2 6= 6, then n1−n3 ∈ [0, 314].

Next, we study the cases n1 − n2 ∈ {2, 6}. For these cases, when we
apply Lemma 2.1 to the expression (4.5), the corresponding parameter
µ appearing in Lemma 2.1 is

log Υ1(t)

logα
=

 1 if t = 2;

3− log 2

logα
if t = 6.

In both case, the parameters τ and µ are linearly dependent, which
tell us that the corresponding value of ε from Lemma 2.1 is always
negative and therefore the reduction method is not useful for reducing
the bound on n in these instances. For this reason, we need to treat
these cases differently.

However, we can see that if t = 2 and 6, then the resulting inequality
from (4.5) has the shape 0 < |xτ − y| < 13 · α−(n1−n3) with τ being
an irrational number and x, y ∈ Z. We will use the known properties
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of the convergents of continued fractions to obtain a nontrivial lower
bound for |xτ − y|.

For n1 − n2 = 2, from (4.5), we get that

0 < aτ − (n1 − 1) < 13 · α−(n1−n3), where τ =
log 2

logα
. (4.6)

Let [a1, a2, a3, a4, . . .] = [1, 2, 3, 1, . . .] be the continued fraction of τ ,
and let pk/qk denote its kth convergent. By Lemma 2.2, we know that
a < 2.8× 1058. An inspection in SageMath reveals that

1207471144047491451512110092657730332808809199105354185685
= q113 < 2.8× 1058 < q114 =

28351096929195187169517686575841899309129196859170938821667.

Furthermore, aM := max{ai : i = 0, 1, . . . , 114} = 134. So, from the
proprieties of continued fractions, we obtain that

|aτ − (n1 − 1)| > 1

(aM + 2)a
. (4.7)

Comparing (4.6) and (4.7), we get

αn1−n3 < 13 · (134 + 2)a.

Taking log on both sides of the above inequality and then dividing by
logα, we get

n1 − n3 < 296.

In order to avoid repetition, we omits the details for the case n1−n2 =
6. Here, we get n1 − n3 < 314.

This completes the analysis of the two special cases n1− n2 = 2 and
n1 − n2 = 6. Consequently n1 − n3 6 314 always holds.

Now let us use (3.9) in order to find improved upper bound on n1−n4.
Put

z3 := a log 2− n1 logα + log Υ2(n1 − n2, n1 − n3),

where Υ2 is the function given by the formula

Υ2(t, s) :=
√

5 (1 + α−t + α−s)
−1
.

From (3.9), we have

|1− ez3| < 3

αn1−n4
. (4.8)

Note that, z3 6= 0; thus, two cases arise: z3 > 0 and z3 < 0.
If z3 > 0, then

0 < z3 6 ez3 − 1 <
3

αn1−n4
.
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Suppose now z3 < 0. It is easy to check that 3/αn1−n4 < 1/2 for all
n1 > 350 and n4 > 2. From (4.8), we have that

|1− ez3 | < 1/2 and therefore e|z3| < 2.

Since z3 < 0, we have:

0 < |z3| 6 e|z3| − 1 = e|z3|
∣∣e|z3| − 1

∣∣ < 6

αn1−n4
,

which means

0 < |z3| <
6

αn1−n4

holds for z3 < 0, z3 > 0 and for all for all n1 > 350, and n4 > 2.
Replacing the expression for z3 in the above inequality and arguing
again as before, we conclude that

0 <

∣∣∣∣a( log 2

logα

)
− n1 +

log Υ2(n1 − n2, n1 − n3)

logα

∣∣∣∣ < 13 · α−(n1−n4).

(4.9)
Here, we also take, M := 2.8 × 1058 and we apply Lemma 2.1 in

inequality (4.9) for all choices n1−n2 ∈ {0, 314} and n1−n3 ∈ {0, 314}
except when

(n1−n2, n1−n3) ∈ {(0, 3), (1, 1), (1, 5), (3, 0), (3, 4), (4, 3), (5, 1), (7, 8), (8, 7)}.
Indeed, with the help of SageMath we find that if (n1, n2, n3, n4, a)
is a possible solution of equation (1.1), excluding the cases presented
before, then n1 − n4 6 314.

SPECIAL CASES. We deal with the cases when

(n1 − n2, n1 − n3) ∈ {(1, 1), (3, 0), (4, 3), (5, 1), (8, 7)}.
It is easy to check that

log Υ2(t, s)

logα
=



0, if (t, s) = (1, 1);
0, if (t, s) = (3, 0);
1, if (t, s) = (4, 3);

2− log 2

logα
, if (t, s) = (5, 1);

3− log 2

logα
, if (t, s) = (8, 7).

As we explained before, when we apply Lemma 2.1 to the expression
(4.9), the parameters τ and µ are linearly dependent, so the corre-
sponding value of ε from Lemma 2.1 is negative in all cases. For this
reason, we shall treat these cases differently.

Here, we have to solve the equations

Fn2+1+2Fn2+Fn4 = 2a, 2Fn2+3+Fn2+Fn4 = 2a, Fn2+4+Fn2+Fn2+1+Fn4 = 2a,
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Fn2+5 +Fn2 +Fn2+4 +Fn4 = 2a, and Fn2+8 +Fn2 +Fn2+1 +Fn4 = 2a

(4.10)
in positive integers n2, n4 and a. To do so, we recall the following
well-known relation between the Fibonacci and the Lucas numbers:

Lk = Fk−1 + Fk+1 for all k > 1. (4.11)

From (4.11) and (4.10), we have the following identities

Fn2+1 + 2Fn2 + Fn4 = Fn2+2 + Fn2 + Fn4 = Fk+2 + Fk + Fm,

2Fn2+3 + Fn2 + Fn4 = Fn2+2 + Fn2+4 + Fn4 = Fk+2 + Fk+4 + Fm,

Fn2+4 + Fn2 + Fn2+1 + Fn4 = Fn2+2 + Fn2+4 + Fn4 = Fk+2 + Fk+4 + Fm,
(4.12)

Fn2+5+Fn2 +Fn2+4+Fn4 = 2Fn2+2+2Fn2+4+Fn4 = 2Fk+2+2Fk+4+Fm,

and Fn2+8+Fn2+Fn2+1+Fn4 = 2Fn2+6+2Fn2+4+Fn4 = 2Fk+6+2Fk+4+Fm,

which hold for all k,m > 0.
Equation (4.10) are transformed into the equations

Lk+1+Fm = 2a, Lk+3+Fm = 2a, 2Lk+3+Fm = 2a, 2Lk+5+Fm = 2a,
(4.13)

to be resolved in positive integers k,m and a.
A quick search in SageMath and analytical resolution leads to :

(k,m, a) ∈ {(4, 5, 4), (4, 8, 5)} for Lk+1 + Fm = 2a,

(k,m, a) ∈ {(2, 5, 4), (2, 8, 5), (4, 4, 5)} for Lk+3 + Fm = 2a,

(k,m, a) = (5, 9, 7) for 2Lk+3 + Fm = 2a,

(k,m, a) = (3, 9, 7) for 2Lk+5 + Fm = 2a.

A complete resolution and analysis gives solutions that are already
listed in Theorem 1.1. This completes the analysis of the special cases.

Finally let us use (3.12) in order to find an improved upper bound
on n1. Set

z4 := a log 2− n1 logα + log Υ3(n1 − n2, n1 − n3, n1 − n4),

where Υ3 is the function given by the formula

Υ3(t, u, v) :=
√

5
(
1 + α−t + α−u + α−v

)−1
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with t = n1 − n2, u = n1 − n3 and v = n1 − n4. From (3.12), we get

|1− ez3| < 2

αn1
. (4.14)

Since z3 6= 0, as before, two cases arise : z4 < 0 and z4 > 0.
If z4 > 0, then

0 < z4 6 ez4 − 1 <
2

αn1
.

Suppose now that z4 < 0. We have 2/αn1 < 1/2 for all n1 > 350.
Then, from (4.14), we have

|1− ez4| < 1

2

and therefore e|z3| < 2.
Since z3 < 0, we have :

0 < |z3| 6 e|z3| − 1 = e|z3|
∣∣e|z3| − 1

∣∣ < 4

αn1

which gives

0 < |z3| <
4

αn1

for both cases (z3 < 0 and z3 > 0 ) and holds for all n1 > 350.
Replacing the expression for z3 in the above inequality and arguing

again as before, we conclude that

0 <

∣∣∣∣a( log 2

logα

)
− n1 +

log Υ3(n1 − n2, n1 − n3, n1 − n4)

logα

∣∣∣∣ < 9 · α−n1 .

(4.15)
Here, we also take, M := 2.8×1058 and we apply Lemma 2.1 last time

in inequality (4.15) for all choices n1−n2 ∈ {0, 314}, n1−n3 ∈ {0, 314}
and n1 − n4 ∈ {0, 314} with (n1, n2, n3, n4, a) a possible solution of
equation (1.1), and by omitting study of special cases (because they
give a solution presented in Theorem 1.1 ), we get:

n1 < 320.

This is false due to our assumption that n1 > 350.
This ends the proof of our main theorem. �

Remark 4.1. Note that the computations for this last case took 2 hours
on an ASUS CORE i5 8th Gen. processor.
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5. Comments

In this paper, we found all instances in which a power of two can
be expressed as a sum of four Fibonacci numbers. Given the results
obtained, we can make the following conjecture.

Conjecture 5.1. Consider the Diophantine equation

Fn1 + Fn2 + Fn3 + Fn4 = pa, p > 2, a > 2 (5.1)

where n1, n2, n3, n4, a are positive integers with n1 > n2 > n3 > n4 and
p is prime, then p = 2, 3, 5, 7.
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