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ON SPECIAL AMALGAMS AND CLOSED VARIETIES
OF POSEMIGROUPS

S. A. AHANGER, S. BANO∗, AND A. H. SHAH

Abstract. In this paper, we extend a result of Scheiblich by
showing that variety of po-normal bands is closed. We also extend
the well known results to posemigroups namely, that pogroups and
inverse posemigroups have special amalgamation property in the
category of all posemigroups and commutative posemigroups, re-
spectively. Finally, we find some varieties of posemigroups which
are closed if they are self convex.

1. Introduction and Summary

In [9], Scheiblich had shown that the variety of normal bands was
closed. Therefore, the special semigroup amalgam [U ; {S, S ′}; {i, α|U}]
is embeddable, where U and S are any normal bands. In section 3,
we extend this result to the variety of po-normal bands. In [7], Howie
and Isbell had shown that inverse semigroups were absolutely closed
in the category of semigroups. In this section, we partially gener-
alize this result by showing that the special posemigroup amalgam
{U ; {S, S ′}; {i, α|U}} is poembeddable in the category of commutative
posemigroups, where U is any inverse posemigroup. Further, we show
that the special posemigroup amalgam [U ; {S, S ′}; {i, α|U}] is poem-
beddable in the category of all posemigroups, where U is any pogroup,
i.e., pogroups have special amalgamation property in the category of
all posemigroups.
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In [6], Higgins has shown that the variety of right normal bands was
not absolutely closed, hence, so is the case with variety of po-right
normal bands. So, it is of worth interest to find the subvarieties of the
variety of all posemigroups in which the variety of po-left [po-right]
normal bands is closed. In section 4, we show some varieties, which
contain the variety of po-left [po-right] normal bands, are closed.

2. preliminaries

A partially ordered semigroup, briefly posemigroup, is a pair (S,≤)
comprising a semigroup S and a partial order ≤ on S that is compatible
with its binary operation, i.e. for all s1, s2, t1, t2 ∈ S (s1 ≤ t1 and
s2 ≤ t2) =⇒ s1s2 ≤ t1t2. If S is a monoid, then we call (S,≤)
a partially ordered monoid, in short, a pomonoid. We call (U,≤U) a
subposemigroup of a posemigroup (S,≤S) if U is a subsemigroup of
the semigroup S and ≤U = ≤S ∩(U × U). The corresponding notion
of subpomonoid is defined analogously. In whatever follows we shall
denote a posemigroup (S,≤) simply by S if there is no confusion about
the order relation. A posemigroup morphism f : S → T , where S and
T are posemigroups, is a monotone map (i.e., x ≤ y =⇒ f(x) ≤ f(y))
that is also a morphism of the underlying semigroups.

In this article, we shall always treat a posemigroup (S,≤) as a semi-
group by simply disregarding the order. In the later case we shall
denote it by S. Let A be a class of posemigroups. Then by A′, we
shall denote the class of semigroups obtained by disregarding the order
in A (that is A′ = {S : (S,≤) ∈ A}).

Let S and T be posemigroups and f : S → T be any posemigroup
morphism. Then f is said be an epimorphism (epi, for short) if for
any posemigroup W and any posemigroup morphisms α, β : T → W ,
αf = βf implies α = β. One can easily observe that the forgetful func-
tor from the category of all pomonoids to the category of all monoids
preserves epis.

Let U be a subposemigroup of a posemigroup S and d ∈ S. We say
that U dominates d if for all posemigroup morphisms α, β : S → T ,
whenever α(u) = β(u) for all u ∈ U then α(d) = β(d). The set of
all elements of S that are dominated by U is called the posemigroup

dominion of U in S and is denoted by D̂om(U, S). One can easily

verify that D̂om(U, S) is a subposemigroup of S containing U . Let
U be a subposemigroup of a posemigroup S. We say U is closed in

S if D̂om(U, S) = U and U is said to be absolutely closed if it is
closed in every containing posemigroup. A posemigroup U is said to be

saturated if D̂om(U, S) 6= S for every properly containing posemigroup
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S. A variety V of posemigroups is absolutely closed [saturated] if each
member of V is absolutely closed [saturated].

A class of posemigroups is called a variety of posemigroups if it is
closed under cartesian products endowed with component-wise binary
operation and order, morphic images and subposemigroups. It is also
possible to describe posemigroup varieties alternatively with the help
of inequalities using Birkhoff type characterization; we refer the readers
to [4] for all such details.

A variety V of posemigroups is closed if for any posemigroups U, S ∈
V with U as a subposemigroup of S, D̂om(U, S) = U . Let U and S be
two posemigroups such that U is a subposemigroup of S. Then U is
said to be convex in S if for any u, v ∈ U and s ∈ S with u ≤ s ≤ v,
implies s ∈ U and we say posemigroup U is convex if it is convex in
every containing posemigroup. A variety V of posemigroups is said to
be convex if each member of the variety is convex and it is said to be
V−convex if for any posemigroups U, S ∈ V , U is convex in S.

The following characterization of posemigroup dominion is provided
by Sohail and Tart called the Zigzag Theorem for posemigeroups which
is as follows.

Theorem 2.1. ([10], Theorem 5) Let U be a subposemigroup of a

posemigroup S. Then d ∈ D̂om(U, S) if and only if d ∈ U or

d ≤ x1u0, u0 ≤ u1y1

xiu2i−1 ≤ xi+1u2i, u2iyi ≤ u2i+1yi+1 (i = 1, 2, . . . ,m− 1) (2.1)

xmu2m−1 ≤ u2m, u2mym ≤ d; and

v0 ≤ s1v1, d ≤ v0t1

sjv2j ≤ sj+1v2j+1, v2j−1tj ≤ v2jtj+1 (j = 1, 2, . . . ,m′ − 1) (2.2)

sm′v2m′ ≤ d, v2m′−1tm′ ≤ v2m′ ;

where u0, v0, . . . , u2m, v2m′ ∈ U, x1, y1, . . . , xm, ym, s1, t1, . . . , sm′ , tm′ ∈
S.

The above inequalities are called zigzag ineqalities in S over U with
value d of length (m,m′). We say that the above zigzag inequalites
are of minimal lenght (m,m′) if m and m′ are the smallest positive
integers. The zigzag inequalities (2.1) give:

d ≤ x1u0 ≤ x1u1y1 ≤ x2u2y1 ≤ · · · ≤ xmu2m−1ym ≤ u2mym ≤ d.

Therefore

d = x1u0 = x1u1y1 = x2u2y1 = · · · = xmu2m−1ym = u2mym = d. (2.3)
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Similarly the zigzag inequalities (2.2) give:

d ≤ v0t1 ≤ s1v1t1 ≤ s1v2t2 ≤ · · · ≤ sm′v2m′−1tm′ ≤ sm′v2m′ ≤ d.

Thus

d = v0t1 = s1v1t1 = s1v2t2 = · · · = sm′v2m′−1tm′ = sm′v2m′ = d. (2.4)

The next theorems are very instrumental in our investigations.

Theorem 2.2. ([1], Lemma 3.2) Let d ∈ D̂om(U, S) \ U and let (2.1)
and (2.2) be zigzag inequalities for d of minimal length (m,m′). Then
xi, yi, sj, tj ∈ S \ U for all i = 1, 2, . . . ,m, j = 1, 2, . . . ,m′.

Theorem 2.3. ([1], Lemma 3.3) Let U be a subposemigroup of a

posemigroup S such that D̂om(U, S) = S. Then, for any d ∈ S \U and
for any positive integers k and k′, there exist u1, u2, . . . , uk, v1, v2, . . . , vk′
∈ U and d′, d′′ ∈ S \U such that d = u1u2 · · ·ukd′ = d′′vk′vk′−1 · · · v2v1.

Theorem 2.4. ([1], Lemma 2.1) Let U be subposemigroup of a posemi-

group S. Then D̂om(Z(U), S) is central in U .

The bracketed statements wherever used shall mean the dual to the
other statements.

3. Poembeddable Posemigroup Amalgams

A posemigroup S is said to be po-band if x2 = x for all x ∈ S;
i.e., every element of S is an idempotent. A po-band is said to be a
po-normal band if it satisfies the identity xyzx = xzyx.

A posemigroup amalgam A = [U ;Si, φi] consists of a posemigroup
U , called the core, a family {Si : i ∈ I} of posemigroups and a family
{φi : i ∈ I} of order embeddings, φi : U → Si. The posemigroup
amalgam A = [U ;Si, φi] is said to be weakly embeddable [poembeddable]
in a posemigroup T if there exist posemigroup monomorphisms [order-
embeddings] ψi : Si → T such that for all i 6= j in I, ψiφi = ψjφj.
If in addition ψi(Si) ∩ ψj(Sj) = ψiφi(U), the amalgam is embeddable
[poembeddable] in T . Hence it can easily be deduced that

poembeddable =⇒ embeddable

⇓ ⇓
weakly poembeddable =⇒ weakly embeddable.

A posemigroup amalgam [U ;S, S ′; i, πU ] consisting of a posemigroup S,
a subposemigroup U of S, an order isomorphism π : S → S ′ and the
inclusion i : U → S is called a special posemigroup amalgam.
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Theorem 3.1. [[8], Theorem 8.3.2] Let U be a subposemigroup of a
posemigroup S and let π : S → S ′ be an order isomorphism. Then

D̂om(U, S) = Θ−11 (Θ1(S) ∩ Θ2(S
′)), where Θ1 : S → S ∗U S ′ and

Θ2 : S ′ → S ∗U S ′ are posemigroup order embeddings.

Therefore one can easily verify from Theorem 3.1 the following:

Corollary 3.2. Let U be a subposemigroup of a posemigroup S. Then
U is closed in S if and only if the special posemigroup amalgam, [U ;S, S ′;
i, πU ] is poembeddable.

In the next theorem, we show that the special posemigroup amalgam
[U ; {S, S ′}; {i, α|U}], where U and S are po-normal bands such that U
is a sub po-band of S is poembeddable. To prove our theorem, we first
prove the following lemmas.

Lemma 3.3. Let U and S be po-normal bands such that U be a sub

po-band of S. Let d ∈ D̂om(U, S) \ U and let (2.1) and (2.2) be zizag
inequalities in S over U with value d of length (m,m′). Then for all

k = 1, 2, . . . ,m, d ≥ xku2k−1yk(
∏k

i=1 u2i−1)u0.

Proof. We use induction on k. For k = 1, we have

d = x1u1y1 (by zigzg equations (2.3))

= x1u1y1u1y1 (as S is a po-band)

≥ x1u1y1u0 (by zigzag inequalities (2.1))

= x1u1u1y1u0 (as U is a po-band)

= x1u1y1(
1∏

i=1

ui)u0 (as S is a po-normal band).

Therefore the result holds for k = 1. Assume inductively that the result
holds for k = l < m. We show the that the result holds for k = l + 1.
Now

d ≥ xlu2l−1yl(
l∏

i=1

u2i−1)u0 (by inductive hypothesis)

= xl+1u2l+1yl+1(
l∏

i=1

u2i−1)u0 (by zigzag equations (2.3))

= xl+1u2l+1u2l+1yl+1(
l∏

i=1

u2i−1)u0 (as U is a po-band)
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= xl+1u2l+1yl+1(
l+1∏
i=1

u2i−1)u0 (as S is a po-normal band).

Thus the result holds for k = l + 1, as required. �

Lemma 3.4. Let U and S be po-normal bands such that U is a sub

po-band of S. Let d ∈ D̂om(U, S) \ U and let (2.1) and (2.2) be zizag
inequalities in S over U with value d of length (m,m′). Then for all

k = 1, 2, . . . ,m, d ≤ u2m(
∏k

i=1 u2i−1)xku2k−1yk.

Proof. The proof follows on the similar lines as the proof of the Lemma
3.3. �

Theorem 3.5. The variety of po-normal bands is closed.

Proof. Let U and S be any two po-normal bands with U as a subpo-

band of S. We show that D̂om(U, S) = U . Assume on contrary and

take any d ∈ D̂om(U, S) \ U . Let (2.1 ) and (2.2) be the zigzag in-
equalities in S over U with value d of length (m,m′). Now

d ≥ xmu2m−1ym(
m∏
i=1

u2i−1)u0 (by Lemma 3.3)

= u2mym(
m∏
i=1

u2i−1)u0 (by zigzag equations (2.3))

= u2mu2m−1ym(
m−1∏
i=1

u2i−1)u0 (as S is a po-normal band)

≥ (
1∏

i=0

u2m−2i)ym−1(
m−1∏
i=1

u2i−1)u0 (by zigzag inequalities (2.1)).

Proceeding in this way, we get

d ≥ (
m−1∏
i=0

u2m−2i)y1(
1∏

i=1

u2i−1)u0

= (
m−1∏
i=0

u2m−2i)u1y1u0 (as S is a po-normal band)

≥ (
m∏
i=0

u2m−2i)u0 (by zigzag inequalities (2.1))

=
m∏
i=0

u2m−2i (as U is a band).
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Now on similar lines, by Lemma 3.4 and zigzag inequalities (2.1), we
obtain d ≤

∏m
i=0 u2m−2i. Thus d =

∏m
i=0 u2m−2i ∈ U, a contradiction,

as required. �

The next corollary follows from Corollary 3.2 and Theorem 3.5.

Corollary 3.6. Let U and S be po-norml bands such that U is a subpo-
band of S. Then the special posemigroup amalgam [U ; {S, S ′}; {i, α|U}]
is poembeddable.

Let S be a semigroup and x ∈ S. Then x−1 ∈ S is said to be an inverse
of x if xx−1x = x and x−1xx−1 = x−1. A semigroup S is said to be
regular if every element of S has an inverse and an inverse semigroup
if every element of S has a unique inverse. A posemigroup S is said to
be regular [inverse] posemigroup if it is such as a semigroup. One can
easily verify that a regular semigroup is an inverse semigroup if and
only if its idempotents commute.

In [2], Al Subaiei had shown that the pogroups were absolutely
closed. In the next theorem we extend this result by proving the fol-
lowing.

Theorem 3.7. Let U be any regular posemigroup and S be any posemi-
group containing U as a subposemigroup. If

(a) idempotents of U are central in U ;

(b) any d ∈ D̂om(U, S) \U has zigzag inequalities of the type (2.1)
and (2.2);

(c) for any idempotents e and f in U, xiu2i−1yie = xiu2i−1eyi and
fxiu2i−1yi = xifu2i−1yi for all i = 1, 2, . . . ,m,

then d ∈ U .

Proof. For all k = 1, 2, . . . ,m, we show that

d = xku2k−1yk(
k∏

i=1

u−12i−1u2i−1). (3.1)

To prove (3.1), we use induction on k. For k = 1, we have

d = x1u1y1 (by zigzag equations (2.3))

= x1u1u
−1
1 u1y1 (as U is an inverse posemigroup)

= x1u1y1(
1∏

i=1

u−12i−1u2i−1) (as u−11 u1 is an idempotent of U).
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Therefore the result holds for k = 1. Assume inductively that the result
holds for k = l < m. We show that the result also holds for k = l + 1.
Now

d = xlu2l−1yl(
l∏

i=1

u−12i−1u2i−1) (by inductive hypothesis)

= xl+1u2l+1yl+1(
l∏

i=1

u−12i−1u2i−1) (by zigzag equations (2.3))

= xl+1u2l+1u
−1
2l+1u2l+1yl+1(

l∏
i=1

u−12i−1u2i−1) (as U is an inverse posemigroup)

= xl+1u2l+1yl+1u
−1
2l+1u2l+1(

l∏
i=1

u−12i−1u2i−1) (as u−12l+1u2l+1 is an idempotent)

= xl+1u2l+1yl+1(
l+1∏
i=1

u−12i−1u2i−1) (as idempotents commute in U).

Thus the result also holds for k = l + 1, as required. Since the idem-
potents are central in U , therefore by Theorem 2.4, they are central in

D̂om(U, S); i.e.,

de = ed for all d ∈ D̂om(U, S) and for any idempotent e of U. (3.2)

Now, we have

d = xmu2m−1ym(
m∏
i=1

u−12i−1u2i−1) (by equation (3.1))

= u2mym(
m∏
i=1

u−12i−1u2i−1) (by zigzag equations (2.3))

= (
m∏
i=1

u−12i−1u2i−1)u2mym (by equations (3.2) as (
∏m

i=1 u
−1
2i−1u2i−1)

is an idempotent and d = u2mym)

= (
m−1∏
i=1

u−12i−1u2i−1)u2mu
−1
2m−1u2m−1ym (as u−12m−1u2m−1 is an idempotent

and idempotents are central in U)

≥ (
m−1∏
i=1

u−12i−1u2i−1)u2mu
−1
2m−1u2m−2ym−1 (by zigzag inequalities (2.1) )
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= (
m−2∏
i=1

u−12i−1u2i−1)u2mu
−1
2m−1u2m−2u

−1
2m−3u2m−3ym−1 (as u−12m−3u2m−3 is an

idempotent and idempotents are central in U)

= (
m−2∏
i=1

u−12i−1u2i−1)(
1∏

i=0

u2m−2iu
−1
2m−2i−1)u2m−3ym−1.

Proceeding like wise, we obtain

d ≥ (
1∏

i=1

u−12i−1u2i−1)(
m−2∏
i=0

u2m−2iu
−1
2m−2i−1)u3y2

≥ u−11 u1(
m−2∏
i=0

u2m−2iu
−1
2m−2i−1)u2y1 (by zigzag inequalities (2.1))

= (
m−2∏
i=0

u2m−2iu
−1
2m−2i−1)u2u

−1
1 u1y1 (as u−11 u1 is an idempotent and

idempotents are central in U)

≥ (
m−1∏
i=0

u2m−2iu
−1
2m−2i−1)u0 (by zigzag inequalities (2.1)).

By a similar token, we obtain d ≤ (
∏m−1

i=0 u2m−2iu
−1
2m−2i−1)u0 and hence

d = (
m−1∏
i=0

u2m−2iu
−1
2m−2i−1)u0 ∈ U,

as required. �

The next corollaries easily follows from the Theorem 3.7.

Corollary 3.8. Let U be an inverse posemigroup and S be any posemi-
group with U as a subposemigroup such that the idempotents of U are
central in S. Then U is closed in S.

Corollary 3.9. Inverse posemigroups are absolutely closed in the cat-
egory of all commutative posemigroups.

Theorem 3.10. Pogroups are absolutely closed in the category of all
posemigroups.

Proof. Let G be any pogroup and S be any posemigroup containing
G as a subposemigroup. Let e be the identity of G. Then e is the
only idempotent of G and clearly e is central in G. Take any d ∈
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D̂om(G,S) \ G and let (2.1) and (2.2) be the zigzag inequalities with
value d. Then the zigzag equation (2.3) gives

de = x1u0e = d and ed = eu2mym = d.

Now, one can easily verify that

xiu2i−1yie = xiu2i−1eyi = xieu2i−1yi = exiu2i−1yi for all i = 1, 2, . . . ,m.

Thus, by Theorem 3.7, G is closed in S and hence pogroups are abso-
lutely closed in the category of all posemigroups. �

The next corollary follows from Corollary 3.2 and Theorem 3.10.

Corollary 3.11. Let U be a subpogroup of a posemigroup S. Then the
special posemigroup amalgam [U ; {S, S ′}; {i, α|U}] is poembeddable.

The next corollary follows from the Corollary 3.2 and the Corollary
3.8.

Corollary 3.12. Let U be a subposemigroup of a posemigroup S such
that U is an inverse posemigroup. The special posemigroup amalgam
[U ; {S, S ′}; {i, α|U}] is poembeddable in the category of all commutative
posemigroups.

4. Closed Varieties of Posemigroups

A po-band is said to be a po-left [po-right] normal band if it satisfies
the identity xyz = xzy [xyz = yxz].

In this section, we show that the varieties V1 = [xyz = xxzy] and
U1 = [xyz = xzyy] of posemigroups are closed if they are V1-convex
and U1-convex, respectively. In particular, it will imply that the variety
of po-left normal bands is closed in both the above mentioned varieties.

Theorem 4.1. The variety V1 of posemigroups satisfying the identity
xyz = xxzy is closed if it is V1-convex.

Proof. Let U, S ∈ V1 such that U is convex subposemigroup of S.

We show that D̂om(U, S) = U . Assume on contrary and take any

d ∈ D̂om(U, S) \U . Let (2.1 ) and (2.2) be the zigzag inequalities in S
over U with value d of length (m,m′). In order to prove the theorem,
we first prove the following lemmas.

Lemma 4.2. For all j = 1, 2, . . . ,m′,

d = (

j∏
i=1

sisiv2i−1v2i−1)sjv2j−1tj.
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Proof. For any x, y, z ∈ S, we have

xyz = xxzy (as S ∈ V1)
= xxyxz (as S ∈ V1)
= xxyyzx (as S ∈ V1)
= xxyyz (as S ∈ V1)
= xxyyzx (as S ∈ V1)
= xxyyxyz (as S ∈ V1). (4.1)

Now, to prove the lemma, we use induction on j. For j = 1, we have

d = s1v1t1 (by zigzag equations (2.4)

= s1s1v1v1s1v1t1 (by equation (4.1)).

Therefore the result holds for j = 1. Assume inductively that the
result is true for j = l < m. We now show that the result also holds
for j = l + 1. Now

d = (
l∏

i=1

sisiv2i−1v2i−1)slv2l−1tl (by inductive hypothesis)

= (
l∏

i=1

sisiv2i−1v2i−1)sl+1v2l+1tl+1 (by zigzag equations (2.4))

= (
l∏

i=1

sisiv2i−1v2i−1)sl+1sl+1v2l+1v2l+1sl+1v2l+1tl+1

(by equation (4.1))

= (
l+1∏
i=1

sisiv2i−1v2i−1)sl+1v2l+1tl+1.

Therefore the result also holds for j = l + 1, as required. �

Lemma 4.3. For all k = 1, 2, . . . ,m,

d = (
k∏

i=1

x(k−i)+1x(k−i)+1u2(k−i)+1u2(k−i)+1)x1u1y1.

Proof. It follows on similar lines as the proof of the Lemma 4.2, by
using the zigzag equations (2.3). �
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We now return to the proof of the theorem and let j = m′ in Lemma
4.2, we get

d = (
m′∏
i=1

sisiv2i−1v2i−1)sm′v2m′−1tm′

= (
m′∏
i=1

sisiv2i−1v2i−1)sm′v2m′ (by zigzag equations (2.4))

= (
m′−1∏
i=1

sisiv2i−1v2i−1)sm′sm′v2m′−1v2m′−1sm′v2m′

= (
m′−1∏
i=1

sisiv2i−1v2i−1)sm′sm′v2m′−1v2m′−1v2m′ (as S ∈ V1)

= (
m′−1∏
i=1

sisiv2i−1v2i−1)sm′v2m′−1v2m′−1v2m′ (as S ∈ V1)

≥ (
m′−1∏
i=1

sisiv2i−1v2i−1)sm′−1v2m′−2v2m′−1v2m′

(by zigzag inequalities (2.2))

...

≥ (
2∏

i=1

sisiv2i−1v2i−1)s2v4 · · · v2m′−2v2m′−1v2m′

= s1s1v1v1s2s2v3v3v4 · · · v2m′−2v2m′−1v2m′ (as S ∈ V1)
= s1s1v1v1s2v3v3v4 · · · v2m′−2v2m′−1v2m′ (as S ∈ V1)
≥ s1s1v1v1s1v2v3v4 · · · v2m′−2v2m′ (by zigzag inequalities (2.2))

= s1s1v1v1v2v3v4 · · · v2m′−2v2m′−1v2m′ (as S ∈ V1)
= s1v1v2v3v4 · · · v2m′−2v2m′−1v2m′ (as S ∈ V1)
≥ v0v1v2v3v4 · · · v2m′−2v2m′−1v2m′ (by zigzag inequalities (2.2))

= (
m′−1∏
i=0

v2iv2i+1)v2m′ .

Now on similar lines, by using the Lemma 4.3 and the zigzag inequali-
ties (2.1), we obtain d ≤ (

∏m−1
i=0 u2(m−i)u2(m−i)−1)u0. Therefore d ∈ U ,

as U is convex in S, a contradiction as required. �

Dually we can prove the following theorem.
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Theorem 4.4. The variety V2 of posemigroups satisfying the identity
xyz = yxzz is closed if it is V2-convex.

From Theorems 4.1 and 4.4, we have the following immediate corol-
laries.

Corollary 4.5. The variety of po-left [po-right] normal bands is closed
in the variety V1 [V2] of posemigroups if it is V1-convex [V2-convex].

Corollary 4.6. The variety V = V1 ∩ V2 of posemigroups is closed.

Theorem 4.7. The variety U1 of posemigroups satisfying the identity
xyz = xzyy is closed if it is U1-convex.

Proof. Let U, S ∈ U1 such that U is convex subposemigroup of S.

We show that D̂om(U, S) = U . Assume on contrary and take any

d ∈ D̂om(U, S) \U . Let (2.1 ) and (2.2) be the zigzag inequalities in S
over U with value d of length (m,m′). In order to prove the theorem,
we first prove the following lemmas.

Lemma 4.8. For all k = 1, 2, · · · ,m, d = xku2k−1yk(
∏k

i=1 u2(k−i)+1u2(k−i)+1).

Proof. For any x, y, z ∈ S, we have

xyz = xzyy (as S ∈ U1)
= xyyzz (as S ∈ U1)
= xyzzyy (as S ∈ U1)
= xzyyy (as S ∈ U1)
= xyyzyzy (as S ∈ U1)
= xyzyy (as S ∈ U1). (4.2)

To prove the lemma we use induction on k. For k = 1, we have

d = x1u1y1 (by zigzag equations (2.3)

= x1u1y1u1u1 (by equation (4.2)).

Therefore the result holds for k = 1. Assume inductively that the
result is true for k = l < m. We now show that the result also holds
for k = l + 1. Now

d = xlu2l−1yl(
l∏

i=1

u2(l−i)+1u2(l−i)+1) (by inductive hypothesis)

= xl+1u2l+1yl+1(
l∏

i=1

u2(l−i)+1u2(l−i)+1) (by zigzag equations (2.3))
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= xl+1u2l+1yl+1u2l+1u2l+1(
l∏

i=1

u2(l−i)+1u2(l−i)+1) (by equation (4.2))

= xl+1u2l+1yl+1(
l+1∏
i=1

u2(l−i)+1u2(l−i)+1).

Therefore the result also holds for k = l + 1, as required. �

Lemma 4.9. For all k = 1, 2, · · · ,m,

d = x1u1y1(

j∏
i=1

u2i−1u2i−1).

Proof. It follows on similar lines as the proof of the Lemma 4.8 and
using the zigzag equations (2.3). �

We now return to the proof of the theorem and let k = m in Lemma
4.8, we get

d = xmu2m−1ym(
m∏
i=1

u2(m−i)+1u2(m−i)+1)

= u2mymu2m−1u2m−1(
m∏
i=2

u2(m−i)+1u2(m−i)+1)

(by zigzag equations (2.3))

= u2mu2m−1ym(
m∏
i=2

u2(m−i)+1u2(m−i)+1) (as S ∈ U1))

≥ u2mu2m−2ym−1(
m∏
i=2

u2(m−i)+1u2(m−i)+1) (by zigzag inequalities (2.1))

= (
1∏

i=0

u2(m−i))ym−1u2m−3u2m−3(
m∏
i=3

u2(m−i)+1u2(m−i)+1)

...

= (
m−2∏
i=0

u2(m−i))y2u3u3u1u1

= (
m−2∏
i=0

u2(m−i))u3y2u1u1 (as S ∈ U1)

≥ (
m−2∏
i=0

u2(m−i))u2y1u1u1 (by zigzag inequalities (2.1))
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= (
m−1∏
i=0

u2(m−i))u1y1 (as S ∈ U1)

≥ (
m∏
i=0

u2(m−i) (by zigzag inequalities (2.1)).

Now on similar lines by using the Lemma 4.9 and the reverse zigzag
inequalities (2.1), we obtain d ≤

∏m
i=0 u2i. Therefore d ∈ U , as U is

convex in S, a contradiction as required. �

Dually we can prove the following theorem.

Theorem 4.10. The variety U2 of posemigroups satisfying the identity
xyz = yyxz is closed if it is U2-convex.

From Theorems 4.7 and 4.10, we have the following immediate corol-
laries.

Corollary 4.11. The variety of po-left [po-right] normal bands is closed
in the variety U1 [U2] of posemigroups if it is U1-convex [U2-convex].

Corollary 4.12. The variety U = U1 ∩ U2 of posemigroups is closed.
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