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HYPERGRAPH ASSOCIATED WITH LIE ALGEBRA
OF UPPER TRIANGULAR MATRICES

S. SRIDHARAN AND S. VENKATARAMAN*

ABSTRACT. For an associated combinatorial structure with Lie
algebra g, of upper triangular matrices, an allowable, forbidden,
and the graphs that are not associated with g,, of any three vertices
are determined. This work also introduces a neoteric association
of hypergraph with Lie algebra of upper triangular matrix G, for
an element of Lie algebra g,. The properties of this structure are
analyzed, characterized and have been presented as an algorithm
for finite order.

1. INTRODUCTION

Establishing relationships between different mathematical fields
is always an important goal in mathematical research that paves
the way with different techniques for better solution of real-world
applications. A rapidly emerging theory called Lie Theory has sparked
renewed interest not only of its theoretic approach but also moving
towards various applications in physics, engineering, and many more.
At this point, our primary goal is to establish a relationship between
the Lie algebra of upper triangular matrices and hypergraph.

Lie algebra of upper triangular matrices g, is the subalgebra of
gl(n,R), the general linear Lie algebra consisting of all n x n matrices
over R with the commutator: [x,y|=xy-yx, for x, y € gl(n, R).
E;; denote the matrix whose sole nonzero entry is 1 in the (i, j)
position forms the basis of upper triangular matrix Lie algebra. Many
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g n-dimensional Lie algebra.
g, Lie algebra of n x n upper triangular matrices
Basis of g

, Basis of g,

G Graph associated with g,

G, Hypergraph associated with one of the elements of g,
containing exactly @

Hs Hypergraph associated with one of the elements of g,
containing s number of vertices.

TABLE 1. Notation

algebraists associates graph with rings and modules [9, 11, 12, 17].
Carriazo [5] initiated an association of graph (combinatorial structure
of dimension 2) with finite dimensional Lie algebra. In [6] Ceballos,
defined the association of graph structure with Lie algebra of upper
triangular matrices. Also, triangular association is given in [10].

In the literature, Lie algebra have not been associated
with a combinatorial structure like hypergraph. Hypergraph
is the generalisation of graph and representing structures by
hypergraph-based methods has been recently increasing because of its
n-ary relations [1] that is, it allows vertices to be multiply connected
by hyperedges. For this reason, various practical problems like image
processing [18], DNA sequencing [16], networking [2] and so on use this
representation.

The construction of a hypergraph for the Lie algebra of upper
triangular matrices is carried out by defining a new type of commutator
with Lie triple as the primary tool introduced in Section 4. The rest of
the paper is organized as follows. Section 2 reviews some preliminaries
and notations. In Section 3, we have found forbidden configuration
(Theorem 3.2), allowable configuration (Theorem 3.5) and necessary
and sufficient condition (Theorem 3.7) of a graph associated with
g,. Section 4 introduces the hypergraph association with g, and its
properties are established.

2. PRELIMINARIES

For the descriptions on Lie algebra, digraph, hypergraph and so on,
one can refer [3, 0, &].

Definition 2.1. A Lie algebra g is a vector space with a second
bilinear inner composition law ([.,.]) called the bracket product
or Lie bracket, which satisfies [#,0] = 0, forall 6 € g and
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J(0,v,w) =0, forall 0,v,w € g where J is the Jacobiator defined as,
J(0,7,w) = [[0,7],w] + [[v,w], 0] + [[w,0],7] known as Jacobi identity.

Definition 2.2. Given a digraph G = (V,E), a vertex v € V is a
going-in (resp. a going-out) if all the edges incident with v are oriented
towards v (resp. oriented from v) (Ref [0] Figure 1).

Definition 2.3. A graph is said to be well oriented if all of its vertices
are either going-in or going-out.

Definition 2.4. A hypergraph on X = {z1,22,...,2,} is a family,
H = (Ey, Es, ..., E,) of subsets of X such that E; #0 i=1,2,...,q

q
and |J £; = X. The elements xy,xs,...,z,, of X are called vertices,

i=1
and the sets Fy, Es, ..., E, are the edges of the hypergraph.

Definition 2.5. The rank and anti-rank of a hypergraph H is
r(H) = max|E;| and s(H) = min|E;| respectively and hypergraph
J J

is said to be uniform if rank is equal to anti-rank i.e., r(H) = s(H).

Definition 2.6. Given n € N, the Lie algebra g, is the matrix algebra
consisting of all nxn upper triangular matrices. This algebra is solvable

[13] and of dimension @ Its vectors are expressed as,
Y Y12 - Yin
&n(Yrs) = ? o Pl L eR (2.1)
b 0 ... y;m

The basis of gy, is B, = {Yi; = 8n(Yr.s) }1<i<j<n, Where

1, if (r,s)=(i,7);
Yprs = { 0, if (r, S) =+ (Z,])

The law with respect to the basis B, is,

Yij Vi = Yip, for1<i<j<k<n (Typel); (22)
Vi Yiy] = Y, forl1<i<j<n  (Type2);
Yij Yyl = Yiy, forl<i<j<n  (Type3).

2.1. Associating combinatorial structures with Lie
algebras. Given an n-dimensional Lie algebra g  with
basis B = {u}",, recall the method introduced in
[5, | for associating a combinatorial structure with g.

n

If [vg,v,] = > fZ,v., a combinatorial structure can be associated
z=1

with g as follows:
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a) Draw vertex x for each v, € B.
b) Given three vertices © < y < z, draw the full triangle zyz if
and only if (fZ . f5 ., f¥.) # (0,0,0). Edges vy, yz and w2z have
weight f7 . f7. and fY respectively.
bl) Use a discontinuous line (named a ghost edge) for edges
with weight zero.

b2) If two triangles xyz and xyl satisfy that f7 = alc’y, draw
only one edge between vertices x and ¢ shared by the two
triangles.

c¢) Given two vertices z < y, draw a directed edge from y to z if

=y 7 0 or a directed edge from z to y if f¥ # 0.

Ceballos [0] have defined an order for associating each vertex with a
vector from the basis B,, of g,. More concretely, the order is the one of
the elements of each row of matrix g,(y,s) in equation 2.1 as follows,

{}/1,17 }/1,27 s 7}/1,71} with {Uh V2. 7UTL}7
{}/2,27 1/'2,37 cee 7}/2,71} Wlth {UTL-i-l; Un+2; - - 7,0277,—1}7

{Y?’L,TL} With {/Un(n;—l) }.

3. GRAPHS ASSOCIATED WITH LIE ALGEBRA OF UPPER
TRIANGULAR MATRICES

In this section, we intend to characterize the type of the graphs that
are associated with upper triangular matrix Lie algebra. Theorem 3.2

and 3.5 given below can be proved by checking its Jacobi identity using
Note 3.1.

Note 3.1. For any three vertices 4, j and k that corresponds to v;, v,
and vy, respectively, which in turn corresponds to one of the elements of
{Ypi}i, and vy corresponds to one of the elements of {Y(, 1)k }i_(, 1)

where p ={1,2,...,n—1} and l = {0,1,...,n—p}, Jacobi identity is,
L]‘(}/—p»l7 }/1—7’37 Ytp"'_l)vk;) = [[}/})’17 }/2—97]]7 }/(p—"_l)?k] + [[}/1—7’.77 }/ip-f-l),k,‘]ﬂ }/;)77']
Y s Yol Yol

In general, the possible value of i is p and j is (p + 1), hence Jacboi
identity becomes

IV, Yooy Yorok) = [Yoow, Yororl + Yor Yopl +
Y00 Yool Yo o))

Here, k = (p+1) but [ takes a value 0. So the first commutator of a
last component cannot be defined by any of the law given in equation
2.2.
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F1GURE 1. Forbidden Configuration

FiGURE 2. Allowable configuration

Theorem 3.2. Let G be a graph associated with matrixz Lie algebra gy, .
Then the configurations given in Figure 1 are forbidden in G for any
three distinct vertices i, j and k.

Note 3.3. The following are the different cases of vertices, that belong
to one of the partitions given in Subsection 2.1.

Case 1: wv; corresponds to one of the elements of {Y,;}7,, v;
corresponds to one of the elements of {Y(1;}j () and uvg
corresponds to one of the elements of {Y{0) 1 }i_ (14

Case 2: v;, vy corresponds to one of the elements of {Y{+1);}i_ (4
and v; corresponds to one of the elements of {Y};}i_ .

Case 3: wv; corresponds to one of the elements of {Yj;}i , v;
corresponds to one of the elements of {Y(pi4;}j ., and vk

corresponds to one of the elements of {Y{p1)}i_(,10-

Case 4: v;, v; corresponds to one of the elements of {Y,;}7_, and v
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n
Jj=(p+1)’
Case 5: v; corresponds to one of the elements of {Y};

corresponds to one of the elements of {Y{p14),;}7_ (14

Case 6: v;, v; and vy corresponds to one of the elements of {Y,; —p-

Case T7: wv; corresponds to one of the elements of {Y(pﬂ),i}?:(p )

and vy

corresponds to one of the elements of{Y,4s;}

i, and vj, vy,

vj corresponds to one of the elements of {Y(,i1) ;17

corresponds to one of the elements of {Y,x}i_,.

Lemma 3.4. The configurations given in Figure 2 are forbidden for,

1) i > j >k, all the configuration except Figure 2 (e).

2) Figure 2 (a), i < j<k,j<i j<kandi<j; k<j except
the Case 1, Case 2, and Case 3 respectively in Note 5.5.

3) Figure 2 (b) except the Case 4 of i < j < k.

4) i< j<kandyj<i;j<k, except Case 5 and 6 in Note 3.3
for Figure 2 (c).

5) Fig 2 (d), except i < j < k.

6) Figure 2 (e), except the Case 4 and Case 7 of i < j < k and
k < 7 <1 in Note 3.5.

Theorem 3.5. Given any three distinct vertices i, j and k in a graph
G which is associated with a matriz Lie algebra g,,. The configurations
giwen in Figure 2 are allowable except the cases discussed in Lemma

3.4

Proof of Theorem 3.2 and Theorem 3.5 are provided in Annexure.

Note 3.6. Remaining possible graphs excluding the configuration in
Figure 1 and 2 with three vertices are not associated with matrix Lie
algebra g,, because for any two vertices say ¢ and j there must exist
an edge from either 7 to 7 or j to i by equation 2.2.

Theorem 3.7 has much deviation from Theorem 3.2 in [0], since the
graph associated with g, has no double edge, and the proof can be
derived easily.

Theorem 3.7. Let G be a graph with n(n + 1)/2 vertices and without
3-cycles. Then G is associated with matrixz Lie algebra g, if and only
if G is well oriented.

Proof. Let G be a graph without 3-cycles with n(n + 1)/2 vertices
associated with matrix Lie algebra. Suppose G is not well oriented,
then forbidden configuration a) of Theorem 3.2 would appear. So, G
must be well oriented.
Conversely, let G be (a ggaph without (Z%—c;;cles, that is well oriented,
n(n+1 n+1

with vertices 1,2, ..., ®5=. Let V be =% dimensional vector space

and {X11,X12,..., X} be any basis of V.
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The sets {X;,}i., corresponds to {e;}i;, {X2;}j_y corresponds to
{e; ?Z;il, oy {Xpn} corresponds to enminy. Let us define Lie bracket
2
as follows,

1) If vertices i and j are not adjacent in GG, then associated e; and
e; corresponds to X; ; and Xj; respectively. Then,

(X, Xig] = 0.

2) If i is going-in vertex and
i) if ¢ < j then associated e; and e; corresponds to X;; and
X j respectively. Then,

[Xij, Xj5] = Xy

ii) if 4 > j then associated e; and e; corresponds to X;; and
X, ; respectively. Then,

[Xi,z'a Xz',j] = Xi,j'

3) If i is going-out vertex and if ¢ < j then associated e; and e
corresponds to X;; and X ; respectively. Then,

[Xi,z'a Xz',j] - Xi,j'

Since G is well oriented all its vertices are either going-in or going-out.
This provide a product in V' by above definition and linear extension.
For any two adjacent vertices, one of them is going-in and other is
going-out vertex so, this product is skew-symmetric and also it satisfies
the Jacobi identity.
For any three vertices i, j and k corresponds to e;, e; and ey
respectively, we have the following cases for i < j < k, if

e they are not adjacent one to each other, J(e;, e;,e;) = 0.

e two of them are adjacent, but the third one is not adjacent to
any of the others, it is easy to show that J(e;, e;, ex) = 0.

e one of them, say j, is adjacent to the other two, and if j is a
going-in vertex, the three vertices present configuration b) of

Fig 2, then
[Xi,i7 Xl,j] == Xi,j7
[Xij, Xj il = Xij,

[Xi,ia Xj,j] = O,
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and, consequently;

[[Xiiinj] XJJ] [va 7,3 ]:Xi,jv

HX”,X ]X ]_[XZJ> 'L,l] Xi,j’
[[X55> Xig], Xia] = 0,

X;

and thus, J(e;, ej,e;) = 0. The proof is analogous when j is a
going-out vertex. This means that the product is Lie bracket
which gives a Lie algebra structure to V', associated to G.

O

4. HYPERGRAPH ASSOCIATION WITH LIE ALGEBRA OF UPPER
TRIANGULAR MATRICES

In this section, association of hypergraph (combinatorial structure of
dimension > 2) to a Lie algebra of upper triangular matrix is presented.
For the hypergraph association, we have defined Type 4 commutator
by combining Type 2 and Type 3 and used Type 1 commutator given
in equation 2.2 with respect to the basis B,, as,

i, Yie] =Yg, for 1 <i<j<k<n (Type 1),
Vi, Yi;,Y;;] =Y, for 1 <i<j<n (Type 4).

(VIV} (VR

If G be a graph associated with Lie algebra g, defined by the Lie
brackets of Type 1 and Type 4, then number of full triangles is (g) + (g)

Since the graph G has only full triangles the number of edges equals
3% ((5) + (5))- Also, if the graph G’ is associated with Lie algebra by
the Lie brackets defined in equation 2.2, then any pair of vertices is
not reachable and the number of edges is 2 % ( ) + 3 % ( ) though the
length of a path between any pair of vertices is at most two if a path
exists. Due to this hindrance, hypergraph is used, which is an effective
representation. Let us denote a hypergraph G,, which is associated with

one of the elements of g, with exactly "("+ ) vertices.

Construction 4.1. Hypergraph associated with g, is as follows:

(a) Draw a hyperedge for the vertices corresponding to the diagonal
elements, by Type 4 each diagonal element is connected with
rest of the diagonal elements.

(b) Given three vertices i, j and k draw a hyperedge ijk if and only
if corresponding basis elements persuade Type 1 or Type 4.

Hypergraphs for an element of 2 and 3 dimensional matrix Lie
algebra are shown in Figure 3.
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FIGURE 3. G, and Gs

Remark 4.2. In general, the rank of hypergraph G, of n dimensional
matriz Lie algebra is always equal to n and anti-rank is 3 for any
dimension n.

Remark 4.3. G3 is the only uniform hypergraph which is associated

The following are some of the general results concerning to the
hypergraph associated to an upper triangular matrix Lie algebra.

Theorem 4.4. If G, is a hypergraph associated with one of the elements
of matriz Lie algebra gy, then the vertices corresponding to diagonal
elements have degree n, and the remaining vertices have degree n — 1.

Proof. Let G, be a hypergraph associated with an element of g,
consisting of all n X n upper triangular matrices. The possibility of
combining diagonal elements by Type 4 is (g), and it is evident that
each element occurs n — 1 times, and by the hyperedge e4 constructed
as defined in Construction 4.1 (a) contains all the diagonal elements
in n X n matrices of g,. Hence the degree of vertices corresponding to
diagonal elements isn —1+1=n.

There are (g) ways of aggregating non-diagonal elements of one of
the n X n matrices of g,, in which each element occurs n — 2 times,
and by basis elements Y;; of Type 4, vertices corresponding to every
non-diagonal elements is already incident with a hyperedge, yields the
desired result. O

Lemma 4.5. The sum of the degrees of vertices in hypergraph G, of

an element in n-dimensional matriz Lie algebra is equal to w, for
n > 2.

Proof. Let an element of Lie algebra g, be associated with hypergraph
G,. As explained in Theorem 4.4, there are (g) ways of linking Type
1 and (g) ways of Type 4. By hypergraph association defined each of
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the above possibilities generates a single hyperedge which is incident
with three vertices, and also hyperedge e; constructed as defined
in Construction 4.1 (a), is incident with all the diagonal vertices.
Accordingly, the sum of the degrees of vertices of a hypergraph is

(3) * 3+ (2) *S—i—n——g!(n_?))' 3+—2l<n_2)'*3+n

n(n—1)(n —2)(n — 3)! n(n—1)(n —2)!
B 3%2x(n—3)! 3 2% (n—2)! 34
nn—1)(n—2) 3n(n—1)
= 9 + 5 +n
(n—1)(n+1)+2
R
n(nz—i-l).

2

4.1. Generalization for s-vertices. A Hypergraph G, for an element
of g, has ”(”TH) vertices and in G,,_1, ”("2_1) vertices, by subtracting
k elements in the last column from the top of g, yields transitional
number of vertices, that is "("2“ k where 1 < k < n — 1. Denote a

hypergraph for any s with s > 2 by H..

Theorem 4.6. If H, is a hypergraph for an element in g, withn > 2,

then the number of hyperedges is, (g) + (n) +1 if 5 = w and

((g)_{.%(”—(iﬂ))})wt(()—n0)+1 if Mol g o et

=1

Proof. If s = ”(”;1), according to the method expounded in Section 3,

‘H, associated with an element of g, that has @ vertices. In virtue
of Theorem 4.4, n vertices have degree n, and remaining vertices have
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degree n — 1 then the number of hyperedges is given by

n(n+1) n(n+1)
nn—1) mnxl ( 2 —n)*(n—Q) < 2 —n)*l
4

3 0 ; - ;
:@Hﬂ(n—lé(n—zun(ngn
ZM(H%HH"(”_%(””)

_ n(?”LQ— 1) +n(n—1g(n—2) o

()

Now, to prove for the case @ <s< w Let us suppose that
ng = @—s, if ng = 1 then y, = 0, ng = 2 then yy, = 0 and

Yoo = 0,...,mg = n — 1 then y1, = 0, y2, = 0,..., Y-y, = 0. It
remains that there are (’;) ways of fusing the Type 4 and (g) ways of
Type 1.

If y1, = 0 then (n — 2) hyperedges does not exist. Similarly for
Yor = 0,.. ., Ym—-2)n = 0, Ym-1),, = 0 then (n—3),...,1, 1 hyperedges

o
are non exant respectively. Now, this totally accounts Y (n — (i + 1))
i=1

ng
which proceeds to () — > (n—(i+1)). () hyperedges gets diminished
=1

depending on ng. If n(): = 1 then single hyperedge is less. Hence
it equals (Z) — ng and by the algorithm all diagonal elements are
made as a single hyperedge. Therefore, the number of hyperedges is

(- {Zo-a+0})+ (@ -m)+1 s

=1
Theorem 4.7. If H is a hypergraph for an element of g,, with s > 2,

then the path between any two vertices corresponding to Y;; and Yy, has
length at most 2.

Proof. Let Hs be a hypergraph of s vertices, the length of the path
depends on the ¢, 7, k£ and [ values.

In Case 1) if s = @, by non-zero brackets of Type 1 and Type 4
the following possibilities have path length 2,

ei=j k#Il, iF#kandj#I,
e i #£j k#Il iF#kandj#Il.
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In Case 2) if @ <s< @, in addition to above possibilities, if
i # j, k <1, 7 =k and il is not an element of n x n matrix, the length
of the path is 2.

All other possibilities of 7, j, k and [ the length of a path between
any two vertices corresponding to Y;; and Y, is 1. O

Algorithm 1 is used to construct the hypergraph for an element of
g,. It is implemented using Python 3 on Google Colabatory.

Algorithm 1: GFsVERTICES

INPUT: s

1o = [T

2: t=n(n+1)/2

3: if s ==t then

4:  Algorithm 2 (n)

5: else

6: v=t-s

7. for i =1 ton do

8: for j =i ton do

9: DIAGHYPEREDGE

10: for k=1 ton do

11: for | =k ton do

12: if i ==j and k ==1 and i # k then
13: if i <=wv and r == [ then

14: CONTINUE

15: else

16: Add (i7, kl, jk) as hyperedge
17: end if

18: end if

19: if i #j and k # [ and j == k then
20: if i <=wv and r == [ then
21: CONTINUE
22: else
23: Add (ij, kl,l) as hyperedge
24: end if
25: end if
26: end for
27: end for
28: end for
29: end for

30: end if
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Algorithm 2: HGUTMLA (n)

1: fori=1ton do

2: for j =i ton do

3: if i == j then

4: Append ij to hyperedge eq

5: end if

6: for k=1 ton do

7 for [ = k ton do

8: if i ==j and k ==1 and i # k then
9: Add (47, kl, jk) as hyperedge

10: end if

11: if i # jand k # [ and j == k then
12: Add (ig, kl,il) as hyperedge

13: end if

14: end for

15: end for

16: end for

17: end for

Table 2 presents the analysis of construction of hypergraph using Lie
commutator with compilation time. This association can be applied to

various routing problems in networks.

TABLE 2. Observations of Algorithm

Number of Number of Compilation time Dimension of
vertices ~ Hyperedges in Secs Lie algebra g,
6 5 0.00404047966003418 3
250 1712 0.03202700614929199 22
755 9231 0.19795751571655273 39
125250 20833251 3581.855294942856 500

CONCLUSION AND FUTURE WORK

In this work we have identified combinatorial structures associated
with Lie algebra of upper triangular matrix for three vertices. We have
introduced hypergraph theory association with Lie algebra of upper

triangular matrix and entrenched its properties.

Also, hypergraph

construction using Lie commutator is algorithmized and the outputs
are summarized in Table 2. Since hypergraph is an effective way to
represent higher order relationship, it opens a wide range to solve many
problems with methods and results obtained here. In future, the work
can be extended to construct a hypergraph for subalgebra of gl(n,R)
and this methodology may offer useful insights for many engineering

applications.
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