Journal of Algebra and Related Topics

Vol. 10, No 2, (2022), pp 51-60

ε-ORTHOGONALITY PRESERVING PAIRS OF MAPPINGS ON HILBERT C^{*}-MODULES

A. SAHLEH * AND F. OLYANI NEZHAD

Abstract

Let \mathcal{A} be a standard C^{*}-algebra. In this paper, we will study the continuity of ε-orthogonality preserving mappings between Hilbert \mathcal{A}-modules. Moreover, we will show that a local mapping between Hilbert \mathcal{A}-modules is \mathcal{A}-linear. Furthermore, we will prove that for a pair of nonzero \mathcal{A}-linear mappings T, S : $E \longrightarrow F$, between Hilbert \mathcal{A}-modules, satisfying ε-orthogonality preserving property, there exists $\gamma \in \mathbb{C}$,

$$
\|\langle T(x), S(y)\rangle-\gamma\langle x, y\rangle\| \leq \varepsilon\|T\|\|S\|\|x\|\|y\|, \quad x, y \in E .
$$

Our results generalize the known ones in the context of Hilbert spaces.

1. Introduction

Let $(H,(.,)$.$) be an inner product space, two elements x, y \in H$ are said to be orthogonal, and is denoted by $x \perp y$, if $(x, y)=0$. For two inner product spaces H and K, a mapping $T: H \longrightarrow K$ is called orthogonality preserving, OP in short, if it preserves orthogonality, that is if

$$
\forall x, y \in H: x \perp y \quad \Longrightarrow \quad T(x) \perp T(y)
$$

By [4], for a pair of linear mappings $T, S: H \longrightarrow K$ between inner product spaces H and K. The following conditions are equivalent, for

[^0]some $\gamma \in \mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$:
\[

$$
\begin{aligned}
& \text { 1. } \forall x, y \in H: x \perp y \Rightarrow T(x) \perp S(y), \\
& \text { 2. } \forall x, y \in H:(T(x), S(y))=\gamma(x, y) .
\end{aligned}
$$
\]

A generalization of the orthogonality notion, namely, approximately orthogonality preserving mappings between inner product spaces was considered in [2] and also studied in [11, 14]. Recall that for $\varepsilon \in[0,1)$ two vectors $x, y \in H$ are approximately orthogonal or ε-orthogonal, denoted by $x \perp^{\varepsilon} y$, if $|(x, y)| \leq \varepsilon\|x\|\|y\|$.

For $(\delta, \varepsilon) \in[0,1)$, a map $T: H \longrightarrow K$ between inner product spaces H and K is called approximately orthogonality preserving, AOP in short, or (δ, ε)-orthogonality preserving, if

$$
\forall x, y \in H: x \perp^{\delta} y \quad \Longrightarrow \quad T(x) \perp^{\varepsilon} T(y) .
$$

In particular, for $\delta=0$, the mapping $T: H \longrightarrow K$ is said to be ε-orthogonality preserving, ε-OP in short, if

$$
\forall x, y \in H: x \perp y \quad \Longrightarrow \quad T(x) \perp^{\varepsilon} T(y)
$$

For a pair of linear mappings $T, S: H \longrightarrow K$, an analoguse property

$$
\forall x, y \in H: x \perp y \quad \Longrightarrow \quad T(x) \perp^{\varepsilon} S(y)
$$

was characterized by Chmieliński et al in [3].
The notion of an inner product (respectively Hilbert) C^{*}-module is a generalization of a complex inner product (respectively Hilbert) space in which the inner product takes its values in a C^{*}-algebra rather than in field of complex numbers. Let A be a C^{*}-algebra. Let E be a complex linear space which is also algebric left Hilbert A-module with compatible scalar multiplication (i.e., $\mathrm{a}(\lambda x)=(\lambda a) \mathrm{x}=\lambda(a x)$ for all $x \in E, a \in A, \lambda \in \mathbb{C}$) equipped with an " A-valued inner product" ${ }_{A}\langle.,$.$\rangle such that the following conditions hold for all x, y, z \in E, a \in A$ and $\alpha, \beta \in \mathbb{C}$:
(i) ${ }_{A}\langle\alpha x+\beta y, z\rangle=\alpha_{A}\langle x, z\rangle+\beta_{A}\langle y, z\rangle$,
(ii) ${ }_{A}\langle a x, y\rangle=a_{A}\langle x, y\rangle$,
(iii) ${ }_{A}\langle x, y\rangle^{*}={ }_{A}\langle y, x\rangle$,
(iv) ${ }_{A}\langle x, x\rangle \geq 0$, and ${ }_{A}\langle x, x\rangle=0$ if and only if $x=0$.

If E is complete with respect to the induced norm by the A-valued inner product, $\|x\|=\left\|_{A}\langle x, x\rangle\right\|^{\frac{1}{2}}, x \in E$, then E is called a left Hilbert C^{*}-module over A or, simply a left Hilbert A-module (in the sequel, we will omit the subscripts). Similarly, a right Hilbert C^{*}-module over
the C^{*}-algebra A has been defined. Any C^{*}-algebra A is a Hilbert C^{*} module over itself via $\langle a, b\rangle=a b^{*}(a, b \in A)$. Hence $|x|^{2}=\langle x, x\rangle=x x^{*}$ for every $x \in E$, for more about Hilbert C^{*}-modules, see [7].

Two elements x, y in an inner product A-module $(E,\langle.,\rangle$.$) are said$ to be orthogonal if $\langle x, y\rangle=0$ and, for a given $\varepsilon \in[0,1)$, they are approximately orthogonal or ε-orthogonal if $\|\langle x, y\rangle\| \leq \varepsilon\|x\|\|y\|$. A mapping $T: E \longrightarrow F$, where E and F are inner product A-modules, is called ε-orthogonality preserving if $\langle x, y\rangle=0$ (where $x, y \in E$) implies $\|\langle T x, T y\rangle\| \leq \varepsilon\|T x\|\|T y\|$.

Throughout, $\mathcal{F}(H), \mathcal{K}(H)$ and $\mathcal{B}(H)$ denote the space of finite rank operators, the C^{*}-algebras of all compact operators and all bounded operators on a Hilbert spaces H, respectively. We know that $\overline{\mathcal{F}(H)}=$ $K(H)$, is an essential ideal of $\mathcal{B}(H)$, that is, for each $b \in \mathcal{B}(H)$, the equality $\mathcal{K}(H) \cdot b=0$ implies $b=0$, see [12].

Recall that \mathcal{A} is a standard C^{*}-algebra on a Hilbert space H if $\mathcal{K}(H) \subseteq \mathcal{A} \subseteq \mathcal{B}(H)$.

It is natural to explore the approximately orthogonality preserving mappings between inner product C^{*}-modules. For $\delta, \varepsilon \in[0,1), \varepsilon$ orthogonality preserving and (δ, ε)-orthogonality preserving property between Hilbert \mathcal{A}-modules has been studied for a nonzero \mathcal{A}-linear mapping by D. Ilisevic and A. Turnsek [6] and Moslehian and Zamani [10], respectively.

In [5], Frank et al proved that if a pair of nonzero local mappings $T, S: E \longrightarrow F$ between Hilbert \mathcal{A}-modules are orthogonal preserving, then there exists $\gamma \in \mathbb{C}$ such that

$$
\langle T(x), S(y)\rangle=\gamma\langle x, y\rangle, \quad x, y \in E
$$

It is interesting to ask whether it is possible to consider ε-orthogonality preserving property for two these mappings. In this paper, we study ε-orthogonality preserving property for a pair of nonzero mappings in the setting of Hilbert C^{*}-modules over standard C^{*}-algebra \mathcal{A}. Then we give the estimate of $\|\langle T(x), S(y)\rangle-\gamma\langle x, y\rangle\|$ for a pair of local ε orthogonality preserving mappings $T, S: E \longrightarrow F$ when E and F are Hilbert \mathcal{A}-modules, where $\gamma \in \mathbb{C}$.

We recall that, for a C^{*}-algebra A, a complex linear mapping T : $E \longrightarrow F$ between inner product A-modules E and F, is called local if

$$
a T(x)=0 \quad \text { whenever } \quad a x=0, \quad a \in A ; x \in E
$$

2. Preliminaries

Let A be a C^{*}-algebra. A complex linear mapping $T: E \longrightarrow F$, where E and F are inner product A-modules, is called A-linear if
$T(a x)=a T(x)$ for all $a \in A$ and $x \in E$. As example, linear differential mappings are local mapping, see [13]. Note that every A-linear mapping is local. Conversely, every bounded local mapping is A-linear, see [9, Proposition A.1].

Suppose that E and F are Hilbert A-modules. Let $\mathcal{L}(E, F)$ to be the set of all mappings $T: E \longrightarrow F$ for which there is a mapping $T^{*}: F \longrightarrow E$ such that for all $x \in E$ and $y \in F$,

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle
$$

By [7], $\mathcal{L}(E, F)$ is called the set of all adjointable mappings from E to F. Every element of $\mathcal{L}(E, F)$ is a bounded A-linear, and in general, a bounded A-linear mapping may fail to possess an adjoint, see [7]. But each bounded $\mathcal{K}(H)$-linear mapping on $\mathcal{K}(H)$-modules is essentially adjointable, see [1].

In the following we give some preliminaries about minimal projections in C^{*}-algebras and their role in our work.

Let $\xi, \eta \in H$ be elements of a Hilbert space $(H,(.,)$.$) , the rank one$ operator defined by $[\xi \otimes \eta] \zeta=(\zeta, \eta) \xi$, where $\zeta \in H$.

The operator $\xi \otimes \xi$ is rank one projection if and only if $(\xi, \xi)=1$. That is, for unit vector ξ, the operator $\xi \otimes \xi$ is the orthogonal projection to the one dimensional subspace spanned by ξ.

Let T be an arbitrary bounded operator on $(H,(.,)$.$) , then$

$$
[\xi \otimes \xi] T[\xi \otimes \xi]=(T \xi, \xi) \xi \otimes \xi
$$

Recall that a projection (i.e., a self-adjoint idempotent.) e in \mathcal{A} is called minimal if $e \mathcal{A} e=\mathbb{C} e$. Hence, $\xi \otimes \xi$ is a minimal projection.

Let $(E,\langle.,\rangle$.$) be an inner product(respectively Hilbert) \mathcal{A}$-module, and for a unit vector $\xi \in H$, let $e=\xi \otimes \xi$ be any minimal projection. Then

$$
E_{e}=\{e x: x \in E\},
$$

is a complex inner product (respectively Hilbert) space contained in E with respect to the inner product $(x, y)=\operatorname{tr}(\langle x, y\rangle), x, y \in E_{e}$.

Let $x=e u, y=e v$ such that $u, v \in E$,

$$
\langle x, y\rangle=e\langle u, v\rangle e=[\xi \otimes \xi]\langle u, v\rangle[\xi \otimes \xi]=(\langle u, v\rangle \xi, \xi)[\xi \otimes \xi]
$$

by $\operatorname{tr}(\langle x, y\rangle)=(\langle u, v\rangle \xi, \xi)$, thus

$$
\langle x, y\rangle=(x, y) e
$$

Authors in [6] showed that:

1) two elements $x, y \in E_{e}$ are orthogonal in $\left(E_{e},(\cdot, \cdot)\right)$ if and only if they are orthogonal in $(E,\langle.,\rangle$.$) ,$
2) if $x \in E_{e}$, then $\|x\|_{E_{e}}=\|x\|_{E}$, where the norm $\|\cdot\|_{E_{e}}$ comes from the inner product (\cdot, \cdot),
3) if $T: E \rightarrow F$ between Hilbert \mathcal{A}-modules E and F is an \mathcal{A}-linear OP (respectively ε-OP) mapping, then $T_{e}=\left.T\right|_{E_{e}}: E_{e} \rightarrow F_{e}$ is a linear OP (respectively ε-OP) mapping.

Lemma 2.1. Let $L \in \mathcal{B}(H)$, then

$$
\|L\|=\sup \{\|e L f\|: e, f \text { are rank one projections }\} .
$$

3. ε-ORTHOGONALITY-PRESERVING \mathcal{A}-LINEAR AND LOCAL PAIR OF MAPPINGS

In this section, we study ε-orthogonality preserving mappings between Hilbert \mathcal{A}-modules. As mentioned in previous section, \mathcal{A} is a standard C^{*}-algebra on a Hilbert space H if $\mathcal{K}(H) \subseteq \mathcal{A} \subseteq \mathcal{B}(H)$.

To achieve our main result, Theorem 3.7, we give some results. First we prove the continuity of ε-orthogonality-preserving nonzero pair of \mathcal{A}-linear mappings between Hilbert \mathcal{A}-modules.

Theorem 3.1. [Chmieliński et al[3]]
For a given $\varepsilon \in[0,1)$, ε-orthogonality preserving property for two nonzero linear mappings f and g between inner product spaces X and Y, with the same inner product (.,.), is equivalent to

$$
\left|(f(x), g(y))-\frac{(f(y), g(x))}{\|y\|^{2}}(x, y)\right| \leq \varepsilon\left\|f(x)-\frac{(x, y)}{\|y\|^{2}} f(y)\right\|\|g(y)\|
$$

for $x, y \in X, y \neq 0$.
As an immediate generalization, we give the next result in setting of inner product \mathcal{A}-modules. Let $\varepsilon \in[0,1)$, and let $T, S: E \longrightarrow F$ be pair of nonzero \mathcal{A}-linear ε-orthogonality preserving mappings between inner product \mathcal{A}-modules E and F. Then $T_{e}, S_{e}: E_{e} \longrightarrow F_{e}$ are pair of nonzero linear ε-orthogonality preserving mappings between inner product spaces E_{e} and F_{e}. Where e is a minimal projection in \mathcal{A}.

Proposition 3.2. Let $\varepsilon \in[0,1)$, and let $T, S: E \longrightarrow F$ be pair of nonzero \mathcal{A}-linear ε-orthogonality preserving mappings between inner product \mathcal{A}-modules E and F. Then for every minimal projection $e \in \mathcal{A}$, and for all $x, y \in E_{e}$,
$\|\langle y, y\rangle\langle T(x), S(y)\rangle-\langle x, y\rangle\langle T(y), S(y)\rangle\| \leq \varepsilon\|\langle y, y\rangle T(x)-\langle x, y\rangle T(y)\|\|S(y)\|$.
Consequently, T_{e}, S_{e} are a pair of nonzero linear ε-orthogonality preserving mappings.

Proof. Let e be a minimal projection of \mathcal{A}, for all $x, y \in E_{e}$,

$$
\begin{equation*}
\langle y, y\rangle x-\langle x, y\rangle y \perp_{E} y . \tag{3.1}
\end{equation*}
$$

By $\langle x, y\rangle=(x, y) e$, we have

$$
\begin{aligned}
\langle\langle y, y\rangle x-\langle x, y\rangle y, y\rangle & =\langle(y, y) e x-(x, y) e y, y\rangle \\
& =(y, y)\langle e x, y\rangle-(x, y)\langle e y, y\rangle .
\end{aligned}
$$

For each $x, y \in E_{e}$, we have $x=e u, y=e v$ such that $u, v \in E$. Then $e x=e^{2} u$ and $e y=e^{2} v$, since e is a projection, then $e x=e^{2} u=e u=x$ and $e y=e^{2} v=e v=y$.

Hence

$$
\begin{aligned}
(y, y)\langle e x, y\rangle-(x, y)\langle e y, y\rangle & =(y, y)\langle x, y\rangle-(x, y)\langle y, y\rangle \\
& =(y, y)(x, y) e-(x, y)(y, y) e=0 .
\end{aligned}
$$

The last equality holds, because the values of inner product (.,.) are \mathbb{C}-valued, then they commute together. Thus (3.1) holds. Now, since T, S are ε-orthogonality preserving mappings, then

$$
T(\langle y, y\rangle x-\langle x, y\rangle y) \perp_{F}^{\varepsilon} S(y) .
$$

Hence

$$
\|\langle y, y\rangle\langle T(x), S(y)\rangle-\langle x, y\rangle\langle T(y), S(y)\rangle\| \leq \varepsilon\|\langle y, y\rangle T(x)-\langle x, y\rangle T(y)\|\|S(y)\| .
$$

Before considering the continuity of two mappings T, S, we first state the following lemma.

Lemma 3.3. Let E be a Hilbert \mathcal{A}-module and $x \in E$. If ex $=0$ for all minimal projections in \mathcal{A}, then $x=0$.

Proof. Let e be an arbitrary minimal projection in \mathcal{A}. Let ex $=0$ for all $x \in E$. Since $0=\langle e x, x\rangle=e\langle x, x\rangle$. On one side $\langle x, x\rangle$ is a positive element in \mathcal{A}, and on the other side, $e=\xi \otimes \xi$, where $\xi \in H$ is unit vector, is a minimal projection, so for any $h \in H$ and by setting $\xi:=h$, we get $x=0$.

Proposition 3.4. Let $\varepsilon \in[0,1)$, and let \mathcal{A} has an approximate unit, which contains finite combinations of minimal projections in \mathcal{A}, and let E and F be Hilbert \mathcal{A}-modules, and e be an arbitrary minimal projection in \mathcal{A}. Suppose that $T, S: E \longrightarrow F$ are a pair of nonzero surjective \mathcal{A}-linear ε-orthogonality preserving mappings. Then T and S are continuous.

Proof. We just prove T is continuous, for another mapping, it proves similarly. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a nonzero sequence in E converges to zero, and $\left\{T\left(x_{n}\right)\right\}_{n=1}^{\infty}$ converges to $t \in F$. We must show that $t=0$. Let $\left(e_{i}\right)_{i \in I}$ be an approximate unit for \mathcal{A} such that $\left(e_{i}\right)_{i \in I}$ contains finite combinations of minimal projections in \mathcal{A}. Since $e_{i} t \rightarrow t$, it is enough to prove that $e t=0$ for all minimal projections $e \in \mathcal{A}$. Let there exists a minimal projection $e \in \mathcal{A}$ such that et $\neq 0$. Now, by surjectivity of S, there exists $y \in E$ such that $S(y)=t$. We have $e y \neq 0$.

Now, since a pair of \mathcal{A}-linear mappings T, S are ε-orthogonality preserving mappings, then by the Proposition 3.2, we have

$$
\begin{aligned}
&\left\|\langle e y, e y\rangle\left\langle T\left(e x_{n}\right), S(e y)\right\rangle-\left\langle e x_{n}, e y\right\rangle\langle T(e y), S(e y)\rangle\right\| \\
& \leq \varepsilon\left\|\langle e y, e y\rangle T\left(e x_{n}\right)-\left\langle e x_{n}, e y\right\rangle T(y)\right\|\|S(e y)\| .
\end{aligned}
$$

Consequently, if $n \rightarrow \infty$, we have $x_{n} \rightarrow 0$ and $T\left(x_{n}\right) \rightarrow t$, then

$$
\|\langle e y, e y\rangle\langle e t, e S(y)\rangle\| \leq \varepsilon\|\langle e y, e y\rangle e t\|\|e S(y)\|
$$

Since $\langle e y, e y\rangle=e\langle y, y\rangle e=(\langle y, y\rangle \xi, \xi) e$ for all minimal projections $e=$ $\xi \otimes \xi$ in \mathcal{A}. Then

$$
\begin{gathered}
\|(\langle y, y\rangle \xi, \xi) e\langle e t, e S(y)\rangle\| \leq \varepsilon\|(\langle y, y\rangle \xi, \xi) e e t\|\|e S(y)\| \\
=\varepsilon\|(\langle y, y\rangle \xi, \xi) e t\|\|e S(y)\|
\end{gathered}
$$

Therefore

$$
|(\langle y, y\rangle \xi, \xi)|\|e\langle e t, e S(y)\rangle\| \leq \varepsilon|(\langle y, y\rangle \xi, \xi)|\|e t\|\|e S(y)\| .
$$

Hence

$$
\left\|\left\langle e^{2} t, e S(y)\right\rangle\right\|=\|e\langle e t, e S(y)\rangle\| \leq \varepsilon\|e t\|\|e S(y)\| .
$$

Since e is a projection, then

$$
\|\langle e t, e S(y)\rangle\| \leq \varepsilon\|e t\|\|e S(y)\| .
$$

Now, by $S(y)=t$, we have

$$
\|\langle e t, e t\rangle\| \leq \varepsilon\|e t\|\|e t\|,
$$

this implies $e t=0$, because $\varepsilon<1$. Now, by Lemma 3.3 we have $t=0$. Therefore, the desired result is obtained. Thus by closed graph theorem, T is continuous.

In the following, we give a stability result in this context. Note that, in Proposition 3.5 and Theorem 3.7, H is a complex Hilbert space.

Proposition 3.5. Let $\varepsilon \in[0,1)$. Let $\mathcal{A}=\mathcal{K}(H)$, and let E, F be Hilbert \mathcal{A}-modules. Suppose that $T, S: E \longrightarrow F$ are a pair of nonzero surjective \mathcal{A}-linear ε-orthogonality preserving mappings. Then there exists $\gamma \in \mathbb{C}$ such that

$$
\|\langle T(x), S(y)\rangle-\gamma\langle x, y\rangle\| \leq \varepsilon\|T\|\|S\|\|x\|\|y\|, \quad x, y \in E .
$$

Proof. Let e be a minimal projection in \mathcal{A}. Since T_{e}, S_{e} are a pair of ε-orthogonality preserving linear mappings from E_{e} into F_{e}. Then by [3, Theorem 3.8], there exists $\gamma \in \mathbb{C}$ such that for each $x, y \in E_{e}$,

$$
\begin{equation*}
\left\|\left(S_{e}\right)^{*} T_{e}-\gamma I_{e}\right\| \leq \varepsilon\left\|T_{e}\right\|\left\|S_{e}\right\| \tag{3.2}
\end{equation*}
$$

By [6, Proposition 3.3], $\|T\|=\left\|T_{e}\right\|$ and $\|S\|=\left\|S_{e}\right\|$. Then from (3.2), we have

$$
\left\|S^{*} T-\gamma I\right\| \leq \varepsilon\|T\|\|S\|
$$

Now, since each bounded $\mathcal{K}(H)$-linear mapping on $\mathcal{K}(H)$-modules is essentially adjointable, thus for two nonzero bounded $\mathcal{K}(H)$-linear mappings $T, S: E \longrightarrow F$ and for all $x, y \in E$, we have

$$
\begin{aligned}
\|\langle T(x), S(y)\rangle-\gamma\langle x, y\rangle\|=\left\|\left\langle S^{*} T(x)-\gamma x, y\right\rangle\right\| & \leq\left\|S^{*} T-\gamma I\right\|\|x\|\|y\| \\
& \leq \varepsilon\|T\|\|S\|\|x\|\|y\|
\end{aligned}
$$

As mentioned in previous section, in general, for any C^{*}-algebra A, a local mapping on Hilbert A-modules is not A-linear.

In the following, for standard C^{*}-algebra \mathcal{A}, we will show that a local mapping between Hilbert \mathcal{A}-modules is \mathcal{A}-linear.

To achieve this goal, we use from [8, Lemma 3.1]. This lemma states that if A is a C^{*}-algebra and A_{0} is $*$-algebra generated by all the idempotents in A, and if $T: E \longrightarrow F$ on Hilbert A-modules E and F is a local mapping, then T is an A_{0}-linear mapping.

Since the space generated by projections is subspace of space generated by idempotens, so we have the following proposition.

Proposition 3.6. Let $T: E \longrightarrow F$ be a local mapping between Hilbert \mathcal{A}-modules E and F, then $T: E \longrightarrow F$ is an \mathcal{A}-linear mapping.

Proof. According to the above description, for each projection $p \in \mathcal{A}$ and for all $x \in E$, we have $T(p x)=p T(x)$. As $\mathcal{F}(H)$ is linear spanned of its projections, therefore $T(s x)=s T(x)$ for all $s \in \mathcal{F}(H)$ and $x \in E$.

Now, for every $x \in E, a \in \mathcal{A}$ and $s \in \mathcal{F}(H)$, we have

$$
s(T(a x)-a T(x))=T(s a x)-s a T(x)=T(\operatorname{sax})-T(s a x)=0 .
$$

Hence, if we set $y=T(a x)-a T(x)$, we have $\mathcal{F}(H) \cdot\langle y, y\rangle=0$, and by $\overline{\mathcal{F}(H)}=\mathcal{K}(H)$, then $\mathcal{K}(H) \cdot\langle y, y\rangle=0$. By $\mathcal{K}(H)$ is an essential ideal in $\mathcal{B}(H)$, hence $\langle y, y\rangle=0$, Then we have $y=0$, i.e., $T(a x)=a T(x)$. Therefore, T is an \mathcal{A}-linear mapping.

In Proposition 3.4, the boundedness of a pair of nonzero \mathcal{A}-linear mappings $T, S: E \longrightarrow F$ over Hilbert \mathcal{A}-modules is proved. Now, we are in a position to give the main result.

Theorem 3.7. Let $\varepsilon \in[0,1)$, and let E and F be Hilbert \mathcal{A}-modules. Let $T, S: E \longrightarrow F$ be a pair of nonzero surjective local ε-orthogonality preserving mappings. Then there exists $\gamma \in \mathbb{C}$ such that

$$
\|\langle T(x), S(y)\rangle-\gamma\langle x, y\rangle\| \leq \varepsilon\|T\|\|S\|\|x\|\|y\|, \quad x, y \in E
$$

Proof. Define $\tilde{T}, \tilde{S}: \mathcal{K}(H) \cdot E \longrightarrow \mathcal{K}(H) \cdot F$ (both of $\mathcal{K}(H) \cdot E$ and $\mathcal{K}(H) \cdot F$ being Hilbert $\mathcal{K}(H)$-modules), where $\tilde{T}=\left.T\right|_{\mathcal{K}(H) \cdot E}$ and $\tilde{S}=\left.S\right|_{\mathcal{K}(H) \cdot E}$ by $\tilde{T}(x)=e T(x)$ and $\tilde{S}(y)=f S(y)$ for any rank one projections e, $f \in \mathcal{K}(H)$, respectively.

Now, by previous proposition, \tilde{T}, \tilde{S} are a pair of bounded ε-orthogonality preserving $\mathcal{K}(H)$-linear mappings. Then by Proposition 3.5, there exists $\gamma \in \mathbb{C}$ such that for every $x, y \in \mathcal{K}(H) \cdot E$,

$$
\|\langle\tilde{T}(x), \tilde{S}(y)\rangle-\gamma\langle x, y\rangle\| \leq \varepsilon\|\tilde{T}\|\|\tilde{S}\|\|x\|\|y\|
$$

Hence, for any $x, y \in E$ and any rank one projections $e, f \in \mathcal{K}(H)$,

$$
\begin{array}{r}
\|e\langle T(x), S(y)\rangle f-\gamma e\langle x, y\rangle f\|=\|\langle\tilde{T}(e x), \tilde{S}(f y)\rangle-\gamma\langle e x, f y\rangle\| \\
\leq \varepsilon\|\tilde{T}\|\|\tilde{S}\|\|e x\|\|f y\| \leq \varepsilon\|T\|\|S\|\|e\|\|x\|\|f\|\|y\|
\end{array}
$$

Then for all $x, y \in E$ and, all rank one projections $e, f \in \mathcal{K}(H)$,

$$
\|e(\langle T(x), S(y)\rangle-\gamma\langle x, y\rangle) f\| \leq \varepsilon\|T\|\|S\|\|x\|\|y\|
$$

We have $(\langle T(x), S(y)\rangle-\gamma\langle x, y\rangle) \in \mathcal{A}$. On the other hand, by Lemma 2.1, for every $L \in \mathcal{B}(H)$,

$$
\|L\|=\sup \{\|e L f\|: e, f \text { are rank one projections }\}
$$

Thus, for all $x, y \in E$,

$$
\|\langle T(x), S(y)\rangle-\gamma\langle x, y\rangle\| \leq \varepsilon\|T\|\|S\|\|x\|\|y\| .
$$

References

1. D. Bakic, B. Guljas, Hilbert C^{*}-modules over C^{*}-algebras of compact operators, Acta Sci. Math. (Szeged), 68 (2002), 249-269.
2. J. Chmieliński, Linear mappings approximately preserving orthogonality, J. Math. Annal. Appl. 304 (2005) 158-169.
3. J. Chmieliński, R. Lukasik and P. Wojcik, On the stability of the orthogonality equation and the orthogonality-preserving property with two unknown functions, Banach, J. Math Anal. 10 (2016), 828-847.
4. J. Chmieliński, Orthogonality equation with two unknown functions, Aequationes Math. 90 (2016) 11-23.
5. M. Frank, M. S. Moslehian and A. Zamani, Orthogonality preserving property for pairs of operators on Hilbert C^{*}-modules, Aequationes Math. (5) 95 (2021), 867-887.
6. D. Ilisevic and A. Turnsek, Approximately orthogonality preserving mappings on C^{*}-modules, J. Math. Anal. Appl. 341 (2008) 298-308.
7. E.C. Lance, Hilbert C^{*}-modules, London Math. Soc. Lecture Note Ser., vol. 210, Cambridge Univ. Press, Cambridge, 1995.
8. C.-W. Leung, C.-K. Ng and N.-C. Wong, Linear orthogonality preservers of Hilbert C^{*} - modules over C^{*}-algebras with real rank zero, Proc. Amer. Math. Soc. (9) 140 (2012), 3151-3160.
9. C.-W. Leung, C.-K. Ng and N.-C. Wong, Automatic continuity and $C_{0}(\Omega)$ linearity of linear maps between Hilbert $C_{0}(\Omega)$-modules, J. Operator Theory, (2012), 3-20.
10. M. S. Moslehian and A. Zamani, Mapping preserving approximately orthogonality in Hilbert C*-modules, Math. Scand. 122 (2018) 257276.
11. A. Turnsek, On mappings approximately preserving orthogonality, J. Math. Anal. Appl. 336 (2007), 625-631.
12. G. J. Murphy, C^{*}-algebras and operator theory, Academic Press Inc. Boston, MA, 1990.
13. R. Narasimhan, Analysis on Real and Complex Manifolds, Advanced Studies in Pure Mathematics, 1 (North-Holland, Amsterdam, 1968).
14. P. Wojcik, On certain basis connected with operator and its applications, J. Math. Anal. Apple. 423 (2015) 1320-1329.

A. Sahleh

Department of Mathematics, University of Guilan, P.O.Box 1914, Rasht, Iran. Email: sahlehj@guilan.ac.ir

F. Olyani Nezhad

Department of Mathematics, University of Guilan, P.O.Box 1914, Rasht, Iran.
Email: olyaninejad_f@yahoo.com

[^0]: MSC(2010): Primary: 65F05; Secondary: 46L05, 11Y50
 ε-orthogonality preserving mappings, local mappings, Hilbert C^{*}-modules.
 Received: 2 March 2022, Accepted: 01 August 2022.
 *Corresponding author .

