Journal of Algebra and Related Topics Vol. 10, No 2, (2022), pp 51-60

ε -ORTHOGONALITY PRESERVING PAIRS OF MAPPINGS ON HILBERT C*-MODULES

A. SAHLEH * AND F. OLYANI NEZHAD

ABSTRACT. Let \mathcal{A} be a standard C^* -algebra. In this paper, we will study the continuity of ε -orthogonality preserving mappings between Hilbert \mathcal{A} -modules. Moreover, we will show that a local mapping between Hilbert \mathcal{A} -modules is \mathcal{A} -linear. Furthermore, we will prove that for a pair of nonzero \mathcal{A} -linear mappings $T, S : E \longrightarrow F$, between Hilbert \mathcal{A} -modules, satisfying ε -orthogonality preserving property, there exists $\gamma \in \mathbb{C}$,

 $\|\langle T(x), S(y) \rangle - \gamma \langle x, y \rangle \| \le \varepsilon \|T\| \|S\| \|x\| \|y\|, \quad x, y \in E.$

Our results generalize the known ones in the context of Hilbert spaces.

1. INTRODUCTION

Let (H, (., .)) be an inner product space, two elements $x, y \in H$ are said to be orthogonal, and is denoted by $x \perp y$, if (x, y) = 0. For two inner product spaces H and K, a mapping $T : H \longrightarrow K$ is called orthogonality preserving, OP in short, if it preserves orthogonality, that is if

$$\forall x, y \in H : x \perp y \implies T(x) \perp T(y)$$

By [4], for a pair of linear mappings $T, S : H \longrightarrow K$ between inner product spaces H and K. The following conditions are equivalent, for

MSC(2010): Primary: 65F05; Secondary: 46L05, 11Y50

 $[\]varepsilon$ -orthogonality preserving mappings, local mappings, Hilbert C^{*}-modules.

Received: 2 March 2022, Accepted: 01 August 2022.

^{*}Corresponding author .

some $\gamma \in \mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$:

1. $\forall x, y \in H : x \perp y \Rightarrow T(x) \perp S(y),$ 2. $\forall x, y \in H : (T(x), S(y)) = \gamma(x, y).$

A generalization of the orthogonality notion, namely, approximately orthogonality preserving mappings between inner product spaces was considered in [2] and also studied in [11, 14]. Recall that for $\varepsilon \in [0, 1)$ two vectors $x, y \in H$ are approximately orthogonal or ε -orthogonal, denoted by $x \perp^{\varepsilon} y$, if $|(x, y)| \leq \varepsilon ||x|| ||y||$.

For $(\delta, \varepsilon) \in [0, 1)$, a map $T : H \longrightarrow K$ between inner product spaces H and K is called approximately orthogonality preserving, AOP in short, or (δ, ε) -orthogonality preserving, if

$$\forall x, y \in H: x \perp^{\delta} y \implies T(x) \perp^{\varepsilon} T(y).$$

In particular, for $\delta = 0$, the mapping $T : H \longrightarrow K$ is said to be ε -orthogonality preserving, ε -OP in short, if

$$\forall x, y \in H : x \perp y \implies T(x) \perp^{\varepsilon} T(y).$$

For a pair of linear mappings $T, S: H \longrightarrow K$, an analoguse property

$$\forall x, y \in H : x \perp y \implies T(x) \perp^{\varepsilon} S(y),$$

was characterized by Chmieliński et al in [3].

The notion of an inner product (respectively Hilbert) C^* -module is a generalization of a complex inner product (respectively Hilbert) space in which the inner product takes its values in a C^* -algebra rather than in field of complex numbers. Let A be a C^* -algebra. Let E be a complex linear space which is also algebric left Hilbert A-module with compatible scalar multiplication (i.e., $a(\lambda x) = (\lambda a)x = \lambda(ax)$ for all $x \in E, a \in A, \lambda \in \mathbb{C}$) equipped with an "A-valued inner product" $_A\langle ., . \rangle$ such that the following conditions hold for all $x, y, z \in E, a \in A$ and $\alpha, \beta \in \mathbb{C}$:

(i) $_A\langle \alpha x + \beta y, z \rangle = \alpha _A\langle x, z \rangle + \beta _A\langle y, z \rangle,$

$$(ii) \quad _A\langle ax, y\rangle = a \ _A\langle x, y\rangle,$$

- $(iii) \quad {}_A\langle x, y \rangle^* = \; {}_A\langle y, x \rangle,$
- (iv) $_A\langle x,x\rangle \ge 0$, and $_A\langle x,x\rangle = 0$ if and only if x = 0.

If E is complete with respect to the induced norm by the A-valued inner product, $||x|| = ||_A \langle x, x \rangle ||^{\frac{1}{2}}$, $x \in E$, then E is called a left Hilbert C^* -module over A or, simply a left Hilbert A-module (in the sequel, we will omit the subscripts). Similarly, a right Hilbert C^* -module over

52

the C^* -algebra A has been defined. Any C^* -algebra A is a Hilbert C^* module over itself via $\langle a, b \rangle = ab^*$ $(a, b \in A)$. Hence $|x|^2 = \langle x, x \rangle = xx^*$ for every $x \in E$, for more about Hilbert C^* -modules, see [7].

Two elements x, y in an inner product A-module $(E, \langle ., . \rangle)$ are said to be orthogonal if $\langle x, y \rangle = 0$ and, for a given $\varepsilon \in [0, 1)$, they are approximately orthogonal or ε -orthogonal if $||\langle x, y \rangle|| \leq \varepsilon ||x|| ||y||$. A mapping $T : E \longrightarrow F$, where E and F are inner product A-modules, is called ε -orthogonality preserving if $\langle x, y \rangle = 0$ (where $x, y \in E$) implies $||\langle Tx, Ty \rangle|| \leq \varepsilon ||Tx|| ||Ty||$.

Throughout, $\mathcal{F}(H)$, $\mathcal{K}(H)$ and $\mathcal{B}(H)$ denote the space of finite rank operators, the C^{*}-algebras of all compact operators and all bounded operators on a Hilbert spaces H, respectively. We know that $\overline{\mathcal{F}(H)} = K(H)$, is an essential ideal of $\mathcal{B}(H)$, that is, for each $b \in \mathcal{B}(H)$, the equality $\mathcal{K}(H) \cdot b = 0$ implies b = 0, see [12].

Recall that \mathcal{A} is a standard C^* -algebra on a Hilbert space H if $\mathcal{K}(H) \subseteq \mathcal{A} \subseteq \mathcal{B}(H)$.

It is natural to explore the approximately orthogonality preserving mappings between inner product C^* -modules. For $\delta, \varepsilon \in [0, 1)$, ε orthogonality preserving and (δ, ε) -orthogonality preserving property between Hilbert \mathcal{A} -modules has been studied for a nonzero \mathcal{A} -linear mapping by D. Ilisevic and A. Turnsek [6] and Moslehian and Zamani [10], respectively.

In [5], Frank et al proved that if a pair of nonzero local mappings $T, S : E \longrightarrow F$ between Hilbert \mathcal{A} -modules are orthogonal preserving, then there exists $\gamma \in \mathbb{C}$ such that

$$\langle T(x), S(y) \rangle = \gamma \langle x, y \rangle, \quad x, y \in E.$$

It is interesting to ask whether it is possible to consider ε -orthogonality preserving property for two these mappings. In this paper, we study ε -orthogonality preserving property for a pair of nonzero mappings in the setting of Hilbert C^* -modules over standard C^* -algebra \mathcal{A} . Then we give the estimate of $\|\langle T(x), S(y) \rangle - \gamma \langle x, y \rangle\|$ for a pair of local ε orthogonality preserving mappings $T, S : E \longrightarrow F$ when E and F are Hilbert \mathcal{A} -modules, where $\gamma \in \mathbb{C}$.

We recall that, for a C^* -algebra A, a complex linear mapping $T : E \longrightarrow F$ between inner product A-modules E and F, is called local if

$$aT(x) = 0$$
 whenever $ax = 0$, $a \in A; x \in E$.

2. Preliminaries

Let A be a C^* -algebra. A complex linear mapping $T : E \longrightarrow F$, where E and F are inner product A-modules, is called A-linear if T(ax) = aT(x) for all $a \in A$ and $x \in E$. As example, linear differential mappings are local mapping, see [13]. Note that every A-linear mapping is local. Conversely, every bounded local mapping is A-linear, see [9, Proposition A.1].

Suppose that E and F are Hilbert A-modules. Let $\mathcal{L}(E, F)$ to be the set of all mappings $T : E \longrightarrow F$ for which there is a mapping $T^* : F \longrightarrow E$ such that for all $x \in E$ and $y \in F$,

$$\langle Tx, y \rangle = \langle x, T^*y \rangle.$$

By [7], $\mathcal{L}(E, F)$ is called the set of all adjointable mappings from E to F. Every element of $\mathcal{L}(E, F)$ is a bounded A-linear, and in general, a bounded A-linear mapping may fail to possess an adjoint, see [7]. But each bounded $\mathcal{K}(H)$ -linear mapping on $\mathcal{K}(H)$ -modules is essentially adjointable, see [1].

In the following we give some preliminaries about minimal projections in C^* -algebras and their role in our work.

Let $\xi, \eta \in H$ be elements of a Hilbert space (H, (., .)), the rank one operator defined by $[\xi \otimes \eta]\zeta = (\zeta, \eta)\xi$, where $\zeta \in H$.

The operator $\xi \otimes \xi$ is rank one projection if and only if $(\xi, \xi) = 1$. That is, for unit vector ξ , the operator $\xi \otimes \xi$ is the orthogonal projection to the one dimensional subspace spanned by ξ .

Let T be an arbitrary bounded operator on (H, (., .)), then

$$[\xi \otimes \xi]T[\xi \otimes \xi] = (T\xi,\xi)\xi \otimes \xi.$$

Recall that a projection (i.e., a self-adjoint idempotent.) e in \mathcal{A} is called minimal if $e\mathcal{A}e = \mathbb{C}e$. Hence, $\xi \otimes \xi$ is a minimal projection.

Let $(E, \langle ., . \rangle)$ be an inner product (respectively Hilbert) \mathcal{A} -module, and for a unit vector $\xi \in H$, let $e = \xi \otimes \xi$ be any minimal projection. Then

$$E_e = \{ex : x \in E\},\$$

is a complex inner product (respectively Hilbert) space contained in Ewith respect to the inner product $(x, y) = tr(\langle x, y \rangle), x, y \in E_e$.

Let x = eu, y = ev such that $u, v \in E$,

$$\langle x, y \rangle = e \langle u, v \rangle e = [\xi \otimes \xi] \langle u, v \rangle [\xi \otimes \xi] = (\langle u, v \rangle \xi, \xi) [\xi \otimes \xi],$$

by $\operatorname{tr}(\langle x, y \rangle) = (\langle u, v \rangle \xi, \xi)$, thus

$$\langle x, y \rangle = (x, y)e.$$

Authors in [6] showed that:

1) two elements $x, y \in E_e$ are orthogonal in $(E_e, (\cdot, \cdot))$ if and only if they are orthogonal in $(E, \langle ., . \rangle)$,

2) if $x \in E_e$, then $||x||_{E_e} = ||x||_E$, where the norm $||.||_{E_e}$ comes from the inner product (\cdot, \cdot) ,

3) if $T: E \to F$ between Hilbert \mathcal{A} -modules E and F is an \mathcal{A} -linear OP (respectively ε -OP) mapping, then $T_e = T \mid_{E_e} : E_e \to F_e$ is a linear OP (respectively ε -OP) mapping.

Lemma 2.1. Let $L \in \mathcal{B}(H)$, then

 $||L|| = \sup \{ ||eLf|| : e, f \text{ are rank one projections} \}.$

3. ε -orthogonality-preserving \mathcal{A} -linear and local pair of mappings

In this section, we study ε -orthogonality preserving mappings between Hilbert \mathcal{A} -modules. As mentioned in previous section, \mathcal{A} is a standard C^* -algebra on a Hilbert space H if $\mathcal{K}(H) \subseteq \mathcal{A} \subseteq \mathcal{B}(H)$.

To achieve our main result, Theorem 3.7, we give some results. First we prove the continuity of ε -orthogonality-preserving nonzero pair of \mathcal{A} -linear mappings between Hilbert \mathcal{A} -modules.

Theorem 3.1. [Chmieliński et al^[3]]

For a given $\varepsilon \in [0,1)$, ε -orthogonality preserving property for two nonzero linear mappings f and g between inner product spaces X and Y, with the same inner product (.,.), is equivalent to

$$\left| (f(x), g(y)) - \frac{(f(y), g(x))}{\|y\|^2} (x, y) \right| \le \varepsilon \left\| f(x) - \frac{(x, y)}{\|y\|^2} f(y) \right\| \|g(y)\|,$$

for $x, y \in X, y \neq 0$.

As an immediate generalization, we give the next result in setting of inner product \mathcal{A} -modules. Let $\varepsilon \in [0, 1)$, and let $T, S : E \longrightarrow F$ be pair of nonzero \mathcal{A} -linear ε -orthogonality preserving mappings between inner product \mathcal{A} -modules E and F. Then $T_e, S_e : E_e \longrightarrow F_e$ are pair of nonzero linear ε -orthogonality preserving mappings between inner product spaces E_e and F_e . Where e is a minimal projection in \mathcal{A} .

Proposition 3.2. Let $\varepsilon \in [0,1)$, and let $T, S : E \longrightarrow F$ be pair of nonzero \mathcal{A} -linear ε -orthogonality preserving mappings between inner product \mathcal{A} -modules E and F. Then for every minimal projection $e \in \mathcal{A}$, and for all $x, y \in E_e$,

$$\|\langle y, y \rangle \langle T(x), S(y) \rangle - \langle x, y \rangle \langle T(y), S(y) \rangle \| \le \varepsilon \|\langle y, y \rangle T(x) - \langle x, y \rangle T(y) \| \|S(y)\|$$

Consequently, T_e, S_e are a pair of nonzero linear ε -orthogonality preserving mappings. *Proof.* Let e be a minimal projection of \mathcal{A} , for all $x, y \in E_e$,

$$\langle y, y \rangle x - \langle x, y \rangle y \perp_E y.$$
 (3.1)

By $\langle x, y \rangle = (x, y)e$, we have

$$\langle \langle y, y \rangle x - \langle x, y \rangle y, y \rangle = \langle (y, y)ex - (x, y)ey, y \rangle$$

= $(y, y)\langle ex, y \rangle - (x, y)\langle ey, y \rangle.$

For each $x, y \in E_e$, we have x = eu, y = ev such that $u, v \in E$. Then $ex = e^2u$ and $ey = e^2v$, since e is a projection, then $ex = e^2u = eu = x$ and $ey = e^2v = ev = y$.

Hence

$$\begin{aligned} (y,y)\langle ex,y\rangle - (x,y)\langle ey,y\rangle &= (y,y)\langle x,y\rangle - (x,y)\langle y,y\rangle \\ &= (y,y)(x,y)e - (x,y)(y,y)e = 0. \end{aligned}$$

The last equality holds, because the values of inner product (.,.) are \mathbb{C} -valued, then they commute together. Thus (3.1) holds. Now, since T, S are ε -orthogonality preserving mappings, then

$$T(\langle y, y \rangle x - \langle x, y \rangle y) \perp_F^{\varepsilon} S(y).$$

Hence

$$\|\langle y, y \rangle \langle T(x), S(y) \rangle - \langle x, y \rangle \langle T(y), S(y) \rangle \| \le \varepsilon \| \langle y, y \rangle T(x) - \langle x, y \rangle T(y) \| \| S(y) \|.$$

Before considering the continuity of two mappings T, S, we first state the following lemma.

Lemma 3.3. Let E be a Hilbert A-module and $x \in E$. If ex = 0 for all minimal projections in A, then x = 0.

Proof. Let e be an arbitrary minimal projection in \mathcal{A} . Let ex = 0 for all $x \in E$. Since $0 = \langle ex, x \rangle = e \langle x, x \rangle$. On one side $\langle x, x \rangle$ is a positive element in \mathcal{A} , and on the other side, $e = \xi \otimes \xi$, where $\xi \in H$ is unit vector, is a minimal projection, so for any $h \in H$ and by setting $\xi := h$, we get x = 0.

Proposition 3.4. Let $\varepsilon \in [0, 1)$, and let \mathcal{A} has an approximate unit, which contains finite combinations of minimal projections in \mathcal{A} , and let E and F be Hilbert \mathcal{A} -modules, and e be an arbitrary minimal projection in \mathcal{A} . Suppose that $T, S : E \longrightarrow F$ are a pair of nonzero surjective \mathcal{A} -linear ε -orthogonality preserving mappings. Then T and S are continuous.

56

Proof. We just prove T is continuous, for another mapping, it proves similarly. Let $\{x_n\}_{n=1}^{\infty}$ be a nonzero sequence in E converges to zero, and $\{T(x_n)\}_{n=1}^{\infty}$ converges to $t \in F$. We must show that t = 0. Let $(e_i)_{i \in I}$ be an approximate unit for \mathcal{A} such that $(e_i)_{i \in I}$ contains finite combinations of minimal projections in \mathcal{A} . Since $e_i t \to t$, it is enough to prove that et = 0 for all minimal projections $e \in \mathcal{A}$. Let there exists a minimal projection $e \in \mathcal{A}$ such that $et \neq 0$. Now, by surjectivity of S, there exists $y \in E$ such that S(y) = t. We have $ey \neq 0$.

Now, since a pair of \mathcal{A} -linear mappings T, S are ε -orthogonality preserving mappings, then by the Proposition 3.2, we have

$$\begin{aligned} \left\| \langle ey, ey \rangle \langle T(ex_n), S(ey) \rangle - \langle ex_n, ey \rangle \langle T(ey), S(ey) \rangle \right\| \\ &\leq \varepsilon \left\| \langle ey, ey \rangle T(ex_n) - \langle ex_n, ey \rangle T(y) \right\| \left\| S(ey) \right\|. \end{aligned}$$

Consequently, if $n \to \infty$, we have $x_n \to 0$ and $T(x_n) \to t$, then

 $\|\langle ey, ey\rangle \langle et, eS(y)\rangle\| \leq \varepsilon \|\langle ey, ey\rangle et\| \|eS(y)\|.$

Since $\langle ey, ey \rangle = e \langle y, y \rangle e = (\langle y, y \rangle \xi, \xi) e$ for all minimal projections $e = \xi \otimes \xi$ in \mathcal{A} . Then

$$\left\| (\langle y, y \rangle \xi, \xi) e \langle et, eS(y) \rangle \right\| \le \varepsilon \left\| (\langle y, y \rangle \xi, \xi) e et \right\| \left\| eS(y) \right\|$$

$$= \varepsilon \| (\langle y, y \rangle \xi, \xi) et \| \| eS(y) \|.$$

Therefore

$$\left(\langle y, y \rangle \xi, \xi\right) \left| \left\| e \langle et, eS(y) \rangle \right\| \le \varepsilon \left| \left(\langle y, y \rangle \xi, \xi\right) \right| \left\| et \right\| \left\| eS(y) \right\|$$

Hence

$$\left\| \left\langle e^2 t, eS(y) \right\rangle \right\| = \left\| e \left\langle et, eS(y) \right\rangle \right\| \le \varepsilon \left\| et \right\| \|eS(y)\|$$

Since e is a projection, then

$$\left\|\langle et, eS(y) \rangle \right\| \le \varepsilon \left\| et \right\| \|eS(y)\|.$$

Now, by S(y) = t, we have

$$\|\langle et, et \rangle\| \le \varepsilon \|et\| \|et\|,$$

this implies et = 0, because $\varepsilon < 1$. Now, by Lemma 3.3 we have t = 0. Therefore, the desired result is obtained. Thus by closed graph theorem, T is continuous.

In the following, we give a stability result in this context. Note that, in Proposition 3.5 and Theorem 3.7, H is a complex Hilbert space.

Proposition 3.5. Let $\varepsilon \in [0,1)$. Let $\mathcal{A} = \mathcal{K}(H)$, and let E, F be Hilbert \mathcal{A} -modules. Suppose that $T, S : E \longrightarrow F$ are a pair of nonzero surjective \mathcal{A} -linear ε -orthogonality preserving mappings. Then there exists $\gamma \in \mathbb{C}$ such that

$$\|\langle T(x), S(y) \rangle - \gamma \langle x, y \rangle \| \le \varepsilon \|T\| \|S\| \|x\| \|y\|, \quad x, y \in E.$$

Proof. Let e be a minimal projection in \mathcal{A} . Since T_e, S_e are a pair of ε -orthogonality preserving linear mappings from E_e into F_e . Then by [3, Theorem 3.8], there exists $\gamma \in \mathbb{C}$ such that for each $x, y \in E_e$,

$$||(S_e)^*T_e - \gamma I_e|| \le \varepsilon ||T_e|| ||S_e||.$$
 (3.2)

By [6, Proposition 3.3], $||T|| = ||T_e||$ and $||S|| = ||S_e||$. Then from (3.2), we have

$$||S^*T - \gamma I|| \le \varepsilon ||T|| ||S||.$$

Now, since each bounded $\mathcal{K}(H)$ -linear mapping on $\mathcal{K}(H)$ -modules is essentially adjointable, thus for two nonzero bounded $\mathcal{K}(H)$ -linear mappings $T, S : E \longrightarrow F$ and for all $x, y \in E$, we have

$$\|\langle T(x), S(y) \rangle - \gamma \langle x, y \rangle\| = \|\langle S^*T(x) - \gamma x, y \rangle\| \le \|S^*T - \gamma I\| \|x\| \|y\|$$
$$\le \varepsilon \|T\| \|S\| \|x\| \|y\|.$$

As mentioned in previous section, in general, for any C^* -algebra A, a local mapping on Hilbert A-modules is not A-linear.

In the following, for standard C^* -algebra \mathcal{A} , we will show that a local mapping between Hilbert \mathcal{A} -modules is \mathcal{A} -linear.

To achieve this goal, we use from [8, Lemma 3.1]. This lemma states that if A is a C^* -algebra and A_0 is *-algebra generated by all the idempotents in A, and if $T: E \longrightarrow F$ on Hilbert A-modules E and F is a local mapping, then T is an A_0 -linear mapping.

Since the space generated by projections is subspace of space generated by idempotens, so we have the following proposition.

Proposition 3.6. Let $T : E \longrightarrow F$ be a local mapping between Hilbert \mathcal{A} -modules E and F, then $T : E \longrightarrow F$ is an \mathcal{A} -linear mapping.

Proof. According to the above description, for each projection $p \in \mathcal{A}$ and for all $x \in E$, we have T(px) = pT(x). As $\mathcal{F}(H)$ is linear spanned of its projections, therefore T(sx) = sT(x) for all $s \in \mathcal{F}(H)$ and $x \in E$. Now, for every $x \in E$, $a \in \mathcal{A}$ and $s \in \mathcal{F}(H)$, we have

$$s(T(ax) - aT(x)) = T(sax) - saT(x) = T(sax) - T(sax) = 0.$$

Hence, if we set y = T(ax) - aT(x), we have $\mathcal{F}(H) \cdot \langle y, y \rangle = 0$, and by $\overline{\mathcal{F}(H)} = \mathcal{K}(H)$, then $\mathcal{K}(H) \cdot \langle y, y \rangle = 0$. By $\mathcal{K}(H)$ is an essential ideal in $\mathcal{B}(H)$, hence $\langle y, y \rangle = 0$, Then we have y = 0, i.e., T(ax) = aT(x). Therefore, T is an \mathcal{A} -linear mapping.

In Proposition 3.4, the boundedness of a pair of nonzero \mathcal{A} -linear mappings $T, S : E \longrightarrow F$ over Hilbert \mathcal{A} -modules is proved. Now, we are in a position to give the main result.

Theorem 3.7. Let $\varepsilon \in [0,1)$, and let E and F be Hilbert A-modules. Let $T, S : E \longrightarrow F$ be a pair of nonzero surjective local ε -orthogonality preserving mappings. Then there exists $\gamma \in \mathbb{C}$ such that

$$\|\langle T(x), S(y) \rangle - \gamma \langle x, y \rangle \| \le \varepsilon \|T\| \|S\| \|x\| \|y\|, \quad x, y \in E.$$

Proof. Define $\tilde{T}, \tilde{S} : \mathcal{K}(H) \cdot E \longrightarrow \mathcal{K}(H) \cdot F$ (both of $\mathcal{K}(H) \cdot E$ and $\mathcal{K}(H) \cdot F$ being Hilbert $\mathcal{K}(H)$ -modules), where $\tilde{T} = T \mid_{\mathcal{K}(H) \cdot E}$ and $\tilde{S} = S \mid_{\mathcal{K}(H) \cdot E}$ by $\tilde{T}(x) = eT(x)$ and $\tilde{S}(y) = fS(y)$ for any rank one projections $e, f \in \mathcal{K}(H)$, respectively.

Now, by previous proposition, \tilde{T}, \tilde{S} are a pair of bounded ε -orthogonality preserving $\mathcal{K}(H)$ -linear mappings. Then by Proposition 3.5, there exists $\gamma \in \mathbb{C}$ such that for every $x, y \in \mathcal{K}(H) \cdot E$,

$$\|\langle \tilde{T}(x), \tilde{S}(y) \rangle - \gamma \langle x, y \rangle\| \le \varepsilon \|\tilde{T}\| \|\tilde{S}\| \|x\| \|y\|.$$

Hence, for any $x, y \in E$ and any rank one projections $e, f \in \mathcal{K}(H)$,

$$\begin{aligned} \|e\langle T(x), S(y)\rangle f - \gamma e\langle x, y\rangle f\| &= \|\langle \tilde{T}(ex), \tilde{S}(fy)\rangle - \gamma \langle ex, fy\rangle\| \\ &\leq \varepsilon \|\tilde{T}\| \|\tilde{S}\| \|ex\| \|fy\| \leq \varepsilon \|T\| \|S\| \|e\| \|x\| \|f\| \|y\|. \end{aligned}$$

Then for all $x, y \in E$ and, all rank one projections $e, f \in \mathcal{K}(H)$,

$$\left\| e\left(\langle T(x), S(y) \rangle - \gamma \langle x, y \rangle \right) f \right\| \le \varepsilon \|T\| \|S\| \|x\| \|y\|,$$

We have $(\langle T(x), S(y) \rangle - \gamma \langle x, y \rangle) \in \mathcal{A}$. On the other hand, by Lemma 2.1, for every $L \in \mathcal{B}(H)$,

 $||L|| = \sup \{ ||eLf|| : e, f \text{ are rank one projections} \}.$

Thus, for all $x, y \in E$,

$$\|\langle T(x), S(y) \rangle - \gamma \langle x, y \rangle\| \le \varepsilon \|T\| \|S\| \|x\| \|y\|.$$

SAHLEH AND OLYANI NEZHAD

References

- D. Bakic, B. Guljas, Hilbert C*-modules over C*-algebras of compact operators, Acta Sci. Math. (Szeged), 68 (2002), 249-269.
- J. Chmieliński, Linear mappings approximately preserving orthogonality, J. Math. Annal. Appl. 304 (2005) 158-169.
- J. Chmieliński, R. Lukasik and P. Wojcik, On the stability of the orthogonality equation and the orthogonality-preserving property with two unknown functions, Banach, J. Math Anal. 10 (2016), 828-847.
- J. Chmieliński, Orthogonality equation with two unknown functions, Aequationes Math. 90 (2016) 11-23.
- M. Frank, M. S. Moslehian and A. Zamani, Orthogonality preserving property for pairs of operators on Hilbert C^{*}-modules, Acquationes Math. (5) 95 (2021), 867-887.
- D. Ilisevic and A. Turnsek, Approximately orthogonality preserving mappings on C*-modules, J. Math. Anal. Appl. 341 (2008) 298-308.
- E.C. Lance, *Hilbert C^{*}-modules*, London Math. Soc. Lecture Note Ser., vol. 210, Cambridge Univ. Press, Cambridge, 1995.
- C.-W. Leung, C.-K. Ng and N.-C. Wong, Linear orthogonality preservers of Hilbert C^{*}- modules over C^{*}-algebras with real rank zero, Proc. Amer. Math. Soc. (9) 140 (2012), 3151-3160.
- C.-W. Leung, C.-K. Ng and N.-C. Wong, Automatic continuity and C₀(Ω)linearity of linear maps between Hilbert C₀(Ω)-modules, J. Operator Theory, (2012), 3-20.
- M. S. Moslehian and A. Zamani, Mapping preserving approximately orthogonality in Hilbert C^{*}-modules, Math. Scand. **122** (2018) 257276.
- A. Turnsek, On mappings approximately preserving orthogonality, J. Math. Anal. Appl. 336 (2007), 625-631.
- G. J. Murphy, C^{*}-algebras and operator theory, Academic Press Inc. Boston, MA, 1990.
- R. Narasimhan, Analysis on Real and Complex Manifolds, Advanced Studies in Pure Mathematics, 1 (North-Holland, Amsterdam, 1968).
- P. Wojcik, On certain basis connected with operator and its applications, J. Math. Anal. Apple. 423 (2015) 1320-1329.

A. Sahleh

Department of Mathematics, University of Guilan, P.O.Box 1914, Rasht, Iran. Email: sahlehj@guilan.ac.ir

F. Olyani Nezhad

Department of Mathematics, University of Guilan, P.O.Box 1914, Rasht, Iran. Email: olyaninejad_f@yahoo.com