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SEMISIMPLE LATTICES WITH RESPECT TO FILTER
THEORY

S. EBRAHIMI ATANI, M. KHORAMDEL, S. DOLATI PISH HESARI AND M.
NIKMARD ROSTAM ALIPOUR

Abstract. Since the theory of filters plays an important role in
the theory of lattices, in this paper, we will make an intensive study
of the notions of semisimple lattices and the socle of lattices based
on their filters. The bulk of this paper is devoted to stating and
proving analogues to several well-known theorems in the theory of
the rings. It is shown that, if L is a semisimple distributive lattice,
then L is finite. Also, an application of the results of this paper is
given. It is shown that if R is a right distributive ring, then the
lattice of right ideals of R is semisimple iff R is a semisimple ring.

1. Introduction

Partial order and lattice theory now play an important role in many
disciplines of computer science and engineering. For example, they
have applications in distributed computing (vector clocks, global pred-
icate detection), concurrency theory (pomsets, occurrence nets), pro-
gramming language semantics (fixed-point semantics), and data mining
(concept analysis). They are also useful in other disciplines of math-
ematics such as combinatorics, number theory and group theory and,
hence, ought to be in the literature. Moreover, growing interest in de-
veloping the algebraic theory of lattices can be found in several papers
and books. In fact, the beauty of lattice theory derives in part from
the extreme simplicity of its basic concepts: (partial) ordering, least
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upper and greatest lower bounds. In this respect, it closely resembles
group theory. Thus lattices and groups provide two of the most basic
tools of universal algebra, and in particular the structure of algebraic
systems is usually most clearly revealed through the analysis of appro-
priate lattices. Thus, when we are investigating lattices, we can use
methods and techniques of both semiring theories and rings as well as
different techniques and methods of categorical and universal algebra.
Hence, the wide variety of algebraic techniques involved in studying
lattices.

The basic structure of semisimple rings and modules can be found
in [1, 14]. The concept of semisimple semirings based on ideals (resp.
coideals) was introduced in [10] (resp. [5]) and investigated by their
homological properties in [11]. In this paper, we investigate the concept
of Jacobson radical of a lattice, simple filters, semisimple filters and
the socle of a distributive lattice. Also, we introduce the notion of
independent filters, direct sum of filters and essential filters. Among
the other results, we show that a filter F of a distributive lattice L is
semisimple if it is generated by simple filters of L which are contained
in F . Also, it is shown that Soc(F ) is equal to the intersection of all
filters of L which are essential in F . Moreover, we show that if L is a
semisimple distributive lattice, then every prime filter of L is maximal
and Jac(L) = {1}. We show that if L is a distributive lattice such
that Jac(L) = {1} and Max(L) (i.e the set of all maximal filters of L)
is finite, then L is semisimple. It is shown that, if L is a semisimple
distributive lattice, then L is finite. Also, an application of results of
this paper is given. It is shown that if R is a right distributive ring,
then the lattice of right ideals of R is semisimple iff R is a semisimple
ring.

Let us recall some notions and notations. By a lattice, we mean a
poset (L,≤) in which every couple of elements x, y has a g.l.b. (called
the meet of x and y, and written x∧ y) and a l.u.b. (called the join of
x and y, and written x∨ y) in L. A lattice L is complete when each of
its subsets X has a l.u.b. and a g.l.b. in L. Setting X = L, we see that
any nonvoid complete lattice contains a least element 0 and greatest
element 1 (in this case, we say that L is a lattice with 0 and 1). A lattice
L is called a distributive lattice if (a∨b)∧c = (a∧c)∨(b∧c) for all a, b, c
in L (equivalently, L is distributive if (a∧ b)∨c = (a∨c)∧ (b∨c) for all
a, b, c in L). A lattice L is called 1-distributive (resp. 0-distributive) if
a∨b = 1 and a∨c = 1 (resp. a∧b = 0 and a∧c = 0), then a∨(b∧c) = 1
(resp. a ∧ (b ∨ c) = 0) for all a, b, c ∈ L. A non-empty subset F of a
lattice L is called a filter, if for a ∈ F , b ∈ L, a ≤ b implies b ∈ F , and
x ∧ y ∈ F for all x, y ∈ F (so if L is a lattice with 1, then 1 ∈ F and
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{1} is a filter of L). A proper filter F of L is called prime if x∨ y ∈ F ,
then x ∈ F or y ∈ F . A proper filter F of L is said to be maximal if
G is a filter in L with F $ G, then G = L. If F is a filter of a lattice
L with 0, then 0 ∈ F if and only if F = L. In a lattice L, for each
a ∈ L, the notation [a) denotes the set {x ∈ L : x ≥ a}. Let H be
subset of a lattice L. Then the filter generated by H, denoted by T (H)
is the intersection of all filters that are containing H. For definitions
and properties of standard concepts used throughout the paper, the
reader is referred to [2, 9].
First, we need the following lemma proved in [6, 7, 8].

Lemma 1.1. Let L be a lattice.
(a) A non-empty subset F of L is a filter of L if and only if x∨z ∈ F

and x∧ y ∈ F for all x, y ∈ F , z ∈ L. Moreover, since x = x∨ (x∧ y),
y = y ∨ (x ∧ y) and F is a filter, x ∧ y ∈ F gives x, y ∈ F for all
x, y ∈ L.

(b) If L is 1-distributive and x ∈ L, then ({1} :L x) = (1 : x) = {a ∈
L : a ∨ x = 1} is a filter of L.

(c) If L is 1-distributive and {Fi}i∈Λ is the set of all prime filters of
L, then ∩i∈ΛFi = {1} ([6, Proposition 2.3]).

2. Semisimple lattice

Throughout this paper, we shall assume unless otherwise stated, that
L is a lattice with 1 and 0. Our starting point is the following definition:

Definition 2.1. (i) If {Fi}i∈Λ is an indexed set of filters of a lattice L,
then we say that {Fi}i∈Λ is independent, if Fi ∩ T (∪j 6=iFj) = {1}, for
each i ∈ Λ.

(ii) If F is a filter of a lattice L and {Fi}i∈Λ an indexed set of filters
of L which are contained in F , then we say that F is a direct sum of
{Fi}i∈Λ, if F = T (∪i∈ΛFi) and {Fi}i∈Λ is independent.

Lemma 2.2. Let H be an arbitrary non-empty subset of L. Then
T (H) = {x ∈ L : a1 ∧ a2 ∧ · · · ∧ an ≤ x for some ai ∈ H (1 ≤ i ≤ n)}.
Moreover, if F is a filter and A ⊆ F , then T (A) ⊆ F and T (F ) = F .

Proof. It is straightforward. �

Lemma 2.3. If {Fi}i∈Λ is an indexed set of filters of a 1-distributive
lattice L, then the following are equivalent:

(i) {Fi}i∈Λ is independent.
(ii) {Fi}i∈Λ′ is independent for each finite subset Λ′ of Λ.
(iii) For every pair H,G ⊆ Λ, if H ∩ G = ∅, then T (∪i∈HFi) ∩

T (∪i∈GFi) = {1}.
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Proof. (i)⇒ (ii) Let i ∈ Λ′. Since {Fi}i∈Λ is independent and T (∪i 6=j∈Λ′Fj)
⊆ T (∪i 6=j∈ΛFj), we get Fi ∩ T (∪i 6=j∈Λ′Fj) = {1}.

(ii)⇒ (iii) Let a ∈ T (∪α∈HFα)∩ T (∪α∈GFα). Then iα1 ∧ iα2 ∧ · · · ∧
iαn ≤ a and iβ1 ∧ iβ2 ∧ · · · ∧ iβm ≤ a for some iαp ∈ Fαp (1 ≤ p ≤
n, αp ∈ H), iβq ∈ Fβq (1 ≤ q ≤ m, βq ∈ G). Since Fαi

∩T (
⋃m
j=1 Fβj) =

{1} by (ii), iαi
∨ (iβ1 ∧ iβ2 ∧ · · · ∧ iβm) = 1. As L is 1-distributive,

(iα1 ∧ iα2 ∧ · · · ∧ iαn) ∨ (iβ1 ∧ iβ2 ∧ · · · ∧ iβm) = 1. Therefore

1 = [iα1 ∧ iα2 ∧ · · · ∧ iαn ] ∨ [iβ1 ∧ iβ2 ∧ · · · ∧ iβm ] ≤ a.

This gives a = 1, as desired.
(iii)⇒ (i) It is clear. �

Definition 2.4. (i) A lattice L is called semisimple, if for each proper
filter F of L, there exists a filter G of L such that L = T (F ∪ G) and
F ∩G = {1}. In this case, we say that F is a direct summand of L.

(ii) A filter F of a lattice L is called a semisimple filter, if for each
filter G ⊆ F of L, there exists a filter F ′ of L such that F = T (G∪F ′)
and G ∩ F ′ = {1}.

(iii) A simple lattice (resp; filter), is a lattice (resp; filter) that has
no filters besides the {1} and itself.

(iv) For each filter F of a lattice L, Soc(F ) = T (∪i∈ΛFi), where
{Fi}i∈Λ is the set of all simple filters of L contained in F .

(v) If L is a lattice, then the Jacobson radical of L, denoted by
Jac(L), is the intersection of all maximal filters of L.

The following example shows that there exists a lattice L which is
not semisimple.

Example 2.5. (i) Let D = {a, b, c}. Then L(D) = {X : X ⊆ D
forms a distributive lattice under set inclusion greatest element D and
least element ∅ (note that if x, y ∈ L(D), then x ∨ y = x ∪ y and
x ∧ y = x ∩ y). It can be easily seen that L(D) is a semisimple lattice
and F1 = {D, {a, b}}, F2 = {D, {a, c}} and F3 = {D, {b, c}} are simple
filters of L(D).

(ii) Assume that R is a discrete valuation ring with unique maximal
ideal P = Rp and let E = E(R/P ), the R-injective hull of R/P . For
each positive integer n, set An = (0 :E P n). Then by [3, Lemma 2.6],
every non-zero proper submodule of E is equal to Am for some m with
a strictly increasing sequence of submodules A1 ⊂ A2 ⊂ · · · ⊂ An ⊂
An+1 ⊂ · · · . The collection of submodules of E form a complete lattice
which is a chain under set inclusion which we shall denote by L(E)
with respect to the following definitions: An ∨ Am = An + Am and
An ∧ Am = An ∩ Am for all submodules An and Am of E. Then by [8,
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Example 2.3 (b)], every proper filter of L(E) is of the form [An, E] for
some n, denoted by Fn. Then L(E) is not semisimple, because there is
no filter F of L(E) such that F ∨ F2 = {1} and L(E) = T (F ∪ F2).

Lemma 2.6. If F is a non-zero proper filter of a lattice L, then F
contained in a maximal filter of R. In particular, Max(L) 6= ∅.

Proof. Since the filter F is proper,
∑

= {G : G is a filter of L with F ⊆
G,G 6= L} 6= ∅. Moreover, (

∑
,⊆) is a partial order. Clearly,

∑
is

closed under taking unions of chains and so the result follows by Zorn’s
Lemma. �

Proposition 2.7. Let L be a distributive lattice.
(i) If F1, F2, F3 are filters of L with F2 ⊆ F1, then F1 ∩T (F2 ∪F3) =

T (F2 ∪ (F1 ∩ F3)).
(ii) Let P be a maximal filter of L. If T (P ∪F ) = L and P ∩F = {1}

for some filter F of L, then F is a simple filter of L.

Proof. (i) Since F2∪(F1∩F3) ⊆ F2∪F3 ⊆ T (F2∪F3), T (F2∪(F1∩F3)) ⊆
T (F2 ∪ F3) and F2 ∪ (F1 ∩ F3) ⊆ F1 gives T (F2 ∪ (F1 ∩ F3)) ⊆ F1; so
T (F2 ∪ (F1 ∩ F3)) ⊆ F1 ∩ T (F2 ∪ F3).

For the reverse inclusion, assume that x ∈ F1 ∩ T (F2 ∪ F3). Then
a ∧ b ≤ x for some a ∈ F2 and b ∈ F3. Therefore x = x ∨ (a ∧ b) =
(x∨ a)∧ (x∨ b). Thus x ∈ T (F2 ∪ (F1 ∩ F3)), and so we have equality.

(ii) Let F ′ 6= {1} be a filter of L with F ′ ⊆ F . Then P∩F = {1} gives
P ∩ F ′ = {1}. Since P $ P ∪ F ′ ⊆ T (F ′ ∪ P ), we get T (F ′ ∪ P ) = L;
hence by (i), F = F ∩L = F ∩T (F ′∪P ) = T (F ′∪ (F ∩P )) = T (F ′) =
F ′, as required. �

In the next example we show that the condition “L is distributive”
is not superfluous in Proposition 2.7.

Example 2.8. Let L be the lattice N5 = {0, a, b, c, 1}, with the rela-
tions b < a, a ∧ c = 0 and b ∨ c = 1. Set

F1 = T ({b}) = {1, a, b}, F2 = T ({a}) = {1, a}, F3 = T ({c}) = {1, c}.

It is clear that F2 ⊂ F1. Also T (F2 ∪ F3) = L, because a ∧ c = 0.
Therefore F1 ∩ T (F2 ∪ F3) = F1. However, T (F2 ∪ (F1 ∩ F3)) = F2.

Theorem 2.9. Let L be a semisimple distributive lattice. Then the
following hold:

(i) Every filter of L is semisimple.
(ii) Jac(L) = {1}.
(iii) If F is a simple filter of L, then (1 : x) is a maximal filter of L

for each 1 6= x ∈ F .
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Proof. (i) Let F, F ′ be filters of L such that F ′ ⊆ F . Since L is
semisimple, there exists a filter G of L such that L = T (F ′ ∪ G) and
F ′ ∩G = {1}. Since F ′ ⊆ F and L = T (F ′ ∪G), F = F ∩T (F ′ ∪G) =
T (F ′ ∪ (F ∩G)) by Proposition 2.7 (i). Now (G ∩ F ) ∩ F ′ = {1} gives
F is semisimple.

(ii) By Lemma 1.1 (c), it is enough to show that every prime filter
of L is maximal. Let F be a prime filter of L. Suppose that F ⊂ P
for some maximal filter P of L. By (i), there exists a filter G of L
such that L = T (P ∪ G) and P ∩ G = {1}. Let x ∈ P \ F . Then
x ∨ y = 1 ∈ F for each y ∈ G. Then F is prime gives y ∈ F ; hence
G ⊆ F , a contradiction.

(iii) Let a, b ∈ L and 1 6= x ∈ F . Assume that a ∨ b ∈ (1 : x) and
b 6∈ (1 : x). As F is simple, T ({x}) = T ({b∨x}) = F ; so x ∈ T ({b∨x}).
It follows that x = b ∨ x. Now a ∨ x = a ∨ b ∨ x = 1 gives (1 : x) is a
prime filter; hence it is maximal. �

Theorem 2.10. (i) Let F be a filter of a 1-distributive lattice L. If
F = T (∪α∈ΛFα), where {Fα}α∈Λ is the set of all simple Filters of L
contained in F , then F is semisimple.

(ii) Let F be a filter of a distributive lattice L. If F is semisimple,
then F = T (∪α∈ΛFα), where {Fα}α∈Λ is the set of all simple Filters of
L contained in F .

(iii) Let L be a distributive lattice. Then L is semisimple if and only
if L = T (∪α∈ΛFα), where {Fα}α∈Λ is the set of all simple filters of L.

Proof. (i) Let F = T (∪α∈ΛFα), where {Fα}α∈Λ is the set of all simple
filters of L contained in F and G be a filter of L properly contained in
F . We show that there exists a filter G′ of L such that F = T (G∪G′)
and G ∩ G′ = {1}. Let Ω be the set of subsets K of Λ such that
G∩ T (∪α∈KFα) = {1} and {Fα}α∈K is independent. If for each α ∈ Λ,
Fα ⊆ G, then F = T (∪α∈ΛFα) ⊆ G, a contradiction. So there exists
α ∈ Λ such that Fα 6⊆ G; hence G ∩ Fα = {1}. Thus Ω 6= ∅. Let
{Kβ}β∈Γ be a chain of Ω and K0 = ∪β∈ΓKβ. We show K0 ∈ Ω.
Let x ∈ G ∩ T (∪α∈K0Fα). Then iα1 ∧ iα2 ∧ · · · ∧ iαt ≤ x for some
iαn ∈ Fαn (1 ≤ n ≤ t). Suppose that Kl contains all αn, 1 ≤ n ≤ t.
Since G ∩ T (∪α∈Kl

Fα) = {1}, x ∨ iαj
= 1 for each 1 ≤ j ≤ t. As

L is 1-distributive, x = x ∨ (iα1 ∧ iα2 ∧ · · · ∧ iαt) = 1. Moreover, it
is clear that {Fα}α∈K0 is independent by Lemma 2.3. Thus K0 ∈ Ω.
By Zorn,s lemma Ω has a maximal element, say H. Set S = T (G ∪
(∪α∈HFα)). Assume that there exists j ∈ Λ such that S ∩ Fj = {1};
so G ∩ Fj = {1}. If j ∈ H, then Fj ⊆ ∪α∈HFα ⊆ S, a contradiction.
So j /∈ H. It can be easily seen that {Fα}α∈H∪{j} is independent. We
show G ∩ T (∪α∈H∪{j}Fα) = {1}. Let x ∈ G ∩ T ((∪α∈H∪{j}Fα). So
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iα1 ∧ iα2 ∧ · · · ∧ iαt ∧ ij ≤ x for some iα1 ∈ Fα1 , ..., iαt ∈ Fαt , ij ∈ Fj.
Then

x ≥ x ∨ (iα1 ∧ iα2 ∧ · · · ∧ iαt ∧ ij) = 1,

because L is 1-distributive. Hence x = 1, which is a contradiction. So
for each j ∈ Λ, S ∩ Fj 6= {1} and S ∩ Fj = Fj which implies Fj ⊆ S.
Hence F = T (∪Fα) ⊆ S and S = F .

(ii) Assume that F is semisimple and let S = T (∪α∈ΛFα), where
{Fα}α∈Λ is the set of all simple filters of L contained in F and S 6= F ;
so there exists x ∈ F \ S. Let Ω be the set of subfilters H of F such
that x /∈ H and S ⊆ H. Since S ∈ Ω, Ω 6= ∅ and Ω has a maximal
element by Zorn,s lemma, say G (so G 6= F ). Since F is semisimple,
F = T (G ∪ G′) and G ∨ G′ = {1} for some filter G′ ⊆ F . If G′ is
simple, then G′ ⊆ S ⊆ G implies F = T (G ∪ G′) = T (G) = G, a
contradiction. So there exists {1} 6= G′′ ⊂ G′. Again there exists
K ⊆ F such that F = T (G′′ ∪K) and G′′ ∨K = {1}. We claim that
G = T (G∪G′′)∨T (G∪K). It is clear that G ⊆ T (G∪G′′)∩T (G∪K).
For the reverse inclusion, let a ∈ T (G∪G′′)∩T (G∪K). Then t1∧a ≤
b and t2 ∧ k ≤ b for some t1, t2 ∈ G, k ∈ K and a ∈ G′′. Then
(t1 ∧ a) ∨ (t2 ∧ k) ≤ b. So

[(t1∧a)∨ t2]∧ [(t1∧a)∨k] = [(t1∨ t2)∧ (a∨ t2)]∧ [(t1∨k)∧ (a∨k)] ≤ b.

As G′′ ∩K = {1}, we have b ∈ G. Thus G = T (G ∪G′′) ∩ T (G ∪K).
If K ⊆ G, then

G = G ∩ T (G′′ ∪K) = T ((G ∩G′′) ∪K) = K.

Therefore T (G′′ ∪G) = L and

G′ = G′ ∩ T ((G′′ ∪G)) = T (G′ ∩ (G′′ ∪G)) = G′′,

a contradiction. Hence T (G ∪K) 6= G. Moreover, if G = T (G ∪ G′′),
then G′′ ⊆ G; so G′′ ⊆ G ∩ G′ = {1}, a contradiction. Hence G 6=
T (G∪G′′). Since G is maximal in Ω, G  T (G∪G′′) and G  T (G∪K),
T (G∪G′′) /∈ Ω and T (G∪K) /∈ Ω. Thus b ∈ T (G∪G′′)∩T (G∪ (G′ ∨
K)) = G, a contradiction. So F = T (∪α∈ΛFα).

(iii) Apply (i) and (iii). �

Remark 2.11. (i) An inspection will show that if F is a filter of a
distributive lattice L, then Soc(F ) is the largest semisimple filter of L
which is contained in F . Moreover, F = Soc(F ) if and only if F is
semisimple by Theorem 2.10.

(ii) Let F be a filter of a lattice L. Then it is clear that F is simple
if and only if F = [a) for some maximal element a of L. Thus if F is a
simple filter, then |F | = 2.
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(iii) We say that a filter F of L is an Artinian filter if any non-
empty set of subfilters of F has a minimal member with respect to set
inclusion. By [8, Theorem 2.2], if 1 6= F is an Artinian filter of L, then
F contains only a finite number of simple subfilters.

Definition 2.12. (i) Let G,F be filters of a lattice L such that G ⊆ F .
G is called essential in F , denoted by G ≤ess F , if for each filter
H 6= {1} of L which is contained in F , H ∩G 6= {1}.

(ii) If G,F are filters of a lattice L, then G is a complement of F if
and only if F∩G = {1} and G is maximal with respect to this property.

Proposition 2.13. Let F1, F2, F3, F4 be filters of a lattice L.
(i) If F2 ⊆ F1, then F2 ≤ess F1 if and only if for each x ∈ F1,
{1} 6= x ∨ r ∈ F2 for some r ∈ L.

(ii) If F1 ⊆ F2 ⊆ F3, then F1 ≤ess F2 and F2 ≤ess F3 if and only if
F1 ≤ess F3.

(iii) If F1 ≤ess F2 and F3 ≤ess F4, then F1 ∩ F3 ≤ess F2 ∩ F4.

Proof. (i) Assume that F2 ≤ess F1 and let x ∈ F1. Then T ({x})∩F2 6=
{1}; so 1 6= x ∨ r ∈ F2 for some r ∈ L. Conversely, assume that for
each x ∈ F1, {1} 6= x∨ r ∈ F2 for some r ∈ L. Let F3 6= {1} be a filter
of L which is contained in F1. If 1 6= y ∈ F3, then 1 6= y ∨ s ∈ F2 (for
some s ∈ L) gives {1} 6= T ({y})∩F2 ⊆ F2 ∩F3, as required. Similarly,
(ii) and (iii) are clear. �

Theorem 2.14. Let L be a distributive lattice. Then the following
statements are equivalent:

(i) L is semisimple;
(ii) L is a direct sum of simple filters of L;
(iii) L contains no proper essential filter.

Proof. (i) ⇒ (ii) In the proof of Theorem 2.10, take L = F and G =
{1}.

(ii) ⇒ (iii) Let L = T (∪α∈ΛFα), where {Fα}α∈Λ is a set of inde-
pendent simple filters of L. Assume to the contrary, F is a proper
essential filter of L. Then for each α ∈ Λ, Fα ∩ F 6= {1}; so Fα ⊆ F
which implies that L ⊆ F , a contradiction.

(iii) ⇒ (i) Let F be a filter of L. At first we show that F has
a complement H and T (F ∪ H) ≤ess L. By (iii), F 6≤ess L. Then
there exists a filter G′ of L such that F ∩ G′ = {1}. Let Ω = {G :
F ∩ G = {1}, G is a filter of L} (so G′ ∈ Ω). It can be easily seen
Ω has a maximal element, say H (so H ∩ F = {1}). We claim that
T (H ∪ F ) ≤ess L. Assume to the contrary, T (H ∪ F ) ∩ F1 = {1}
for some filter F1 of L. Now we show that T (H ∪ F1) ∩ F = {1}. If
x ∈ T (H ∪ F1) ∩ F , then t ∧ h ≤ x for some for some t ∈ F1, h ∈ H;
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so t ∧ h ∈ (F : r). Then 1 = (t ∨ x) ∧ (x ∨ h) ≤ x; so x = 1. Thus
T (H∪F1)∨F = {1} which implies that T (F1∪H) = H by maximality
of H. Therefore F1 ⊆ H; hence T (H ∪ F )∩ F1 6= {1}, a contradiction.
So T (H ∪ F ) ≤ess L. Thus by (iii), T (F ∪H) = L and F is a direct
summand of L, as needed. �

Proposition 2.15. (i) Let F be a filter of a distributive lattice L. If
H is the intersection of all filters of L which are essential in F , then
H = Soc(F ).

(ii) If L is a 1-distributive lattice, then Soc(F ) = F ∩ Soc(L). In
particular, Soc(Soc(L)) = Soc(L).

(iii) If F is a simple filter of a lattice L and Jac(L) = {1}, then F
is a direct summand of L.

Proof. (i) Let Soc(F ) = T (∪α∈ΛFα), where {Fα}α∈Λ is the set of all
simple filters of L contained in F . Let G ≤ess F . For each α ∈ Λ,
Fα ∩G 6= {1} which implies that Fα ⊆ G; hence Soc(F ) ⊆ H. For the
reverse inclusion, it is enough to show that H is semisimple. Let G be
a filter of L such that G ⊆ H. If G ≤ess F , then H ⊆ G; so G = H. So
we may assume that G is not essential in F . Let F ′ be a complement of
G in F ; so T (G∪F ′) ≤ess F . It follows that G ⊆ H ⊆ T (G∪F ′); thus
H = H ∩ T (G ∪ F ′) = F (G ∪ (H ∩ F ′)) by Proposition 2.7 (i) which
implies that H is semisimple. Thus H ⊆ Soc(F ) by Remark 2.11, and
so we have equality.

(ii) Let Soc(L) = T (∪α∈ΛFα), where {Fα}α∈Λ is the set of all simple
filters of L. Since the inclusion Soc(F ) ⊆ F ∩ Soc(L) is clear, we will
prove the reverse inclusion. Let x ∈ F ∩ Soc(L). So i1 ∧ i2 ∧ · · · ∧
it ≤ x for some 1 6= ij ∈ Fαj

(1 ≤ j ≤ t). If for each 1 ≤ j ≤ t,
x /∈ Fαj

= [ij), x ∨ ij = 1, for each 1 ≤ j ≤ t. Hence x = x ∨
(i1 ∧ i2 ∧ · · · ∧ it) = 1. Therefore, without loss of generality, we can
assume that x 6∈ Fα1 , Fα2 , · · · , Fαm and x ∈ Fαm+1 , · · · , Fαt . Therefore
x ≤ im+1∧ ....∧it and x∨(i1∧ ...∧im) = 1 (because L is 1-distributive).
Since x ≤ im+1 ∧ .... ∧ it, we have

im+1 ∧ .... ∧ it = (im+1 ∧ .... ∧ it) ∧ (x ∨ (i1 ∧ ... ∧ im)) ≤

x ∨ ((i1 ∧ ... ∧ im) ∧ (im+1 ∧ .... ∧ it)) = x

As x ∈ Fαm+1 , · · · , Fαt , Fαm+1 , · · · , Fαt ⊆ F . Therefore x ∈ T (∪tj=m+1Fαj
)

⊆ Soc(F ); so equality holds. The in particular statement is clear.
(iii) Since Jac(L) = {1}, F * P for some maximal filter P of L; so

P ∩ F = {1}, because F is simple. Now P ⊂ F ∪ P ⊆ T (P ∪ F ) ⊆ L
gives L = T (P ∪ F ), as required. �
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Theorem 2.16. Let L be a 1-distributive lattice. The following state-
ments are equivalent:

(i) Soc(L) ≤ess L;
(ii) Soc(F ) 6= {1} for every filter {1} 6= F of L;
(iii) Every filter of L contains a simple filter.

Proof. (i) ⇒ (ii) If there is a filter F 6= {1} with Soc(F ) = {1}, then
F ∩ Soc(L) = {1} by Proposition 2.15 (ii) that is a contradiction.

(ii) ⇒ (i) Let F 6= {1} be a filter of L. So Soc(F ) 6= {1} by (ii);
hence F ∩ Soc(L) 6= {1} by Proposition 2.15 (ii). Thus Soc(L) ≤ess L.

(ii) ⇒ (iii) Let F be a filter of L. By (ii), Soc(F ) 6= {1}; so there
exists a simple filter G of L such that G ⊆ F . (iii)⇒ (ii) is clear. �

Theorem 2.17. Assume that L is a 1-distributive lattice and let {Fα}α∈Λ

be a set of filters of L. Then Soc(T (∪α∈ΛFα)) = T (∪α∈ΛSoc(Fα)).

Proof. We claim that if G is a simple filter of L with G ⊆ T (∪α∈ΛFα),
then there exists a filter Fα of L such that G ⊆ Fα. Assume to the
contrary, for each filter Fα of L, G * Fα; so G ∩ Fα = {1} since G is
simple. Let 1 6= x ∈ G ⊆ T (∪α∈ΛFα). Then i1 ∧ i2 ∧ · · · ∧ it ≤ x, where
ij ∈ Fj (1 ≤ j ≤ t. As G ∩ Fα = {1}, one can show that x = x ∨ (i1 ∧
i2 ∧ · · · ∧ it) = 1 (because L is 1-distributive), a contradiction. Now by
Proposition 2.15 (ii), Soc(T (∪Fα)) = T (∪{G ⊆ ∪Fα : G is simple}) =
T (∪α{G ⊆ Fα : G is simple}) = T (∪Soc(Fα)). �

By Theorem 2.9 (ii), if L is a semisimple filter, then Jac(L) = {1}.
In the following theorem, we show that if Max(L) is finite, then the
converse is true.

Theorem 2.18. Assume that L is a distributive lattice and let Jac(L) =
{1}. If Max(L) is finite, then L is semisimple.

Proof. At first we show that if P, P ′ are maximal filters and F a filter
with F 6⊂ P, P ′, then T (F∪(P∩P ′)) = L. Since F 6⊂ P, P ′, T (F∪P ) =
T (F∪P ′) = L; so a∧p = b∧p′ = 0 for some p ∈ P, p′ ∈ P ′ and a, b ∈ F .
Thus (a∧ b)∧ p = 0 = (a∧ b)∧ p′. Now L is a distributive lattice gives
(a∧ b)∧ (p∨p′) = 0 ∈ T (F ∪ (P ∩P ′)). Therefore L = T (F ∪ (P ∩P ′)).
So if Max(L) = {P1, P2, · · · , Pt}, then T (P1 ∪ (P2 ∩ · · · ∩ Pt)) = L.
Moreover, by Proposition 2.7 (ii), P2 ∩ · · · ∩ Pt 6= {1} is a simple
filter. By the similar way ∩ti=1,i 6=jPi 6= {1} is a simple filter for each
1 ≤ j ≤ t. It is enough to show that L = T (∪j(∩ti=1,i 6=jPi)). As
T (Pi ∪ (∩tj=1,j 6=iPj)) = L, there exist ai ∈ (∩tj=1,j 6=iPj) \ Pi and bi ∈ Pi
such that 0 = ai ∧ bi; so (a1 ∧ · · · ∧ at) ∧ b1 = (a1 ∧ · · · ∧ at) ∧ b2 =
· · · = (a1 ∧ · · · ∧ at) ∧ bt = 0. Again L is a distributive lattice gives
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(a1 ∧ · · · ∧ at) ∧ (b1 ∨ b2 ∨ · · · ∨ bt) = 0 ∈ T (∪j(∩ti=1,i 6=jPi)). Hence
L = T (∪j(∩ti=1,i 6=jPi)). �

Example 2.19. (i) The collection of ideals of Z, the ring of inte-
gers, form a lattice under set inclusion which we shall denote by L(Z)
with respect to the following definitions: mZ ∨ nZ = (m,n)Z and
mZ ∧ nZ = [m,n]Z for all ideals mZ and nZ of Z, where (m,n) and
[m,n] are greatest common divisor and least common multiple of m,n,
respectively. Note that L(Z) is a distributive complete lattice with
least element the zero ideal and the greatest element Z. Then by [8,
Theorem 3.1] and Remark 2.11 (ii), every simple filter of L(Z) is of
the form F = {Z, pZ} for some prime number p. Let P be the set of
all prime numbers. For each p ∈ P, set Fp = {Z, pZ}. Then {Fp}p∈P
is the set of all simple filters of L(Z). If L(Z) = T (∪p∈PFp), then
{0} = pi1Z ∧ · · · ∧ pikZ = pi1 · · · pikZ, a contradiction. So L(Z) is not
semisimple. Moreover, by [8, Lemma 3.1], L(Z) \ {0} is the only max-
imal filter of L(Z); so Jac(L(Z)) 6= 1 and Max(L(Z)) is finite. So we
provide this example to show that the condition ”Jac(L) = {1}” can
not be omitted in Theorem 2.18.

(ii) Let L(E) be the lattice as in Example 2.5 (ii). By [8, Example
2.3] and Remark 2.11, for every filter F 6= 1 of L(E), F is not simple;
so Soc(F ) = {1}.

Theorem 2.20. (i) Let L be a 1-distributive lattice and L = Soc(L).
Then L is finite.

(ii) Let L be semisimple distributive lattice. Then L is finite.

Proof. (i) Let L = T (∪α∈ΛFα), where {Fα}α∈Λ is the set of all simple
filters of L. Then ai1 ∧ ...∧ain = 0, for some ai1 ∈ Fi1 , ...., ain ∈ Fin . As
Fij is simple, Fij = [aij), for each 1 ≤ j ≤ n. Let 1 6= b ∈ L. If b /∈ Fij
for each 1 ≤ j ≤ n, we have b ∨ aij = 1, for each 1 ≤ j ≤ n. Thus
b = b∨(ai1∧ ...∧ain) = 1 (because L is 1-distributive), a contradiction.
Hence b ≤ aij for some 1 ≤ j ≤ n. Without loss of generality, we
can assume that b 6≤ aij , for each 1 ≤ j ≤ m and b ≤ aij , for each
m+1 ≤ j ≤ n. Therefore b ≤ aim+1∧ ....∧bin and b∨(ai1∧ ...∧aim) = 1
(because L is 1-distributive). Since b ≤ aim+1 ∧ .... ∧ bin , we have

aim+1 ∧ .... ∧ ain = (aim+1 ∧ .... ∧ ain) ∧ (b ∨ (ai1 ∧ ... ∧ aim)) ≤
b ∨ ((ai1 ∧ ... ∧ aim) ∧ (aim+1 ∧ .... ∧ ain)) = b.

Therefore b = aim+1 ∧ .... ∧ ain . This shows that L is finite.
(ii) Apply (i). �

Finally, in the following, an application of results of this paper is
given.
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Theorem 2.21. Let R be a right distributive ring. Then the following
statements are equivalent.

(i) The lattice of right ideals of R, denoted by L(R), is semisimple;
(ii) R is semisimple;
(iii) R is a finite direct product of division rings.

Proof. (i) ⇒ (ii) By Theorem 2.20, L(R) is finite. Since L(R) is
semisimple, L(R) = T (∪ni=1Fi), where Fi is a simple filter of L(R).
Let Mi be a maximal right ideal of R and Fi = [Mi), then ∩ni=1Mi = 0.
So J(R) = 0 (the jacobson radical of R). As L(R) is finite, R is right
Artinian. Hence R is semisimple by [12, Theorem 4.14].

(ii)⇒ (iii) It is known by [13, 1.45].
(iii)⇒ (i) Assume that R = D1×D2× ...×Dn, where D1, D2, ..., Dn

are division rings. Then every maximal ideal of R has the form Mj =∏n
i=1,i 6=j Di for some 1 ≤ j ≤ n. Therefore every simple filter Fj of L

is of the form [
∏n

i=1,i 6=j Di). It is clear that ∩nj=1Mj = 0. Thus L(R) =

T (∪nj=1Fj). This gives L(R) is semisimple, by Theorem 2.10. �
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