Journal of Algebra and Related Topics Vol. 11, No 1, (2023), pp 49-53

ON A QUESTION CONCERNING THE COHEN'S THEOREM

S. S. POURMORTAZAVI AND S. KEYVANI*

ABSTRACT. Let R be a commutative ring with identity, and let M be an R-module. The Cohen's theorem is the classic result that a ring is Noetherian if and only if its prime ideals are finitely generated. Parkash and Kour obtained a new version of Cohen's theorem for modules, which states that a finitely generated R-module M is Noetherian if and only if for every prime ideal p of R with $Ann(M) \subseteq p$, there exists a finitely generated submodule N of M such that $pM \subseteq N \subseteq M(p)$, where $M(p) = \{x \in M | sx \in pM \text{ for some } s \in R \setminus p\}$. In this paper, we prove this result for some classes of modules.

1. INTRODUCTION

Throughout this paper, R denotes a commutative ring with identity and all modules are unitary. Let N and K be two submodules of an R-module M. Then the colon ideal of N into K is defined to be $(N :_R K) = \{r \in R : rK \subseteq N\}$. Particularly, we use $Ann_R(M)$ instead of $(0 :_R M)$ and $(N :_R m)$ instead of $(N :_R Rm)$, where Rmis the cyclic submodule of M generated by an element $m \in M$. A submodule P of an R-module M is called prime or p-prime if $P \neq M$ and for $p = (P :_R M)$, whenever $re \in P$ for $r \in R$ and $e \in M$, we have $r \in p$ or $e \in P$ (see [8]). If Q is a maximal submodule of M, then Q is a prime submodule and $(Q :_R M) = m$ is a maximal ideal of R. In this case, we say Q is an m-maximal submodule of M (see [9]). If $p \in Spec(R)$ (resp. $m \in Max(R)$), then $Spec_p(M)$ (resp. $Max_m(M)$)

Keywords: Noetherian modules, Cohen's theorem, X-injective.

MSC(2010): Primary: 13C13; Secondary: 13C05

Received: 14 September 2022, Accepted: 14 October 2022.

^{*}Corresponding author.

is the set of all *p*-prime (resp. *m*-maximal) submodules of M (see [11, 9]). Also $M(p) = S_p(pM) = \{x \in M | sx \in pM \text{ for some } s \in R \setminus p\}$ is the contraction of pM_p in M (see [10]). Early in 1950, Cohen showed that a ring R is Noetherian if and only if every prime ideal of R is finitely generated (see [6, Theorem 2]). In 1994, Smith proved that for a finitely generated module M, the following statements are equivalent (see [14]).

- (1) M is Noetherian;
- (2) pM is finitely generated for each prime ideal p of $V(Ann_R(M);$
- (3) M(p) is finitely generated for each prime ideal p of $V(Ann_R(M))$.

In 2021, Parkash and Kour generalized the Smith's result on finitely generated modules as follows (see [13]). Let M be a finitely generated R-module, then the following are equivalent.

- (1) M is Noetherian;
- (2) For every prime ideal p of $V(Ann_R(M))$, there exists a finitely generated submodule N of M such that $pM \subseteq N \subseteq M(p)$.

In [13], there is a natural question which says that whether for finitely generated module M, the following statements are equivalent.

- (1) M is Noetherian;
- (2) For every prime ideal p of $V(Ann_R(M))$, there exists a finitely generated submodule N of M such that $(N :_R M) = p$.

Parkash and Kour have given a negative answer to this question in [13, Example 2.4]. We will give a positive answer to the above question under some conditions (see Theorem 2.2).

2. Main results

Remark 2.1. Let M be an R-module.

- (a) M is said to be X-injective if $|Spec_p(M)| \le 1$ for every prime ideal p of R (see [4, Definition 3.2]).
- (b) M is said to be a multiplication (weak multiplication) module if for every submodule (prime submodule) N of M there exists an ideal I of R such that N = IM (see [7, 5]).
- (c) Consider the finitely generated \mathbb{Z} -module $M = \bigoplus_{i=1}^{n} \mathbb{Z}_{p_i}$, where p_i 's are distinct positive prime integers. Then $Spec_{\mathbb{Z}}(M) = \bigcup_{i=1}^{n} Spec_{(p_i\mathbb{Z})}(M) = \bigcup_{i=1}^{n} \{p_iM\}$. This implies that M is an X-injective \mathbb{Z} -module by part (a).

Theorem 2.2. Let M be an X-injective R-module. Then the following are equivalent.

(a) *M* is Noetherian;

(b) For every prime ideal p of $V(Ann_R(M))$, there exists a finitely generated submodule N of M such that $(N :_R M) = p$.

Proof. $((b) \Rightarrow (a))$. Let p be a maximal ideal of R and $p \in V(Ann_R(M))$. Then by hypothesis, there exists a finitely generated submodule N of Msuch that $(N:_R M) = p$. This implies that $pM \subseteq N$ and Hence $pM \neq pM$ M. So that $(pM:_R M) = p$. Since p is a maximal ideal of R, pM is a *p*-prime submodule of M by [8, Proposition 2]. Now by [3, Proposition 3.3], there is a maximal submodule H of M such that $(H :_R M) = p$. Since p is maximal ideal, then by [8, Proposition 4], H and N are prime submodules of M. On the other hand, M is X-injective, so that H = Nby [4, Lemma 3.1]. It follows that H is a finitely generated submodule of M. But M/H is cyclic and hence M is finitely generated. Now we assume that M is not a Noetherian R-module. Then there exists a proper submodule K of M such that it is not finitely generated. Set $\Sigma = \{L \subset M \mid L \text{ is a non-finitely generated submodule of } M\}$. Firstly, $\Sigma \neq \emptyset$, because $K \in \Sigma$. Secondly, if $\{L_i\}_{i \in I}$ is a chain of elements of Σ , then $\bigcup_{i \in I} L_i$ is non-finitely generated. Now by Zorne lemma, Σ has a maximal element. Let L be a maximal element of Σ . Hence L is a prime submodule of M by [8, Proposition 9]. Set $(L:_R M) = q$. Therefore by hypothesis, we have $(L' :_R M) = q$ for some finitely generated submodule L' of M. Hence $(L :_R M)M = (L' :_R M)M$. But by [4, Corollary 3.12], M is multiplication. So that we have $L = (L :_R M)M = (L' :_R M)M = L'$. This means that L is finitely generated, which is a contradiction.

 $((a) \Rightarrow (b))$. This follows from [10, Corollary 3.8].

Corollary 2.3. Let M be an R-module, and suppose that one of the following hold:

- (1) M is a multiplication module;
- (2) M is a weak multiplication module;
- (3) M is a locally cyclic module.

Then the following are equivalent.

- (a) *M* is Noetherian;
- (b) For every prime ideal p of $V(Ann_R(M))$, there exists a finitely generated submodule N of M such that $(N :_R M) = p$.

Proof. This is an immediate result of Theorem 2.2 by [4, Proposition 3.3 and 3.10]. \Box

The following example shows that the condition "M is X-injective" of Theorem 2.2 can not be dropped.

Example 2.4. Let F be a field and $R = F[[x_1, x_2, ...]]$ be the power series ring over F with intermediates $x_1, x_2, ...$ and $I = \langle x_1^2, x_2^2, ... \rangle$ and $J = \langle x_2, x_3, ... \rangle$ be two ideals of R. Set $M = \frac{R}{I} \times \frac{\frac{R}{I}}{\frac{J}{I}}$. Then we have the following.

- (a) $Spec(R/I) = Max(R/I) = \{\frac{p}{I}\}, \text{ where } p = \langle x_1, x_2, \dots \rangle.$
- (b) M is a finitely generated $\frac{R}{I}$ -module.
- (c) $N = \frac{R}{I} \times \frac{\frac{p}{I}}{\frac{J}{I}}$ is a finitely generated $\frac{R}{I}$ -submodule of M and $(N:_{\frac{R}{I}}M) = \frac{p}{I}$.
- (d) $\frac{p}{I}M = \frac{p}{I} \times \frac{\frac{p}{I}}{\frac{J}{I}}$ is a non-finitely generated $\frac{R}{I}$ -submodule of M and $\frac{p}{I}M : \underline{R} M = \frac{p}{I}$.
- (e) M is not a Noetherian $\frac{R}{I}$ -module and it is not an X-injective $\frac{R}{I}$ -module by part (c), (d), [8, Proposition 2] and [4, Lemma 3.1].

Remark 2.5. Let M be an R-module. Then

- (a) M is said to be *Max-injective* if $|Max_p(M)| \le 1$ for every maximal ideal p of R (see [1, 12]).
- (b) M is said to be Max-weak multiplication R-module if either $Max(M) = \emptyset$ or $Max(M) \neq \emptyset$ and for every maximal submodule P of M, P = IM for some ideal I of R (see [2]).

In [12], it is proved that these two classes (Max-injective and Maxweak multiplication) of modules are the same. Since every X-injective module is a Max-injective module, it seems possible to generalize Theorem 2.2 for Max-injective modules. Therefore, it is natural to ask the following question.

Question. Let M be a Max-injective R-module and let for every prime ideal p of $V(Ann_R(M))$, there exists a finitely generated submodule N of M such that $(N :_R M) = p$. Is M a Noetherian R-module?

References

- H. Ansari-Toroghy and S. Keyvani, On the maximal spectrum of a module and zariski topology, Bull. Malays. Math. Sci. Soc., (1) 38 (2015), 303–316.
- H. Ansari-Toroghy, S. Keyvani, and S. S. Pourmortazavi, Max-weak multiplication modules, Far East Journal of Mathematical Sciences, (1) 66 (2012), 87–96.
- H. Ansari-Toroghy and R. Ovlyaee-Sarmazdeh, Modules for which the natural map of the maximal spectrum is surjective, Colloq. Math. 2 (2010), 217–227.
- H. Ansari-Toroghy and R. Ovlyaee-Sarmazdeh, On the prime spectrum of Xinjective modules, Comm. Algebra, (7) 38 (2010), 2606–2621.

- A. Azizi, Weak multiplication modules, Czechoslovak Math. J, (3) 53 (2003), 529–534.
- I. S. Cohen, Commutative rings with restricted minimum condition, Duke Math. J. D, (1) 17 (1950), 27–42.
- Z. A. El-Bast and P. F. Smith. Multiplication modules, Comm. Algebra, (4) 16 (1988), 755–779.
- C. P. Lu. Prime submodules of modules, Comment. Math. Univ. St. Pauli, (1) 33 (1984), 61–69.
- 9. C. P. Lu. Spectra of modules, Comm. Algebra, (10) 23 (1995), 3741–3752.
- 10. C. P. Lu. Saturations of submodules, Comm. Algebra, (6) 31 (2003), 2655-2673.
- R. L. McCasland, M. E. Moore, and P. F. Smith. On the spectrum of a module over a commutative ring, Comm. Algebra, (1) 25 (1997), 79–103.
- R. Ovlyaee-Sarmazde and S. Maleki-Roudposhti. On Max-injective modules, J. Algebra Relat. Topics, (1) 1 (2013), 57–66.
- A. Parkash and S. Kour. On Cohen's theorem for modules, Indian J. Pure Appl. Math., (3) 52 (2021), 869–871.
- P. F. Smith. Concerning a theorem of I. S. Cohen, Analele stiintifice ale Universitatii Ovidius Constanta, XIth National Conference of Algebra (Constanta, 1994), National Conference of Algebra, (1994), 160–167.

Seyed Sajad Pourmortazavi

Department of pure Mathematics, Faculty of mathematical Science, University of Guilan, Rasht, Iran.

Email: mortazavi.alqadir@gmail.com, sspourmortazavi@yahoo.com

Siamak Keyvani

Department of Mathematics, Bandar Anzali Branch, Islamic Azad University, Bandar Anzali, Iran.

Email: Siamak.Keyvani@iau.ac.ir