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LOCALLY κ-PRESENTED REPRESENTATIONS OF
QUIVER

P. BAHIRAEI∗

Abstract. In this paper, we focus on the concept of locally κ-
presented representations of quiver and we introduce two classes
of objects of representations of the quiver on certain Grothendieck
category related to this concept which forms a complete cotorsion
pair.

1. introduction

The representation theory of quivers is probably one of the most
fruitful parts of modern representation theory. By now, a number of
remarkable connections to other algebraic topics have been discovered,
in particular, to Lie algebras, Hall algebras, and quantum groups and
more recently to cluster algebras.

The notion of cotorsion pairs (or cotorsion theory) was invented by
[11] in the category of abelian groups and was rediscovered by Enochs
and coauthors in the 1990s. In short, a cotorsion pair in an abelian
category A is a pair (F , C) of classes of object of A each of which is
the orthogonal complement of the other with respect to the Ext func-
tor. In recent years we have seen that the study of cotorsion pairs is
especially relevant to study of covers and envelops, particularly in the
proof of the flat cover conjecture [1]. In recent years, finding cotorsion
pairs in the category of representations of quivers has been an inter-
esting subject in the study of representation theory. In [3], Eshraghi,
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et al. studied the cotorsion pair in Rep(Q, R). They showed that in
certain conditions, a complete cotorsion pair in Mod-R can be given
a complete cotorsion pair in Rep(Q, R) and vice versa. Recently in
[7] Holm and Jørgensen extend this result about module-valued quiver
representations to general M-valued representations where M is an
abelian category.

In this work, we introduce two classes of objects of representations
of quiver on certain Grothendieck category which forms a complete
cotorsion pair. In order to achieve this aim we will need to characterize
these classes as closure under filtration of certain of their subobjects.
More precisely:

Let G be a concrete Grothendieck category as in Subsection 2.3. Let
Q = (V,E) be a quiver and κ be an infinite cardinal such that κ ≥ λ
and κ ≥ max{|V |, |E|}. For each v ∈ V , let Jv be a class of κ-presented
objects in G. Set Pv = ⊥(Jv

⊥). Let C be the class of all locally κ-
presented representation X ∈ Rep(Q,G) such that Xv ∈ Pv and F be
the class of all representation Y ∈ Rep(Q,G) such that Y ∈ Pv. Then
we have the following Theorem:

Theorem 1.1. Let Q = (V,E) be a quiver. Let F and C be as above.
Suppose that F contains a generator of Rep(Q,G). Then (F , C⊥) is a
complete cotorsion pair.

As an application, the concept of locally κ-presented is studied for
(Gop,Mod-R) the category of all contravariant functors F : G → Mod-R
and ShXG the category of all Sheaves over a poset X with value in G.

The paper is organized as follows. In Section, 2 we recall some
generality on representations of quiver and provide any background
information needed through this paper such as Hill Lemma. Our main
result appears in Section 3 as Theorem 3.7. Finally, we obtain some
interesting results by considering some nice sets.

2. preliminaries

2.1. The category of representation of quiver: Let Q be a quiver
(a directed graph). The sets of vertices and arrows are denoted by
V (Q) and E(Q) respectively and are usually abbreviated to V and E.
An arrow of a quiver from a vertex v1 to a vertex v2 is denoted by
a : v1 → v2. In this case we write s(a) = v1 the initial(source) vertex
and t(a) = v2 the terminal(target) vertex. A path p of a quiver Q is a
sequence of arrows an · · · a2a1 with t(ai) = s(ai+1). So, a quiver Q can
be considered as a category in which V (Q) is the set of all objects and
for each pair v, w ∈ V (Q), HomQ(v, w) is the set of all paths from v to
w.
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Let A be an abelian category. A representation X by objects of
A of a given quiver Q is a covariant functor X : Q −→ A, so a
representation is determined by giving object Xv ∈ A to each vertex
v of Q and a morphism φa : Xv → Xw in A to each arrow a : v →
w of Q. A morphism Ψ between two representations X ,Y is just a
natural transformation between X ,Y as a functor. Indeed, Ψ is a
family (Ψv)v∈V of maps (Ψv : Xv −→ Yv)v∈V such that for each arrow
a : v −→ w, we have φYa Ψv = Ψwφ

X
a or, equivalently, the following

square is commutative:

Xv
φXa //

Ψv

��

Xw
Ψw

��
Yv

φYa // Yw
We denoted by Rep(Q,A) the category of all representations of Q by

objects of A. It can be seen that this category is an abelian category.
If R is an associative ring with identity we write Rep(Q, R) instead of
Rep(Q,Mod-R). It is known that the category Rep(Q, R) is equivalent
to the category of modules over the path algebra RQ, whenever Q is
a finite quiver.

Given a representation X ∈ Rep(Q,A) and for every v ∈ V a sub-
object X ′v ⊆ Xv with φa(X ′v) ⊆ φa(X ′w) for every arrow a : v −→ w,
then we may denote the restriction of φa to X ′v by φ′a, for a : v −→ w,
and we obtain in this way a representation X ′ = (X ′v, φ′a) of Q which
is called a subrepresentation of X .

2.2. Complete cotorsion pair. A pair of classes (F , C) in abelian
category A is a cotorsion pair if the following conditions hold:

1. Ext1
A(F,C) = 0 for all F ∈ F and C ∈ C.

2. If Ext1
A(F,X) = 0 for all F ∈ F , then X ∈ C.

3. If Ext1
A(Y,C) = 0 for all C ∈ C, then Y ∈ F .

We think of a cotorsion pair (F , C) as being “orthogonal with respect
to Ext1

A. This is often expressed with the notation F⊥ = C and F = ⊥C.
A cotorsion pair (F , C) is called complete if for every A ∈ A, there exist
exact sequences

0→ Y → W → A→ 0 and 0→ A→ Y ′ → W ′ → 0,

where W,W ′ ∈ F and Y, Y ′ ∈ C. We note that if S is any class of
objects of A and if S⊥ = B and A = ⊥B, then (A,B) is a cotorsion
pair. We say it is the cotorsion pair cogenerated by S. If there is a set
S that cogenerates (A,B), then we say that (A,B) is cogenerated by a
set.
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2.3. Filtration of Grothendieck category. Let G be a Grothendieck
category. We also assume that G endowed with faithful functor U :
G −→ Set, where Set denotes the category of sets. Given an object
X ∈ G and monomorphisms i : Y → X and i′ : Y ′ → X, we call i and
i′ equivalent if there is a unique isomorphism f : Y → Y ′ such that
i = i′f . Equivalence classes of monomorphisms Y → X are called sub-
object of X and denoted by Y ⊆ X. For any object G ∈ G we denoted
by |G| the cardinality of U(G). We also assume that there exists an
infinite regular cardinal λ such that for each G ∈ G and any set S ⊆ G
with |S| < λ, there is a subobject N ⊆ G such that S ⊆ N ⊆ G and
|N | < λ.

Given an infinite regular cardinal κ. Recall that an object X ∈ G
is called κ-presentable if the functor HomG(X,−) : G → Ab preserves
κ-filtered colimits. An object X ∈ G is called κ-generated whenever
HomG(X,−) preserves κ-filtered colimits of monomorphisms. By our
assumption it is easy to see that

|X| < λ ⇔ X is λ-presentable ⇔ X is λ-generated

Definition 2.1. Let S be a class of objects of G. An object X ∈ G is
called S-filtered if there exists a well-ordered direct system (Xα, iαβ |α <
β ≤ σ) indexed by an ordinal number σ such that

(a) X0 = 0 and Xσ = X,
(b) For each limit ordinal µ ≤ σ, the colimit of system (Xα, iαβ |α <

β ≤ µ) is precisely Xµ, the colimit morphisms being iαµ : Xα →
Xµ,

(c) iαβ is a monomorphism in G for each α < β ≤ σ,
(d) Cokeriαα+1 ∈ S for each α < σ.

The direct system (Xα, iαβ) is then called an S-filtration of X. The
class of all S-filtered objects in G is denoted by Filt-S.

The Hill Lemma is a way of creating a plentiful supply of a module
with a given filtration, where these submodules have nice properties, see
[6] and [5]. In the following we state the Hill Lemma for Grothendieck
category which is known as the generalized Hill Lemma, see [12, The-
orem 2.1].

Theorem 2.2. Let G be as above and κ be a regular infinite cardinal
such that κ ≥ λ. Suppose that S is a set of κ-presentable objects
and X is an object possessing an S-filtration (Xα | α ≤ σ) for some
ordinal σ. Then there is a complete sublattice L of (P(σ),∪,∩) and
` : L → Subobj(X) which assigns to each S ∈ L a subobject `(S) of X,
such that the following hold:

(H1) For each α ≤ σ we have α = {γ | γ < α} ∈ L and `(α) = Xα.
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(H2) If (Si)i∈I is a family of elements of L, then `(∪Si) =
∑
`(Si)

and `(∩Si) = ∩`(Si).
(H3) If S, T ∈ L are such that S ⊆ T , then the object N = `(T )/`(S) ∈

Filt-S.
(H4) For each κ-presentable subobject Y ⊆ X, there is S ∈ L of

cardinal < κ( so `(S) is κ-presentable by (H3)) such that Y ⊆
`(S) ⊆ X.

Let H = {`(S) |S ∈ L}. We call H as the Hill Class of subobjects
of X relative to κ.

Corollary 2.3. If N ∈ H and M is a κ-presentable subobject of
X, then there exists P ∈ H such that N + M ⊆ P and P/N is κ-
presentable.

Proof. By using Theorem 2.2 (H4), we can find S ∈ L of cardinal < κ
such that M ⊆ `(S). Denoting W = `(S), P = N +W and combining
(H2) and (H3) of Theorem 2.2 with [12, Corollary A.5], we observe that
P ∈ H and P/N is κ-presentable. �

3. Complete cotorsion pair on category of
representations of quiver

In this section, we assume that G is a concrete Grothendieck category
as in Subsection 2.3. Our main goal is to introduce two classes of
objects of Rep(Q,G) which forms a complete cotorsion pair. In order
to achieve this aim, we will need to characterize these classes as closure
under filtration of certain of their subobjects. First, we need some
lemmas which play a central role in our study of these filtrations.

The following lemma is known as Eklof’s Lemma(see [4, Theorem
1.2] )

Lemma 3.1. Let R be a ring and C be a class of modules. Let M be a
module possessing a ⊥C-filtration. Then M ∈ ⊥C.

Remark 3.2. Note that the proof of this lemma needs only embeddabil-
ity of each module into an injective one, so we can say that the lemma
holds in any Grothendieck category.

Lemma 3.3. Let κ be an uncountable regular cardinal such that κ >
λ. Let (F , C) be a cotorsion pair in G such that F contains a family
of λ-presentable generators of G. Then the following conditions are
equivalent:

(1) The cotorsion pair (F , C) is cogenerated by a class of κ-presentable
objects in G.
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(2) Every object in F is Fκ-filtered, where Fκ is the class of all
κ-presentable objects in F .

Proof. We refer to [2, Theorem 2.1]. �

Definition 3.4. Let Q = (V,E) be a quiver. Let X ∈ Rep(Q,G). If κ
is a cardinal, then X is called locally κ-presented if Xv is κ-presented
object in G, for each v ∈ V .

Lemma 3.5. Let Q = (V,E) be a quiver and let M ∈ Rep(Q,G).
Let κ be an infinite regular cardinal such that κ ≥ λ and such that
κ ≥ max{|V |, |E|}. Let Xv be a κ-presentable subobject of Mv for
all v ∈ V . Then there exists a locally κ-presented subrepresentation
M′ ⊆M such that Xv ⊆M′

v for all v ∈ V .

Proof. First, we prove the lemma in the case that Q is the quiver

• −→ •. So letM = M1
φ−→M2 such that X1 ⊆M1 and X2 ⊆M2 with

|X1|, |X2| ≤ κ. In a similar manner of [1, Lemma 1] we find κ-presented
M ′

1 such X1 ⊆M ′
1 ⊆M1(Note that G is a Grothendieck category and it

is a complete category). Similarly, if we set Y = X2+φ(M ′
1) we can find

κ-presented M ′
2 such X2 ⊆ M ′

2 ⊆ M2 and clearly, M′ = M ′
1 −→ M ′

2 is
a locally κ-presented subrepresentation of M.

Now we prove the Lemma in the general case. Since any set can
be well-ordered, so we can well order E. Then any segment of E has
cardinality less than or equal to |E|. By our assumption, we can say
that if e ∈ E then |{e′ : e′ ≤ e}| ≤ |E| ≤ κ. By using transfinite
induction on N0 ×E we construct family {Y(n,e) : (n, e) ∈ N0 ×E} of
representations of quiver Q such that satisfy the following conditions:

(i) Y(n,e)
v ⊆Mv for all v ∈ V and all (n, e) ∈ N0 × E

(ii) Xv ⊆ Y(0,e0)
v for all v ∈ V where e0 : v1 −→ v2 is the least

element of E.
(iii) If (m, f) ≤ (n, e) then Y(m,f)

v ⊆ Y(n,e)
v for all v ∈ V .

(iv) |Y(n,e)
v | ≤ κ for all v ∈ V and all (n, e) ∈ N0 × E.

First, we construct Y(0,e0). Consider Mv1 −→ Mv2(correspond to e0 :
v1 −→ v2). Since Xvi ⊆ Mvi for i = 1, 2 then according to the be-
ginning of the proof we can say that there is a locally κ-presented
subrepresentation M ′

v1
−→ M ′

v2
with Xvi ⊆ M ′

vi
for i = 1, 2. If we

define

(R(0,e0)
0 )w =


Xw if w 6= v1, v2,

M ′
v1

if w = v1,

M ′
v2

if w = v2.
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then (R(0,e0)
0 )v ⊆ Mv. So it is easy to get an κ-presented subobject

(R(0,e0)
1 )v generated by (R(0,e0)

0 )v for all v ∈ V (note that our cate-

gory is well-powered and has intersections so generated by (R(0,e0)
0 )v is

meaningful). Now we construct R(0,e0)
2 ⊇ R(0,e0)

1 from (R(0,e0)
1 )v in the

same way we got (R(0,e0)
0 )v from Xv for all v ∈ V , and then R(0,e0)

3 from

R(0,e0)
2 and so on. So we construct Y(0,e0) as the direct union on i ∈ N0

of R(0,e0)
i . Then given (n, e) ∈ N0×E and suppose we have constructed

Y(m,f) for any (m, f) < (n, e) satisfying the four conditions above. Let
e : u1 −→ u2. We define

Y(n,e)
w =

⋃
(m,f)<(n,e)

Y(m,f)
w

whenever w 6= u1, u2 and in similar manner as above find Y(n,e)
ui for

i = 1, 2 such that Y(n,e)
u1 −→ Y(n,e)

u2 is a subrepresentation of Mu1 −→
Mu2 with Y(n,e)

ui ⊆ Mui for i = 1, 2. Note that by by our induction
hypothesis and by the condition imposed on the well-ordering of E we

have |Y(n,e)
v | ≤ κ for all v ∈ V . Moreover, by proceeding in the same

manner we did to get Y(0,e0), we can suppose Y(n,e) is a representation.

Finally set M′
v = ∪(n,e)∈N0×EY

(n,e)
v for all v ∈ V . We see that each

property of the proposition is satisfied. �

Now we introduce two classes of objects of Rep(Q,G) which form a
complete cotorsion pair.

Two classes of objects in Rep(Q,G): Let Q = (V,E) be a quiver
and κ be an infinite cardinal such that κ ≥ λ and κ ≥ max{|V |, |E|}.
For each v ∈ V , let Jv be a class of κ-presented objects in G. Set Pv =
⊥(Jv

⊥). Let C be the class of all locally κ-presented representation X ∈
Rep(Q,G) such that Xv ∈ Pv and F be the class of all representation
Y ∈ Rep(Q,G) such that Y ∈ Pv.

We shall show that (F , C⊥) is a complete cotorsion pair.

Theorem 3.6. Each representation X ∈ F has a C-filtration.

Proof. Clearly (Pv,Pv⊥) is a cotorsion pair which is cogenerated by a
class of κ-presentable objects. So by Lemma 3.3 Xv has a Pκv -filtration
Tv = {Tv,α |α < τv}. Using the Hill Lemma, we obtain the correspond-
ing family Hv for this filtration. Let {Gv,α |α < τv} be a generating set
of Xv. Suppose τ is a cardinal such that τv ≤ τ for all v ∈ V . We will
construct a C-filtration M = {Mα |α ≤ τ} for X with the property
that, for each α < τ the object (Mα)v belongs to Hv and Gv,β ∈ Xv for
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all β < α and all v ∈ V . First, put M0 = 0. If α is limit ordinal and
Mβ is already defined for each β < α, we simply putMα =

⋃
β<αMβ.

Now assume thatMα is defined for dome α < τ so that (Mα)v ∈ Hv

and Gv,β ∈ Xv for all β < α and all v ∈ V . Set Dv,0 = (Mα)v. By
Corollary 2.3 fix some Dv,1 ∈ Hv such that Dv,0 ⊆ Dv,1, Gv,α ∈ Dv,1

and Dv,1/Dv,0 is κ-presentable. Using Lemma 3.5 withM replaced by
X/Mα and Xv replaced by Dv,1/(Mα)v there is a subrepresentation
X ′1 of X such that Mα ⊆ X ′1 and X ′1/Mα is locally κ-presented. So
there is a subobject Uv ⊆ (X ′1)v of cardinality ≤ κ such that (X ′1)v =
Dv,1 + 〈Uv〉. Again using Corollary 2.3 there is an object Dv,2 ∈ Hv

such that (X ′1)v = Dv,1 + 〈Uv〉 ⊆ Dv,2 and Dv,2/Dv,1 is κ-presented.
If we repeat this process, we obtain a countable chain (X ′i | i ∈ N) of
subrepresentations of X as well as a countable chain (Dv,i | i ∈ N) of
subobjects of Xv for all v ∈ V . Now, we defineMα+1 =

⋃∞
i=1X ′i . Then

Mα+1 is a subrepresentation of X satisfying (Mα+1)v =
⋃∞
i=1Dv,i for

all v ∈ V . By Theorem 2.2 (H2) and (H3) we can say that (Mα+1)v ∈
Hv and (Mα+1)v/(Mα)v ∈ Pκv . Therefore Mα+1/Mα ∈ C. Note that
since Gv,α ∈ (Mα+1)v for all v ∈ V and α < τ , we have (Mτ )v = Xv
so (Mα |α ≤ τ) is a C-filtration of X . �

Theorem 3.7. Let Q = (V,E) be a quiver. Let F and C be as above.
Suppose that F contains a generator of Rep(Q,G). Then (F , C⊥) is a
complete cotorsion pair.

Proof. By Theorem 3.6 we have F ⊆ Filt-C and Filt-C ⊆ F by Lemma
3.1 and Remark 3.2. Hence F =Filt-C. Therefore the completeness
of pair (F , C⊥) follows as [8, Corollary 6.6] because F contains a a
generator of Rep(Q,G). �

Remark 3.8. Let G be as above and (Gop,Mod-R) denote the category
of all contravariant functors F : G → Mod-R. There exists a quiver
QG = (V,E) such that every functor F ∈ (Gop,Mod-R) can be regarded
as an object of Rep(QG, R). Indeed, QG defines as follows: its vertices
are all X ∈ G and arrows, X → Y , are all morphisms in HomG(X, Y )
with a set of relation I consisting of all commutative diagrams

Y

g
��

X
gof //

f
>>~~~~~~~~
Z

QG is called quiver associated to G. So with this point of view, we
can define a locally κ-presented functor. A functor T ∈ (Gop,Mod-R)
corresponds to a representation T ∈ Rep(QG, R) is said to be locally
κ-presented if Tv is κ-presented object in G for all v ∈ V .



LOCALLY κ-PRESENTED REPRESENTATIONS OF QUIVER 89

Remark 3.9. We denote a partially ordered set, poset for short, by X.
Any poset (X,≤) carries a natural topological structure by defining the
open sets to be the subsets U ⊆ X such that if u ∈ U and u′ ≥ u then
u′ ∈ U . With this topology, we can consider the category of sheaves
over X with values in an abelian category A, denoted by ShXA.

On the other hand, a poset X also can be considered as a quiver with
the set I of all commutativity relations: its vertices are the points
x ∈ X and arrows, x → y, are the pairs x < y, and I is the set
of all relations of X of the form a − a′ in which a and a′ are paths
with same sources and targets such that one of them has length at
least 2. Let Rep(X,A) denote the full subcategory of the category of
representations of X in A, consisting of representations M such that
Mρ : Mv −→Mw is zero, for all ρ ∈ I. If we consider G as above then
it is known that there is an equivalence of categories between ShXG
and Rep(X,G), see Sec. 1 of [9] for a proof of this fact when X is finite
and Proposition 1 of [10] when X is infinite. In fact, every sheaf F
on X corresponds to an object of Rep(XI , R) in the following way: for
x ∈ X, let Fx be the stalk of F over X and for x < y let Fxy : Fx → Fy
be the restriction map. Note that in similar way we can define locally
κ-presented sheaves over X with values in G.

Corollary 3.10. Let QG be a quiver associated to G (resp. X be a
poset), and let T ∈ (Gop,Mod-R)(resp. S ∈ ShXG)). Let κ be an
infinite cardinal such that κ > |V |, κ > |R|, κ > | ⊕A,B∈G HomG(A,B)|
(resp. κ > |X|). Let Yv ⊆ Tv (resp. Yx ⊆ Sx) be a subobject with |Yv| ≤
κ (resp. |Yx| ≤ κ) for all v ∈ V . Then there is a locally κ-presented
subfunctor T ′ ⊆ T (resp. locally κ-presented subsheaf S ′ ⊆ S) such
that Yv ⊆ T ′v (resp. Yx ⊆ S ′x) for all v ∈ V .

Notation:

• Let QG be a quiver associated to G, and let κ be an infinite
cardinal such that κ > |V |, κ > |R|, κ > | ⊕X,Y ∈G HomG(X, Y )|
for all v ∈ V . For each v ∈ V , let Pv be a class of κ-presented
objects in G. Set Pv = ⊥(Pv

⊥). Let L be the class of all locally
κ-presented functor T ∈ (Gop,Mod-R) such that Tv ∈ Pv and D
be the class of all functors R ∈ (Gop,Mod-R) such that R ∈ Pv.
• Let X be a poset and let κ be an infinite cardinal such that
κ > |X|. For each x ∈ X, let Px be a class of κ-presented
objects in G. Set Px = ⊥(Px

⊥). Let U be the class of all locally
κ-presented sheaf S ∈ ShXG such that Sx ∈ Pv and W be the
class of all sheaves R ∈ ShXG such that R ∈ Pv.
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Corollary 3.11. Each functor T ∈ D (resp. sheaf S ∈ W) has an
L-filtration (resp. U-filtration).

In the following we obtain some interesting result by considering some
nice sets as Pv.

Example 3.12. (a) Let Q = (V,E) be a quiver and consider the
category Rep(Q, R). Let κ be an infinite cardinal such that
κ ≥ |V | and κ ≥ |R|. Set Jv = {R}, so Pv = ⊥(Jv

⊥) is the class
of all projective R-modules for all v ∈ V . Hence F is the class
of locally projective representations in Rep(Q, R). By Theorem
3.6 we can say that every locally projective representation in
Rep(Q, R) has a C-filtration where C is the class of all locally
κ-presented projective representations.

(b) Let X be a poset and κ be an infinite cardinal such that κ ≥
|V | and κ ≥ |R| and κ ≥ |X|. Set P κ

v of representatives of
isomorphism classes of flat R-modules of cardinality less than
κ. Then by Lemma 3.1 and [1, Lemma 1] Pv is the class of all
flat R-modules. By Corollary 3.11 we can say that every locally
flat sheaf over X has a U -filtration where U is the class of all
locally κ-presented flat sheaves over X.

(c) Let Q = (V,E) be a quiver and κ be an infinite cardinal such
that κ ≥ |V | and κ ≥ |R|. Let A be a class of objects of Mod-R
andAκv be a class of κ-presented R-modules inA for each v ∈ V .
We denote by Cdw

A (Q) the subcategory of Rep(Q, R) consist of
all representation X in Rep(Q, R) such that Xv ∈ C(A) where
C(A) is a class of all complexes consisting of X• ∈ C(R) such
that X i ∈ A. Now let (A,B) be a complete cotorsion pair.
By [2, Theorem 3.1] (C(A),C(A)⊥) is a cotorsion pair which is
cogenerated by a set. Let S be a set of objects of C(R) such
that S⊥ = C(A)⊥. Set Pv = ⊥(S⊥), therefore F = Cdw

A (Q)
and by Theorem 3.6 each representation of F has a C-filtration
where C is the class of all representations X in Rep(Q, R) such
that Xv ∈ C(Aκv) for each vertex, where C(Aκv) is a class of all
complexes Y • ∈ C(R) such that Y i ∈ Aκv .
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12. J. Šťov́ıček, Deconstructibility and Hill lemma in Grothendieck categories, Fo-
rum Math. 25 (2013), 193-219.

P. Bahiraei
Department of Pure Mathematics, Faculty of Mathematical Sciences,, University
of Guilan, P.O. Box 41335-19141, Rasht, Iran.
Email:bahiraeiguilan.ac.ir


	1. introduction
	2. preliminaries
	2.1. The category of representation of quiver:
	2.2. Complete cotorsion pair
	2.3. Filtration of Grothendieck category

	3. Complete cotorsion pair on category of representations of quiver
	References

