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ON GRADED 2-ABSORBING PRIMARY
HYPERIDEALS OF A GRADED MULTIPLICATIVE

HYPERRING

P. GHIASVAND∗

Abstract. Let G be a group with identity e and R be a multi-
plicative hyperring. We introduce and study the notions of graded
2-absorbing and graded 2-absorbing primary hyperideals of a graded
multiplicative hyperring R which are generalizations of prime hy-
perideals. We present basic properties and characterizations of
these graded hyperideals and homogeneous components. Among
various results, we prove that the intersection of two graded prime
hyperideals is a graded 2-absorbing hyperideal.

1. Introduction

Algebraic hyperstructures are a suitable generalization of classical
algebraic structures. In a classical algebraic structure, the composition
of two elements is an element, while in an algebraic hyperstructure,
the composition of two elements is a set. Hyperstructures have many
applications to several sectors of both pure and applied mathematics,
for instance in geometry, lattices, cryptography, automata, graphs and
hypergraphs, fuzzy set, probability and rough set theory and so on (see
[9]). The hypergroup notion was introduced in 1934 by a French math-
ematician F. Marty [20], at the 8th Congress of Scandinavian Mathe-
maticians. The notion of hyperrings was introduced by M. Krasner in
1983, where the addition is a hyperoperation, while the multiplication
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is an operation [17]. Prime, primary, and maximal subhypermodules
of a hypermodule in the sense of krasner hyperring R were discussed
by M. M. Zahedi and R. Ameri in [30]. R. Ameri et al. in [2] intro-
duced Krasner (m,n)-hyperrings and in [3] studied prime and primary
subhypermodules of (m,n) hypermodules. Also, K. Hila et al. in [16]
introduced and studied (k, n)-absorbing hyperideals in Krasner (m,n)-
hyperrings. The notion of multiplicative hyperrings is an important
class of algebraic hyperstructures which is a generalization of rings,
initiated the study by Rota in 1982, where the multiplication is a hy-
peroperation, while the addition is an operation [26]. Procesi and Rota
introduced and studied in brief the prime hyperideals of multiplicative
hyperrings [22, 23, 24] and this idea is further generalized in a paper by
Dasgupta [11]. R. Ameri et al. in [1] described multiplicative hyperring
of fractions and coprime hyperideals. Later on, many researches have
observed generalizations of prime hyperideals in multiplicative hyper-
rings [4, 5, 27, 29]. The principal notions of algebraic hyperstructure
theory can be found in [8, 9, 10, 25]. Furthermore, the study of graded
rings arises naturally out of the study of affine schemes and allows
them to formalize and unify arguments by induction [28]. However,
this is not just an algebraic trick. The concept of grading in algebra,
in particular graded modules is essential in the study of homological
aspect of rings. Much of the modern development of the commutative
algebra emphasizes graded rings. Graded rings play a central role in al-
gebraic geometry and commutative algebra. Gradings appear in many
circumstances, both in elementary and advanced level. In recent years,
rings with a group-graded structure have become increasingly impor-
tant and consequently, the graded analogues of different concepts are
widely studied (see [12, 13, 18, 21]). Theory of greded hyperrings can
be considered as an extension theory of hyperrings. The notion of 2-
absorbing ideals over commutative rings which is a generalization of
prime ideals has been introduced and investigated by A. Badawi in
[6]. In this paper, we define the notions of G-graded multiplicative
hyperrings and graded hyperideals of graded multiplicative hyperrings,
also we intend to study extensively graded prime(primary) hyperide-
als of a graded multiplicative hyperring (R,+, ◦) with absorbing zero
and prove some results regarding them. In the last section, we define
and study the notions of graded 2-absorbing and graded 2-absorbing
primary hyperideals of a graded multiplicative hyperring R which are
generalizations of graded prime hyperideals. We give some results and
several properties of them. For example, we show that every graded
2-absorbing hyperideal is a graded 2-absorbing primary hyperideal, but
the converse is not true in general. Also, we prove that every graded
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primary hyperideal of a graded multiplicative hyperring R is a graded
2-absorbing primary hyperideal of R.

2. Preliminaries

Definition 2.1. [26] Let R be a non-empty set. By P ∗(R), we mean
the set of all non-empty subset of R. Let ◦ be a hyperoperation from
R × R to P ∗(R). Rota called (R,+, ◦) a multiplicative hyperring, if it
has the following properties:

(i) (R,+) is an abelian group;
(ii) (R, ◦) is a hypersemigroup;

(iii) For all a, b, c ∈ R, a◦(b+c) ⊆ a◦b+a◦c and (b+c)◦a ⊆ b◦a+c◦a;
(iv) a ◦ (−b) = (−a) ◦ b = −(a ◦ b).

If in (iii) we have equalities instead of inclusions, then we say that the
multiplicative hyperring is strongly distributive.

Here, we mean a hypersemigroup by a non-empty set R with an
associative hyperoperation ◦, i.e.,

a ◦ (b ◦ c) =
⋃

t∈(b◦c)

a ◦ t =
⋃

s∈(a◦b)

s ◦ c = (a ◦ b) ◦ c

for all a, b, c ∈ R.
Further, if R is a multiplicative hyperring with a ◦ b = b ◦ a for all

a, b ∈ R, then R is called a commutative multiplicative hyperring.

Example 2.2. [23] Let K be a field and V be a vector space over K.
If for all a, b ∈ V we denote by (a, b) the subspace generated by the
subset {a, b} of V , then we can consider the following hyperoperation
on V : for all a, b ∈ V , a ◦ b = (a, b). It follows that (V,+, ◦) is a
multiplicative hyperring, which is not strongly distributive.

Definition 2.3. [23] (a) Let (R,+, ◦) be a multiplicative hyperring
and S be a non-empty subset of R. Then S is said to be a subhyperring
of R if (S,+, ◦) is itself a multiplicative hyperring.

(b) A subhyperring I of a multiplicative hyperring R is a hyperideal
of (R,+, ◦) if I − I ⊆ I and for all x ∈ I, r ∈ R; x ◦ r ∪ r ◦ x ⊆ I.

Definition 2.4. [11] Let C be the class of all finite products of elements
of a multiplicative hyperring R i.e., C = {r1 ◦ r2 ◦ · · · ◦ rn : ri ∈ R, n ∈
N} ⊆ P ∗(R). A hyperideal I of R is said to be a C-ideal of R if for
any A ∈ C, A ∩ I 6= ∅, then A ⊆ I.

Definition 2.5. [10] (a) A proper hyperideal M of a multiplicative
hyperring R is maximal in R, if for any hyperideal I of R, M ⊂ I ⊆ R,
then I = R.
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(b) A proper hyperideal P of a multiplicative hyperring R is said to
be a prime hyperideal of R, if for any a, b ∈ R, a ◦ b ⊆ P , then a ∈ P
or b ∈ P .

(c) A proper hyperideal Q of a multiplicative hyperring R is said to
be a primary hyperideal of R, if for any a, b ∈ R, a◦ b ⊆ Q, then a ∈ Q
or bn ⊆ Q for some n ∈ N.

Definition 2.6. [11] Let I be a hyperideal of a multiplicative hyperring
(R,+, ◦). The intersection of all prime hyperideals of R containing
I is called the radical of I, denoted by Rad(I). If the multiplicative
hyperring R does not have any prime hyperideal containing I, we define
Rad(I) = R. Also, the hyperideal {r ∈ R : rn ⊆ I for some n ∈ N}
will be designated by D(I) and note that the inclusion D(I) ⊆ Rad(I)
always holds. In addition, if I is a C-ideal of R, other inclusion holds
by [?, 18].

Definition 2.7. [10] Let (R,+, ◦) and (S,+, ◦) be two multiplicative
hyperrings the function f : R→ S is called a homomorphism, if
(i) for all a, b ∈ R, f(a+ b) = f(a) + f(b),
(ii) for all a, b ∈ R, f(a ◦ b) ⊆ f(a) ◦ f(b).

In particular, f is called good homomorphism in case f(a ◦ b) =
f(a) ◦ f(b). The kernel of a homomorphism is defined as Ker(f) =
f−1(〈0〉) = {r ∈ R : f(r) ∈ 〈0〉} and note that f(r) may not be a zero
element.

Throughout this paper, we assume that all hyperrings are commu-
tative multiplicative hyperrings with absorbing zero, i.e., 0 ∈ R such
that x = 0 + x and 0 ∈ x · 0 = 0 · x for all x ∈ R.

3. Graded hyperrings and properties graded hyperideals

In this section, first we study the concept of graded multiplicative hy-
perrings. Then, several properties of graded prime and graded primary
hyperideals in a graded multiplicative hyperring are given.

Definition 3.1. [15] Let G be a group with identity element e. A
multiplicative hyperring (R,G) is called a G-graded multiplicative hy-
perring, if there exists a family {Rg}g∈G of additive subgroups of R in-
dexed by the elements g ∈ G such that R =

⊕
g∈GRg and RgRh ⊆ Rgh

for all g, h ∈ G where RgRh =
⋃
{rg ◦ rh : rg ∈ Rg, rh ∈ Rh}. For

simplicity, we will denote the graded multiplicative hyperring (R,G)
by R.

An element of a graded hyperring R is called homogeneous if it be-
longs to

⋃
g∈GRg and this set of homogeneous elements is denoted by
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h(R). If x ∈ Rg for some g ∈ G, then we say that x is of degree g,
and it is denoted by xg. If x ∈ R, then there exist unique elements
xg ∈ h(R) such that x =

∑
g∈G xg.

In fact, every hyperring is trivially a G-graded hyperring by letting
Re = R and Rg = 0 for all g 6= e.

Lemma 3.2. If R =
⊕

g∈GRg is a graded multiplicative hyperring,
then Re is a subhyperring of R where e is the identity element of group
G.

Proof. As ReRe ⊆ Re, so for any xe, ye ∈ Re we have xe ◦ ye ⊆ ReRe ⊆
Re. Therefore Re is closed under multiplicative and thus is a subhy-
perring of R. �

Example 3.3. Let (R,+, ·) be a ring and x1, . . . , xd indeterminate over
R. For m = (m1, . . . ,md) ∈ Nd, let Xm = xm1

1 . . . xmd
d . Consider the

polynomial ring S = R[x1, . . . , xd]. Assume that A ∈ P ∗(S) such that
|A| ≥ 2. Then there exists a multiplicative hyperring with absorbing
zero (SA,+, ◦), where SA = S and for any a, b ∈ S, a ◦ b = {aα · b : α ∈
A}.
(a) Let SA = Z[x1, . . . , xd] where A = {2, 3,−1} and G = (Z,+) be
the integers group. Then SA =

⊕
Sn is a G- graded multiplicative

hyperring such that Sn = {
∑

m∈Nd rmX
m | rm ∈ Z,m1 + · · ·+md = n}.

Notice that S0 = R = Z and deg xi = 1 for all i.
(b) Let SA = Z[x1, . . . , xd] where A = {2, x1, 4} and G = (Z,+) be the
integers group. We know that Sn = {

∑
m∈Nd rmX

m | rm ∈ Z,m1 +
· · · + md = n} are all subgroups of (SA,+) and SA =

⊕
Sn, but we

can easily to see that S1S1 * S2, then (SA,+, ◦) is not a G- graded
multiplicative hyperring.

Example 3.4. In Definition 3.14, let G = (Z2,+) be the cyclic group
of order 2 and R = {a, b, c, d}. Consider the multiplicative hyperring
(R,+, ◦), where operation + and hyperoperation ◦ are defined on R as
follows:

+ a b c d
a a b c d
b b a d c
c c d a b
d d c b a

◦ a b c d
a {a} {a} {a} {a}
b {a} {c, d} {b, d} {a, d}
c {a} {b, d} {c, d} { a, d}
d {a} {a, d} {a, d} {a}

It is easy to see that R0 = {a, c}, R1 = {a, b} and R2 = {a, d} are all
non-trivial subgroups of (R,+). We can show that R is not a Z2-graded
multiplicative hyperring.
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Definition 3.5. Let R =
⊕

g∈GRg be a graded multiplicative hyper-
ring. A subhyperring S of R is called a graded subhyperring of R,
if S =

⊕
g∈G(S ∩ Rg). Equivalently, S is graded if for every element

f ∈ S, all the homogeneous components of f (as an element of R) are
in S.

Example 3.6. Let RA = Z[x, y] with A = {−3, 4} and G = (Z,+)
be the integers group. Then the polynomial multiplicative hyperring
RA = Z[x, y] is the Z-graded multiplicative hyperring. Consider the
subhyperring S = Z[x3, x2 + y3] of RA = Z[x, y]. Then it is easy to
verify that S = Z[x3, x2 +y3] is a graded subhyperring of RA = Z[x, y],
where deg x=3 and deg y=2.

Definition 3.7. Let I be a hyperideal of a graded multiplicative hy-
perring R. Then I is a graded hyperideal, if I =

⊕
g∈G(I ∩ Rg). For

any a ∈ I and for some rg ∈ h(R) that a =
∑

g∈G rg, then rg ∈ I ∩ Rg

for all g ∈ G.

Example 3.8. Let R = M2(Z5) the ring of all 2 × 2 matrices with
entries from the field (Z5,+, ·). For all x, y ∈ R we define the hyperop-
eration x◦y = {2xy, 3xy}. Then (R,+, ◦) is a multiplicative hyperring,
which is not strongly distributive. Let G = Z4 the group of integers
modulo 4. Then, multiplicative hyperring (R,+, ◦) is G-graded by

R0 =

(
a 0
0 b

)
, R2 =

(
0 c
d 0

)
, R1 = R3 =

(
0 0
0 0

)
for all a, b, c, d ∈ Z5.

Consider the hyperideal I =

〈(
1 1
1 1

)〉
of multiplicative hyper-

ring (R,+, ◦). Note that,

(
1 1
1 1

)
∈ I such that

(
1 1
1 1

)
=

(
1 0
0 1

)
+(

0 1
1 0

)
. If I is a graded hyperideal of multiplicative hyperring (R,+, ◦),

then

(
1 0
0 1

)
∈ I which is a contradiction. So I is not a graded hyper-

ideal of multiplicative hyperring (R,+, ◦).

Lemma 3.9. [15] Let I and J be graded hyperideals of a graded mul-
tiplicative hyperring R. Then

(i) I ∩ J is a graded hyperideal of R.
(ii) IJ = ∪{

∑n
i=1 ai ◦ bi : ai ∈ I, bi ∈ Jand n ∈ N} is a graded

hyperideal of R.
(iii) I ∪ J is a graded hyperideal of R if and only if I ⊆ J or J ⊆ I.
(iv) I + J is a graded hyperideal of R.
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Definition 3.10. Let I be a graded hyperideal of a graded multiplica-
tive hyperring (R,+, ◦). The intersection of all graded prime hyper-
ideals of R containing I is called the graded radical of I, denoted by
Grad(I). If the graded multiplicative hyperring R does not have any
graded prime hyperideal containing I, we define Grad(I) = R.

Let I be a graded hyperideal of a graded multiplicative hyperring R.
We define D(I) = {r ∈ R : for any g ∈ G, r

ng
g ⊆ I for some ng ∈ N}.

It is clear that D(I) is a graded hyperideal of R.

Definition 3.11. Let R be a graded multiplicative hyperring and C
be the class of all finite products of homogeneous elements of R i. e.
C = {r1 ◦ r2 ◦ · · · ◦ rn : ri ∈ h(R), n ∈ N} ⊆ P ∗(h(R)). A graded
hyperideal I of R is said to be a Cgr-ideal of R if for any A ∈ C,
A ∩ I 6= ∅, then A ⊆ I.

Theorem 3.12. [15] Let I =
⊕

g∈G Ig =
⊕

g∈G(I∩Rg) be a graded hy-

perideal of a commutative graded multiplicative hyperring R =
⊕

g∈GRg.

Then D(I) ⊆ Grad(I). The equality holds when I is a Cgr-ideal of R.

Definition 3.13. Let R =
⊕

g∈GRg and S =
⊕

g∈G Sg be two graded
multiplicative hyperring. The function f : R → S is called a graded
homomorphism, if

(i) for any a, b ∈ R, f(a+ b) = f(a) + f(b),
(ii) for any a, b ∈ R, f(a ◦ b) ⊆ f(a) ◦ f(b),

(iii) f(Rg) ⊆ Sg for any g ∈ G.

In particular, f is called graded good homomorphism in case f(a ◦
b) = f(a) ◦ f(b). The kernel of a graded homomorphism is defined as
Ker(f) = f−1(〈0〉) = {r ∈ R : f(r) ∈ 〈0〉} and note that f(r) may not
be a zero element.

If Q is a graded hyperideal of S and f : R→ S is a graded good ho-
momorphism, then f−1(Q) is a graded hyperideal of R. If I is a graded
hyperideal of R and f : R→ S is an onto graded good homomorphism,
then f(I) is a graded hyperideal of S.

Definition 3.14. (a) A proper graded hyperideal I of a graded mul-
tiplicative hyperring R is called a graded prime hyperideal of R if, for
any ag, bh ∈ h(R), ag ◦ bh ⊆ I, then ag ∈ I or bh ∈ I.
(b) A proper graded hyperideal I of a graded multiplicative hyperring
R is called a graded primary hyperideal of R if, for any ag, bh ∈ h(R),
ag ◦ bh ⊆ I, then ag ∈ I or bnh ∈ I for some n ∈ N.

Lemma 3.15. Let I be a graded prime hyperideal of a graded multi-
plicative hyperring R and J be a subset of h(R). For any ag ∈ h(R),
agJ ⊆ I and ag 6∈ I imply that J ⊆ I.
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Proof. Let agJ ⊆ I and ag 6∈ I where ag ∈ h(R). Hence we have
agJ =

⋃
bh∈J(ag ◦ bh) ⊆ I. Let bh ∈ J . Then ag ◦ bh ⊆ agJ ⊆ I. Since

I is a graded prime hyperideal of R and ag 6∈ I, we have bh ∈ I. Thus
J ⊆ I. �

Lemma 3.16. Let I be a graded primary hyperideal of a graded mul-
tiplicative hyperring R and J be a subset of h(R). For any ag ∈ h(R),
agJ ⊆ I and ag 6∈ I imply that J ⊆ Grad(I) (or agJ ⊆ I and J * I
imply that ag ∈ Grad(I)).

Proof. Let agJ ⊆ I and ag 6∈ I where ag ∈ h(R). Hence we have
agJ =

⋃
bh∈J(ag ◦ bh) ⊆ I. Let bh ∈ J . Then ag ◦ bh ⊆ agJ ⊆ I. Since I

is a graded primary hyperideal of R and ag 6∈ I, we have bh ∈ Grad(I).
Thus J ⊆ Grad(I). The proof of the other argument is similar. �

Proposition 3.17. Let I be a graded prime hyperideal of a graded
multiplicative hyperring R and A, B be subsets of h(R). If AB ⊆ I,
then A ⊆ I or B ⊆ I.

Proof. Suppose that AB ⊆ I and A * I. Hence there exists ag ∈ A
such that ag 6∈ I. Let bh ∈ B. Thus ag ◦ bh ⊆ AB ⊆ I, then bh ∈ I
because I is a graded prime hyperideal of R and ag 6∈ I. Hence B ⊆ I,
as needed. �

Definition 3.18. Let I be a graded hyperideal of a graded multiplica-
tive hyperring R and P be a graded prime hyperideal such that I ⊆ P .
If there is no graded prime hyperideal P ′ such that I ⊆ P ′ ⊆ P , then P
is called minimal graded prime hyperideal of I. The set of all minimal
graded prime hyperideals of I is denoted by Mingr(I).

Proposition 3.19. If P is a graded prime hyperideal of a graded mul-
tiplicative hyperring R, then Mingr(P ) = P .

Proof. The proof is clear. �

4. Graded 2-absorbing primary hyperideals

In this section, we introduce and study graded 2-absorbing primary
hyperideals of a graded multiplicative hyperring and investigate the
properties of this notion in commutative graded multiplicative hyper-
rings.

Definition 4.1. A proper graded hyperideal I of a graded multiplica-
tive hyperring R is called a graded 2-absorbing hyperideal of R, if for
any ag, bh, ck ∈ h(R), ag ◦ bh ◦ ck ⊆ I, then ag ◦ bh ⊆ I or bh ◦ ck ⊆ I or
ag ◦ ck ⊆ I.
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Example 4.2. In the graded multiplicative polynomial hyperringRA =
Z[x, y] with A = {2, 3}, the graded hyperideal J = 〈6, 2x, 2y, xy〉 is a
graded 2-absorbing hyperideal of RA which is not a 2-absorbing hy-
perideal. To see this, let f1 = 3, f2 = x + 2 and f3 = y + 2. Then
f1 ◦ f2 ◦ f3 = (

⋃
a∈A(f1 · a · f2)) ◦ f3 =

⋃
b∈A(

⋃
a∈A(f1 · a · f2)) · b · f3 =

{12xy + 24x + 24y + 48, 18xy + 36x + 36y + 72, 18xy + 36x + 24y +
48, 27xy + 54x + 36y + 72} ⊆ J , but f1 ◦ f2 =

⋃
a∈A(f1 · a · f2) =

{6x+12, 9x+18} * J , f1◦f3 =
⋃

a∈A(f1 ·a·f3) = {6y+12, 9y+18} * J
and f2◦f3 =

⋃
a∈A(f2·a·f3) = {2xy+4x+4y+8, 3xy+6x+6y+12} * J .

Thus J is not a 2-absorbing hyperideal of RA.

Example 4.3. Consider the Z-graded multiplicative polynomial hy-
perring RA = R[x, y, z] with A = {−4, 1, 5}. Then J = 〈xyz, x2y2〉 is
a graded hyperideal of RA generated by homogeneous elements xyz,
x2y2. Since

x ◦ y ◦ z =
⋃
b∈A

(
⋃
a∈A

(x · a · y)) · b · z

= {xyz,−4xyz, 5xyz, 16xyz,−20xyz, 25xyz} ⊆ J

but x ◦ y = {xy,−4xy, 5xy} * J , x ◦ z = {xz,−4xz, 5xz} * J and
y ◦ z = {yz,−4yz, 5yz} * J we conclude that J is not a graded 2-
absorbing hyperideal of RA.

Definition 4.4. A proper graded hyperideal I of a graded multiplica-
tive hyperring R is called a graded 2-absorbing primary hyperideal of
R, if for any ag, bh, ck ∈ h(R), ag ◦ bh ◦ ck ⊆ I, then ag ◦ bh ⊆ I or
bh ◦ ck ⊆ Grad(I) or ag ◦ ck ⊆ Grad(I).

It is clear that every graded 2-absorbing hyperideals is a graded 2-
absorbing primary hyperideal. The converse is not true, as is shown in
the following example.

Example 4.5. Let G = (Z2,+) be the cyclic group of order 2, R0 = Z
and R1 = iZ. Then (R,+, ◦) = ZA[i] = {a + bi | a, b ∈ Z} with
A = {−1, 2} is a graded multiplicative hyperring, where ZA = Z and
for any x, y ∈ ZA, x ◦ y = {x · a · y : a ∈ A}. Let I = 〈12〉 ⊕ 〈0〉.
Then I is a graded hyperideal of R and a graded 2-absorbing primary
hyperideal of R. Although I is not a graded 2-absorbing hyperideal of
R. Since, for all α, β ∈ A we have (2, 0) ◦ (2, 0) ◦ (3i, 0) = ((2, 0) · α ·
(2, 0)) ·β · (3i, 0) = {12i,−24i, 48i} ⊆ I but (2, 0)◦ (2, 0) = {−2, 8} * I
and (2, 0) ◦ (3i, 0) = {−6i, 12i} * I.

Proposition 4.6. Every graded primary hyperideal of a graded mul-
tiplicative hyperring R is a graded 2-absorbing primary hyperideal of
R.
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Proof. Let I be a graded primary hyperideal of R. Suppose that ag ◦
bh ◦ ck ⊆ I and ag ◦ bh * I where ag, bh, ck ∈ h(R). Since I is a
graded primary hyperideal of R, then by Lemma 3.16, ck ∈ Grad(I).
Since Grad(I) is a graded hyperideal of R, so ag ◦ ck ⊆ Grad(I) and
bh ◦ ck ⊆ Grad(I). Thus I is a graded 2-absorbing primary hyperideal
of R. �

Example 4.7. In the graded multiplicative hyperring R = ZA[i] with
A = {2, 3}, the graded hyperideal J = 〈6〉 ⊕ 〈0〉 of R is a graded
2-absorbing primary hyperideal, but it is not a graded primary hyper-
ideal. Since, for all α ∈ A we have (2, 0) ◦ (3i, 0) = (2, 0) · α · (3i, 0) =
{12i, 18i} ⊆ J but (2, 0) 6∈ J and (3i, 0) 6∈ Grad(J). This example
shows that a graded 2-absorbing primary hyperideal of a graded mul-
tiplicative hyperring R is not necessarily a graded primary hyperideal
of R.

Theorem 4.8. Let I be a graded hyperideal of a graded multiplicative
hyperring R. If Grad(I) is a graded prime hyperideal of R, then I is a
graded 2-absorbing primary hyperideal of R.

Proof. Suppose that ag ◦ bh ◦ ck ⊆ I and ag ◦ bh * I where ag, bh, ck ∈
h(R). Since R is a commutative graded hyperring, we have (ag◦ck)(bh◦
ck) = ag ◦ bh ◦ c2k ⊆ I ⊆ Grad(I), since Grad(I) is a graded prime
hyperideal ofR, so ag◦ck ⊆ Grad(I) or bh◦ck ⊆ Grad(I) by Proposition
3.17. Hence I is a graded 2-absorbing primary hyperideal of R. �

Theorem 4.9. Let P be a graded hyperideal of a graded multiplicative
hyperring R and I1, I2, . . . In be 2-absorbing primary hyperideals of R
such that Grad(Ii) = P for all i = 1, 2, . . . , n. Then

⋂n
i=1 Ii is a graded

2-absorbing primary hyperideal and Grad(
⋂n

i=1 Ii) = P .

Proof. Let I =
⋂n

i=1 Ii. Clearly,

Grad(I) = Grad(
n⋂

i=1

Ii) =
n⋂

i=1

Grad(Ii) = P.

Suppose that ag ◦ bh ◦ ck ⊆ I and ag ◦ bh * I where ag, bh, ck ∈ h(R).
Hence ag ◦ bh * Ii for some i. Since Ii is a graded 2-absorbing primary
hyperideal of R and ag ◦ bh ◦ ck ⊆ I ⊆ Ii, then ag ◦ ck ⊆ Grad(Ii) = P
or bh ◦ ck ⊆ Grad(Ii) = P . Thus we conclude ag ◦ ck ⊆ Grad(I) or
bh ◦ ck ⊆ Grad(I). Thus I is a graded 2-absorbing primary hyperideal
of R. �

Proposition 4.10. If P1 and P2 are graded prime hyperideals of a
graded multiplicative hyperrring R, then P1∩P2 is a graded 2-absorbing
hyperideal of R.
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Proof. Let ag, bh, ck ∈ h(R) such that ag ◦ bh ◦ ck ⊆ P1 ∩ P2, ag ◦ bh *
P1 ∩ P2 and bh ◦ ck * P1 ∩ P2. Then ag, bh, ck 6∈ P1 ∩ P2. Assume
that ag ∈ P1 ∩ P2, then ag ∈ P1 and ag ∈ P2. Since P1 and P2 are
graded hyperideals of R, we have ag ◦ bh ⊆ P1 and ag ◦ bh ⊆ P2. Then
ag ◦bh ⊆ P1∩P2 which is a contradiction. Thus ag 6∈ P1∩P2. Similarly,
bh, ck 6∈ P1 ∩ P2. We consider three cases.

Case1: Suppose that ag 6∈ P1 and ag 6∈ P2. Since ck 6∈ P1 ∩ P2, we
have three cases again. Assume that ck 6∈ P1 and ck 6∈ P2. Since P1 is
a graded prime hyperideal of R and ag ◦ ck * P1, ag ◦ bh ◦ ck ⊆ P1, then
bh ∈ P1 by Lemma 3.15. Hence ag ◦ bh ⊆ P1. Similarly, Since P2 is a
graded prime hyperideal of R and ag ◦ ck * P2, ag ◦ bh ◦ ck ⊆ P2, then
bh ∈ P2 by Lemma 3.15. Thus ag ◦ bh ⊆ P2. So ag ◦ bh ⊆ P1 ∩P2 which
is a contradiction. Then ck ∈ P1 or ck ∈ P2. Now, assume that ck 6∈ P1

and ck ∈ P2. Since P1 is a graded prime hyperideal ofR and ag◦ck * P1,
ag ◦ bh ◦ ck ⊆ P1, then bh ∈ P1 by Lemma 3.15. Thus bh ◦ ck ⊆ P1.
Since ck ∈ P2, then bh ◦ ck ⊆ P2 and so bh ◦ ck ⊆ P1 ∩ P2 which is a
contradiction. Finally, assume that ck 6∈ P2 and ck ∈ P1. Since P2 is a
graded prime hyperideal of R and ag ◦ ck * P2, ag ◦ bh ◦ ck ⊆ P2, then
bh ∈ P2 and so bh ◦ ck ⊆ P2. Since ck ∈ P1, we conclude bh ◦ ck ⊆ P1.
Therefore bh◦ck ⊆ P1∩P2 which is a contradiction. Thus if ag 6∈ P1∩P2,
implies that ag ∈ P1 or ag ∈ P2.

Case 2: Suppose that ag ∈ P1 and ag 6∈ P2. We show that ck ∈ P2.
Assume that ck 6∈ P2. Since P2 is a graded prime hyperideal of R, we
have ag ◦ ck * P2. Since ag ◦ bh ◦ ck ⊆ P2, ag ◦ ck * P2 and P2 is a
graded prime hyperideal of R, then bh ∈ P2 by Lemma 3.15. Hence
ag ◦ bh ⊆ P1 ∩ P2 which is a contradiction. Thus ck ∈ P2. Since
ck 6∈ P1 ∩ P2, we get ck 6∈ P1. Therefore ag ◦ ck ⊆ P1 ∩ P2.

Case 3: Suppose that ag ∈ P2 and ag 6∈ P1. We show that ck ∈ P1.
Assume that ck 6∈ P1. Since P1 is a graded prime hyperideal of R,
we have ag ◦ ck * P1. Since ag ◦ bh ◦ ck ⊆ P1, ag ◦ ck * P1 and
P1 is a graded prime hyperideal of R, then bh ∈ P1 by Lemma 3.15.
Hence ag ◦ bh ⊆ P1 ∩ P2 which is a contradiction. Thus ck ∈ P1. Since
ck 6∈ P1∩P2, we get ck 6∈ P2. Therefore ag ◦ck ⊆ P1∩P2. Consequently,
P1 ∩ P2 is a graded 2-absorbing hyperideal of R. �

Theorem 4.11. Let I1 be a P1-graded primary Cgr-ideal and I2 be a P2-
graded primary Cgr-ideal of a graded multiplicative hyperring R.Then
the following statements hold:

(i) I1 ∩ I2 is a graded 2-absorbing primary hyperideal of R.
(ii) I1I2 is a graded 2-absorbing primary hyperideal of R.

Proof. (i) Let I1 ∩ I2 = K. Then Grad(K) = P1 ∩ P2. Now we show
that K is a graded 2-absorbing primary hyperideal of R. Suppose that
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ag ◦ bh ◦ ck ⊆ K, ag ◦ ck * Grad(K) and bh ◦ ck * Grad(K) where
ag, bh, ck ∈ h(R). Since Grad(K) is a graded hyperideal of R, we have
ag 6∈ Grad(K), bh 6∈ Grad(K) and ck 6∈ Grad(K). Since P1 and P2

are graded prime hyperideals of R, by Proposition 4.10, we conclude
that Grad(K) = P1∩P2 is a graded 2-absorbing hyperideal of R. Thus
ag ◦ bh ⊆ Grad(K) ⊆ P1. Since P1 is a graded prime hyperideal of R,
we have ag ∈ P1 or bh ∈ P1. We may assume that ag ∈ P1. Hence
ag 6∈ P2 since ag 6∈ Grad(K) = P1 ∩ P2. One can easily show that
bh 6∈ P1. We claim that ag ∈ I1 and bh ∈ I2. Suppose that ag 6∈ I1.
Since I1 is a P1-graded primary hyperideal of R, ag ◦ bh ◦ ck ⊆ I1
and ag 6∈ I1, then bh ◦ ck ⊆ Grad(I1) = P1 by Lemma 3.16. Since
bh ∈ P2, hence bh ◦ ck ⊆ P2, and so bh ◦ ck ⊆ P1 ∩ P2 = Grad(K)
which is a contradiction. Hence ag ∈ I1. Now, let bh 6∈ I2. Since I2
is a P2-graded primary hyperideal of R, ag ◦ bh ◦ ck ⊆ I2 and bh 6∈ I2,
then ag ◦ ck ⊆ Grad(I2) = P2 by Lemma 3.16. Since ag ∈ P1, hence
ag◦ck ⊆ P1, and so ag◦ck ⊆ P1∩P2 = Grad(K) which is a contradiction.
Thus bh ∈ I2. Therefore ag ◦ bh ⊆ I1 ∩ I2 = K.
(ii) We have Grad(I1I2) = Grad(I1)

⋂
Grad(I2) = P1 ∩ P2 ([15]). Let

ag ◦ bh ◦ ck ⊆ I1I2 and ag ◦ bh, bh ◦ ck * Grad(I1I2) = P1 ∩ P2 where
ag, bh, ck ∈ h(R). We show that ag ◦ ck ⊆ I1I2. Then ag, bh, ck 6∈
Grad(I1I2) = P1∩P2. Moreover, we have ag◦ck ⊆ Grad(I1I2) = P1∩P2

since P1 ∩ P2 is a graded 2-absorbing hyperideal of R. Since ag ◦ ck ⊆
Grad(I1I2) = P1∩P2 ⊆ P1 and P1 is a graded prime hyperideal, we get
ag ∈ P1 or ck ∈ P1. We may assume that ag ∈ P1. Since ag 6∈ P1 ∩ P2,
we have ag 6∈ P2. Also, ck ∈ P2 and ck 6∈ P1 since P2 is a graded prime
hyperideal and ag ◦ ck ⊆ Grad(I1I2) = P1 ∩ P2 ⊆ P2. We claim that
ag ∈ I1 and ck ∈ I2. Let ag 6∈ I1. Since ag ◦ bh ◦ ck ⊆ I1, ag 6∈ I1 and I1
is a graded primary hyperideal, we get bh ◦ ck ⊆ Grad(I1) = P1. Since
ck ∈ P2, we have bh ◦ ck ⊆ P2, and so bh ◦ ck ⊆ P1 ∩ P2 ⊆ Grad(I1I2)
which is a contradiction. Thus ag ∈ I1. Similarly, we conclude that
ck ∈ Ik. Consequently, ag ◦ ck ⊆ I1I2. �

Lemma 4.12. Let f : R → S be an onto graded good homomorphism
of graded multiplicative hyperrings. If I is a graded hyperideal of R,
then f(Grad(I)) ⊆ Grad(f(I)).

Proof. Let y ∈ f(Grad(I)). Hence y = f(x) for some x ∈ Grad(I).
So we can write x =

∑
g∈G xg where xg ∈ Grad(I) ∩ h(R). Thus y =

f(
∑

g∈G xg) =
∑

g∈G f(xg) because f is a graded good homomorphism.

Since x ∈ Grad(I), then for any g ∈ G, there exists ng > 0 such
that x

ng
g ⊆ I. Therefore f(x

ng
g ) = (f(xg))

ng ⊆ f(I) since f is a good
homomorphism. Hence y =

∑
g∈G f(xg) ∈ Grad(f(I)). �
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Lemma 4.13. Let f : R → S be a graded good homomorphism of
graded multiplicative hyperrings. If J is a graded hyperideal of S, then
f−1(Grad(J)) = Grad(f−1(J)).

Proof. Let x ∈ f−1(Grad(J)). Thus we can write x =
∑

g∈G xg where

xg ∈ f−1(Grad(I)) ∩ h(R). Then f(x) =
∑

g∈G f(xg) ∈ Grad(J).

Hence for any g ∈ G, there exists ng > 0 such that f(xg)
ng = f(x

ng
g ) ⊆

J . Therefore for any g ∈ G, there exists ng > 0 such that x
ng
g ⊆ f−1(J).

Thus x ∈ Grad(f−1(J)). The converse can be shown similarly. �

Theorem 4.14. Let R and S be graded multiplicative hyperrings and
let f : R→ S be an onto graded good homomorphism. If I is a graded
2-absorbing primary hyperideal of R such that ker(f) ⊆ I, then f(I)
is a graded 2-absorbing primary hyperideal of S.

Proof. Let sg ◦ sh ◦ sk ⊆ f(I) where sg, sh, sk ∈ h(S). Thus since f is
onto, f(rg) = sg, f(rh) = sh and f(rk) = sk for some rg, rh, rk ∈ h(R).
Since f is a graded good homomorphism we have sg ◦ sh ◦ sk = f(rg) ◦
f(rh) ◦ f(rk) = f(rg ◦ rh ◦ rk) ⊆ f(I). We show that rg ◦ rh ◦ rk ⊆ I.
Suppose that x ∈ rg ◦ rh ◦ rk, then f(x) ∈ f(rg ◦ rh ◦ rk) ⊆ f(I),
and so f(x) = f(a) for some a ∈ I. Thus f(x) − f(a) = f(x − a) =
0 ∈ 〈0〉, so x − a ∈ Ker(f) ⊆ I. Hence x ∈ I since a ∈ I, then
rg ◦ rh ◦ rk ⊆ I. Since I is a graded 2-absorbing primary hyperideal
of R, we get rg ◦ rh ⊆ I or rg ◦ rk ⊆ Grad(I) or rh ◦ rk ⊆ Grad(I).
By lemma 4.12, sg ◦ sh ⊆ f(I) or sg ◦ sk ⊆ f(Grad(I)) ⊆ Grad(f(I))
or sh ◦ sk ⊆ f(Grad(I)) ⊆ Grad(f(I)). Therefore f(I) is a graded
2-absorbing primary hyperideal of S. �

Theorem 4.15. Let f : R → S be an graded good homomorphism of
graded multiplicative hyperrings. If J is a graded 2-absorbing primary
hyperideal of S, then f−1(J) is a graded 2-absorbing primary hyperideal
of R.

Proof. Let ag ◦bh◦ck ⊆ f−1(J) where ag, bh, ck ∈ h(R). Since f(ag ◦bh◦
ck) = f(ag) ◦ f(bh) ◦ f(ck) ⊆ J and J is a graded 2-absorbing primary
hyperideal of S, we have f(ag) ◦ f(bh) ⊆ J or f(ag) ◦ f(ck) ⊆ Grad(J)
or f(bh) ◦ f(ck) ⊆ Grad(J). Thus ag ◦ bh ⊆ f−1(J) or ag ◦ ck ⊆
f−1(Grad(J)) or bh ◦ck ⊆ f−1(Grad(J)). By equality Grad(f−1(J)) =
f−1(Grad(J)), we have ag ◦ bh ⊆ f−1(J) or ag ◦ ck ⊆ Grad(f−1(J))
or bh ◦ ck ⊆ Grad(f−1(J)), so f−1(J) is a graded 2-absorbing primary
hyperideal of R. �

Suppose that I is a graded hyperideal of a graded multiplicative
hyperring R =

⊕
g∈GRg. Then quotient group R/I = {a+ I : a ∈ R}

becomes a multiplicative hyperring with the multiplication (a + I) ◦
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(b + I) = {r + I : r ∈ a ◦ b}. One can easily prove that R/I is
a graded hyperring with R/I =

⊕
g∈G(R/I)g where for all g ∈ G,

(R/I)g = (Rg+I)/I. Also, all graded hyperideals ofR/I are of the form
J/I, where J is a graded hyperideal of R containing I since the natural
graded homomorphism φ : R → R/I is a graded good epimorphism
([15]).

Theorem 4.16. Let I, J be graded hyperideals of a graded multiplica-
tive hyperring R such that J ⊆ I. If I is a graded 2-absorbing primary
hyperideal of R, then I/J is a graded 2-absorbing primary hyperideal
of R/J .

Proof. A mapping f : R→ R/J with f(x) = x+ J for all x ∈ R is an
onto graded good homomorphism. Then the proof hold by Theorem
4.14. �

Lemma 4.17. Let I be a graded 2-absorbing primary hyperideal of a
strongly distributive graded multiplicative hyperring R. Let k ∈ G and
Jk be a subgroup of Rk. If ag◦bhJk ⊆ I and ag◦bh * I for ag, bh ∈ h(R),
then agJk ⊆ Grad(I) or bhJk ⊆ Grad(I).

Proof. Suppose that agJk * Grad(I) and bhJk * Grad(I). We have
agJk =

⋃
jk∈Jk ag ◦ jk * Grad(I) and bhJk =

⋃
jk∈Jk bh ◦ jk * Grad(I).

Hence there exist ck, dk ∈ Jk such that ag ◦ ck * Grad(I) and bh ◦ dk *
Grad(I). Since ag ◦ bh ◦ ck ⊆ I, ag ◦ bh * I, ag ◦ ck * Grad(I) and I is
a graded 2-absorbing primary hyperideal of R, then bh ◦ ck ⊆ Grad(I).
Similarly, Since ag ◦ bh ◦ dk ⊆ I, ag ◦ bh * I, bh ◦ dk * Grad(I) and I is
a graded 2-absorbing primary hyperideal of R, then ag ◦dk ⊆ Grad(I).
Now since ag◦bh◦(ck+dk) ⊆ I, ag◦bh * I and I is a graded 2-absorbing
primary hyperideal of R, then ag◦(ck+dk) ⊆ Grad(I) or bh◦(ck+dk) ⊆
Grad(I). Suppose that ag ◦ (ck + dk) = ag ◦ ck + ag ◦ dk ⊆ Grad(I).
Since ag ◦dk ⊆ Grad(I), we conclude that ag ◦ ck ⊆ Grad(I) which is a
contradiction. Similarly, let bh ◦ (ck + dk) = bh ◦ ck + bh ◦ dk ⊆ Grad(I).
Since bh ◦ ck ⊆ Grad(I), we conclude that bh ◦ dk ⊆ Grad(I) which is
a contradiction. Thus agJk ⊆ Grad(I) or bhJk ⊆ Grad(I). �

Theorem 4.18. Let I be a graded hyperideal of a strongly distributive
graded multiplicative hyrperring R. Then I is a graded 2-absorbing
primary hyperideal of R if and only if for any subgroups Jg, Kh, Lk

of Rg, Rh, Rk respectively, JgKhLk ⊆ I, then JgKh ⊆ I or JgLk ⊆
Grad(I) or KhLk ⊆ Grad(I).

Proof. Let I be a graded 2-absorbing primary hyperideal of R and
JgKhLk ⊆ I and JgKh * I. We show that JgLk ⊆ Grad(I) or KhLk ⊆
Grad(I). Suppose that JgLk * Grad(I) and KhLk * Grad(I). Hence
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jgLk * Grad(I) and khLk * Grad(I) for some jg ∈ Jg and kh ∈ Kh. By
Lemma 4.17, we get jg ◦kh ⊆ I. Since JgKh * I, so there exist ag ∈ Jg
and bh ∈ Kh such that ag ◦ bh * I. Since (ag ◦ bh)Lk ⊆ JgKhLk ⊆ I
and ag ◦ bh * I, by Lemma 4.17, agLk ⊆ Grad(I) or bhLk ⊆ Grad(I).

Case 1: Suppose that agLk ⊆ Grad(I) and bhLk * Grad(I). Since
(jg ◦ bh)Lk ⊆ JgKhLk ⊆ I, bhLk * Grad(I) and jgLk * Grad(I), we
have jg ◦ bh ⊆ I by Lemma 4.17. Since ((ag + jg)◦ bh)Lk ⊆ JgKhLk ⊆ I
and bhLk * Grad(I), we have (ag+jg)Lk ⊆ Grad(I) or (ag+jg)◦bh ⊆ I
by Lemma 4.17. Assume that (ag + jg)Lk ⊆ Grad(I). Then for every
lk ∈ Lk, we have (ag + jg) ◦ lk = ag ◦ lk + jg ◦ lk ⊆ Grad(I). Since
agLk ⊆ Grad(I) and Grad(I) is a graded hyperideal of R, we get
jgLk ⊆ Grad(I) which is a contradiction. Now, let (ag + jg) ◦ bh =
ag ◦ bh + jg ◦ bh ⊆ I. Since jg ◦ bh ⊆ I and I is a graded hyperideal of
R, then ag ◦ bh ⊆ I, a contradiction.

Case 2: Suppose that agLk * Grad(I) and bhLk ⊆ Grad(I). Then
ag ◦ kh ⊆ I by Lemma 4.17. Since ag ◦ (bh + kh)Lk ⊆ JgKhLk ⊆ I but
agLk * Grad(I), we have ag◦(bh+kh) ⊆ I or (bh+kh)Lk ⊆ Grad(I) by
Lemma 4.17. Suppose that (bh + kh)Lk ⊆ Grad(I) , so (bh + kh) ◦ lk =
bh ◦ lk +kh ◦ lk ⊆ Grad(I) for every lk ∈ Lk. Since bhLk ⊆ Grad(I) and
Grad(I) is a graded hyperideal of R, we get khLk ⊆ Grad(I) which is
a contradiction. Now, let ag ◦ (bh + kh) = ag ◦ bh + ag ◦ jg ⊆ I. Since
ag ◦ kh ⊆ I and I is a graded hyperideal of R, then ag ◦ bh ⊆ I which
is a contradiction.

Case 3: Suppose that agLk ⊆ Grad(I) and bhLk ⊆ Grad(I). Since
bhLk ⊆ Grad(I) and khLk * Grad(I), we have (bh +kh)Lk * Grad(I).
By Lemma 4.17, we conclude that jg ◦ (bh + kh) = jg ◦ bh + jg ◦ kh ⊆ I,
and since jg ◦ kh ⊆ I, so jg ◦ bh ⊆ I. Since agLk ⊆ Grad(I) and
jgLk * Grad(I), we get (ag + jg)Lk * Grad(I). Hence (ag + jg) ◦
kh = ag ◦ kh + jg ◦ kh ⊆ I by Lemma 4.17. Since jg ◦ kh ⊆ I and
ag ◦ kh + jg ◦ kh ⊆ I, we have ag ◦ kh ⊆ I. Thus (ag + jg) ◦ (bh + kh) =
ag◦bh+ag◦kh+bh◦jg+jg◦kh ⊆ I by Lemma 4.17. Hence ag◦bh ⊆ I since
ag◦bh+ag◦kh+bh◦jg+jg◦kh ⊆ I and ag◦kh+bh◦jg+jg◦kh ⊆ I which
is a contradiction. Consequently, we conclude that JgLk ⊆ Grad(I) or
KhLk ⊆ Grad(I).
Conversely, suppose that ag ◦ bh ◦ ck ⊆ I where ag, bh, ck ∈ h(R). Then
〈ag ◦ bh ◦ ck〉 ⊆ 〈ag〉 ◦ 〈ag〉 ◦ 〈ag〉 ⊆ I where 〈ag〉 = {nag : n ∈ Z},
〈bh〉 = {nbh : n ∈ Z} and 〈ck〉 = {nck : n ∈ Z} are subgroups of Rg, Rh

and Rk respectively. Therefore 〈ag〉 ◦ 〈bh〉 ⊆ I or 〈ag〉 ◦ 〈ck〉 ⊆ Grad(I)
or 〈bh〉 ◦ 〈ck〉 ⊆ Grad(I) by Lemma 4.17. Thus ag ◦ bh ⊆ I or ag ◦ ck ⊆
Grad(I) or bh ◦ ck ⊆ Grad(I), as needed. �
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5. Conclusions

In this article, we introduced and studied the notions of graded
2-absorbing and graded 2-absorbing primary hyperideals of a graded
multiplicative hyperring R which are generalizations of graded prime
hyperideals. We showed that the concepts of 2-absorbing primary hy-
perideals and graded 2-absorbing primary hyperideals are totally dif-
ferent. Several properties, examples and characterizations of graded
2-absorbing primary hyperideals have been investigated. Moreover, we
investigated the properties and the behavior of this structure under
homogeneous components, graded hyperring homomorphisms. Among
various results we proved that the intersection of two graded prime
hyperideals is a graded 2-absorbing hyperideal and also showed that
every graded primary hyperideal of a graded multiplicative hyperring
R is a graded 2-absorbing primary hyperideal of R.
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