Journal of Algebra and Related Topics

Vol. 11, No 1, (2023), pp 111-123

STUDY OF MULTIPLICATIVE b-GENERALIZED DERIVATION AND ITS ADDITIVITY

W. AHMED AND M. R. MOZUMDER*

Abstract

Our intention in this paper is to prove the following. Let \mathfrak{R} be a ring with an idempotent element $(0,1 \neq) e$ and f be a multiplicative b-generalized derivation on \mathfrak{R}. Then we show that f is additive by imposing certain conditions on the ring \mathfrak{R}.

1. Notations and Introduction

Many results on derivations of rings have been obtained in recent years. The derivation of ring \mathfrak{R}, we means an additive map $d: \mathfrak{R} \rightarrow \mathfrak{R}$ such that $\forall x, y \in \mathfrak{R}, d(x y)=d(x) y+x d(y)$. If d is non-additive, then it is said to be multiplicative derivation of \mathfrak{R}. In 1969, Martindale [4] gave a remarkable result. He demonstrated that under the existence of a family of idempotent object in \mathfrak{R} that satisfy certain conditions, every anti-automorphism and multiplicative isomorphism on \mathfrak{R} is additive. Martindale's work influenced Daif and he expanded his findings upon multiplicative derivation and raised the question: when is multiplicative derivation is additive? In 1991, Daif [1] answered the question raised by him by using same Martindale's conditions. Further, Daif together with Tammam-El-Sayiad [2] extended his result and proved that multiplicative generalized derivation is additive under some restriction impose on ring \mathfrak{R}. Motivated by the above result we proved that multiplicative b-generalized derivation is additive after imposing some conditions on the ring \mathfrak{R}, where multiplicative b-generalized derivation of a

[^0]ring \mathfrak{R} to be a mapping f of \mathfrak{R} into \mathfrak{R} associated with derivation (need not be additive) d such that $f(x y)=f(x) y+b x d(y)$ for all $x, y \in \mathfrak{R}$ and any fixed $b \in \mathfrak{R}$. Let $e(\neq 0,1) \in \Re$ be an idempotent element. We will formally set $e_{1}=e$ and $e_{2}=1-e$, where $e_{1} e_{2}=e_{2} e_{1}=0$. The two sided Peirce decomposition of \mathfrak{R} relative to the idempotent e takes the form $\mathfrak{R}=e_{1} \mathfrak{R} e_{1} \oplus e_{1} \mathfrak{R} e_{2} \oplus e_{2} \mathfrak{\Re} e_{1} \oplus e_{2} \mathfrak{R} e_{2}$. So, letting $\mathfrak{R}{ }_{m n}=e_{m} \mathfrak{R} e_{n}$ for all $m, n=1,2$. We may write $\mathfrak{R}=\mathfrak{R}_{11} \oplus \mathfrak{R}_{12} \oplus \mathfrak{R}_{21} \oplus \mathfrak{R}_{22}$. An element of the subring $\mathfrak{R}_{m n}$ will be denoted by $x_{m n}$.

For defining the multiplicative b-generalized derivation we have to set $b=b_{11}+b_{12}+0_{21}+b_{22} \in \mathfrak{R}_{11} \oplus \mathfrak{R}_{12} \oplus \mathfrak{R}_{21} \oplus \mathfrak{R}_{22}=\mathfrak{R}$ for all $b_{i j} \in \mathfrak{R}_{i j}$, where $i, j=\{1,2\}$. Since, from the definition of multiplicative b generalized derivation we have, $f(0)=f(00)=f(0) 0+b 0 d(0)=$ $0+0=0$, i.e., $f(0)=0$ and also by using similar step we get $d(0)=0$. Moreover, $d(e)=d(e e)=d(e) e+e d(e)$, let us assume that $d(e)=d_{11}+d_{12}+d_{21}+d_{22}$ for all $d_{i j} \in \mathfrak{R}_{i j}$, where $i, j=\{1,2\}$, then from previous equation we obtain $d_{11}+d_{12}+d_{21}+d_{22}=\left(d_{11}+\right.$ $\left.d_{12}+d_{21}+d_{22}\right) e+e\left(d_{11}+d_{12}+d_{21}+d_{22}\right)$. On simplifying these we get $d_{11}=d_{22}$, since, we know that $\mathfrak{R}_{11} \cap \mathfrak{R}_{22}=(0)$ (Since \mathfrak{R} is direct sum of $\left.\mathfrak{R}_{11}, \mathfrak{R}_{12}, \mathfrak{R}_{21}, \mathfrak{R}_{22}\right)$ then we have $d_{11} \cap d_{22} \in \mathfrak{R}_{11} \cap \mathfrak{R}_{22}=(0)$ which implies that $d_{11}=d_{22}=0$. Putting these value in $d(e)$, it becomes $d(e)=d_{12}+d_{21}$. By using similar calculation we find that $f(e)=f_{11}+f_{21}+b_{11} d_{12}$ for all $f_{i j} \in \mathfrak{R}_{i j}$, where $i, j=\{1,2\}$.

Let \mathfrak{I} be the inner derivation of \mathfrak{R} determined by the element $c=$ $d_{12}-d_{21}$, that is $\mathfrak{I}_{d_{12}-d_{21}}(x)=\left[x, d_{12}-d_{21}\right]$. The value of $\mathfrak{I}_{d_{12}-d_{21}}(e)=$ $\left[e, d_{12}-d_{21}\right]=d_{12}+d_{21}$. Now, we construct b-generalized inner derivation determine by the element $a=f_{11}+f_{21}$ and $c=d_{12}-d_{21}$ defined as $g(x)=a x+b x c$, where $b=b_{11}+b_{12}+0_{21}+b_{22}$. We can easily see that g is a b-generalized derivation associated with inner derivation \mathfrak{I} generated by element $c=d_{12}-d_{21}$. In the sequel, we will replace without loss of generality, the map d by the map $\mathfrak{D}=d-\mathfrak{I}$ (need not be additive) and the map f by the map $\mathfrak{F}=f-g$ (need not be additive). We can easily verified that \mathfrak{D} is a multiplicative derivation and \mathfrak{F} is a multiplicative b-generalized derivation where, $\mathfrak{D}(e)=(d-\mathfrak{I})(e)=0$ and similarly, we get $\mathfrak{F}(e)=0$.

In this manuscript, we have consider \mathfrak{F} as a multiplicative b-generalized derivation associated with multiplicative derivation \mathfrak{D}, which is defined above. Motivated by the result of Daif and Tammam-El-Sayiad [2] we showed that multiplicative b-generalized derivation is additive by choosing $b=b_{11}+b_{12}+0_{21}+b_{22} \in \mathfrak{R}_{11} \oplus \mathfrak{R}_{12} \oplus \mathfrak{R}_{21} \oplus \mathfrak{R}_{22}=\mathfrak{R}$
and imposing certain conditions on the ring \mathfrak{R}, these conditions are as follows:
(i) $x \mathfrak{R} e=0$ implies $x=0$ (and hence $x \Re=0$ implies $x=0$)
(ii) $e \mathfrak{R} x=0$ implies $x=0$ (and hence $\mathfrak{R} x=0$ implies $x=0$)
(iii) $x e \Re(1-e)=0$ implies $x e=0$.

Before proving our main theorem, first we would like to prove some lemmas which will used extensively throughout this paper.

2. Results

Lemma 2.1. (i) $\mathfrak{F}\left(\mathfrak{R}_{1 n}\right) \subset \mathfrak{R}_{1 n}$; for $n=\{1,2\}$
(ii) $\mathfrak{F}\left(\mathfrak{R}_{21}\right) \subset \mathfrak{R}_{11}+\mathfrak{R}_{21}$
(iii) $\mathfrak{F}\left(\mathfrak{R}_{11}+\mathfrak{R}_{21}\right) \subset \mathfrak{R}_{11}+\mathfrak{R}_{21}$
(iv) $\mathfrak{F}\left(\mathfrak{R}_{22}\right) \subset \mathfrak{R}_{22}+\mathfrak{R}_{12}$.

Moreover, \mathfrak{F} is additive on $\mathfrak{R}_{1 n}$ and $\mathfrak{F}\left(x_{11}+x_{12}\right)=\mathfrak{F}\left(x_{11}\right)+\mathfrak{F}\left(x_{12}\right)$, for every $x_{11} \in \mathfrak{R}_{11}$ and $x_{12} \in \mathfrak{R}_{12}$.

Proof. (i) As we know that, we have taken $b=b_{11}+b_{12}+0_{21}+b_{22}$. Now, for every $x_{1 n} \in \mathfrak{R}_{1 n}$ and for all $n=\{1,2\}$, we have $\mathfrak{F}\left(x_{1 n}\right)=\mathfrak{F}\left(e x_{1 n}\right)=$ $\mathfrak{F}(e) x_{1 n}+b e \mathfrak{D}\left(x_{1 n}\right)$. Since, we know that $\mathfrak{F}(e)=0$ and $\mathfrak{D}\left(x_{1 n}\right) \subset \mathfrak{R}_{1 n}$ [1, Lemma 1], we assume $\mathfrak{D}\left(x_{1 n}\right)=d_{1 n}$. Substituting all these values in previous relation and putting the value of b, we get

$$
\begin{equation*}
\mathfrak{F}\left(x_{1 n}\right)=\left(b_{11}+b_{12}+0_{21}+b_{22}\right) e d_{1 n}, \text { for all } d_{1 n} \in \mathfrak{R}_{1 n} . \tag{2.1}
\end{equation*}
$$

On solving above relation, we obtain $\mathfrak{F}\left(x_{1 n}\right)=b_{11} d_{1 n}$, which belongs to $\mathfrak{R}_{1 n}$, i.e., $b_{11} d_{1 n} \in \mathfrak{R}_{1 n}$, for all $x_{1 n} \in \mathfrak{R}_{1 n}$. So, we get $\mathfrak{F}\left(\mathfrak{R}_{1 n}\right) \subset \mathfrak{R}_{1 n}$.

Now, we show that \mathfrak{F} is additive on $\mathfrak{R}_{1 n}$. For $n=\{1,2\}$ and for all $x_{1 n}, y_{1 n} \in \mathfrak{R}_{1 n}$, we have

$$
\begin{equation*}
\mathfrak{F}\left(x_{1 n}+y_{1 n}\right)=\mathfrak{F}\left(e\left(x_{1 n}+y_{1 n}\right)\right)=\mathfrak{F}(e)\left(x_{1 n}+y_{1 n}\right)+b e \mathfrak{D}\left(x_{1 n}+y_{1 n}\right) \tag{2.2}
\end{equation*}
$$

for all $x_{1 n}, y_{1 n} \in \mathfrak{R}_{1 n}$. Since \mathfrak{D} is additive on $\mathfrak{R}_{1 n}[1$, Lemma 3,4] and $\mathfrak{F}(e)=0$, above relation yields

$$
\begin{gather*}
\mathfrak{F}\left(x_{1 n}+y_{1 n}\right)=b e \mathfrak{D}\left(x_{1 n}\right)+b e \mathfrak{D}\left(y_{1 n}\right), \text { for all } x_{1 n}, y_{1 n} \in \mathfrak{R}_{1 n} \tag{2.3}\\
\mathfrak{F}\left(x_{1 n}+y_{1 n}\right)=0+b e \mathfrak{D}\left(x_{1 n}\right)+0+b e \mathfrak{D}\left(y_{1 n}\right) \tag{2.4}\\
\mathfrak{F}\left(x_{1 n}+y_{1 n}\right)=\mathfrak{F}(e) x_{1 n}+b e \mathfrak{D}\left(x_{1 n}\right)+\mathfrak{F}(e) y_{1 n}+b e \mathfrak{D}\left(y_{1 n}\right) \tag{2.5}
\end{gather*}
$$

for all $x_{1 n}, y_{1 n} \in \mathfrak{R}_{1 n}$. Using the definition of multiplicative b-generalized derivation in (2.5), arrives at

$$
\begin{equation*}
\mathfrak{F}\left(x_{1 n}+y_{1 n}\right)=\mathfrak{F}\left(e x_{1 n}\right)+\mathfrak{F}\left(e y_{1 n}\right), \text { for all } x_{1 n}, y_{1 n} \in \mathfrak{R}_{1 n} . \tag{2.6}
\end{equation*}
$$

Above relation can be re-written as

$$
\begin{equation*}
\mathfrak{F}\left(x_{1 n}+y_{1 n}\right)=\mathfrak{F}\left(x_{1 n}\right)+\mathfrak{F}\left(y_{1 n}\right), \text { for all } x_{1 n}, y_{1 n} \in \mathfrak{R}_{1 n} . \tag{2.7}
\end{equation*}
$$

This implies that \mathfrak{F} is additive on $\mathfrak{R}_{1 n}$, for $n=\{1,2\}$.
Next, we show that $\mathfrak{F}\left(x_{11}+x_{12}\right)=\mathfrak{F}\left(x_{11}\right)+\mathfrak{F}\left(x_{12}\right)$ for all $x_{11} \in \mathfrak{R}_{11}$ and $x_{12} \in \mathfrak{R}_{12}$. Let $y_{1 n} \in \mathfrak{R}_{1 n}$ and for $n=\{1,2\}$, we see that

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{11}\right)+\mathfrak{F}\left(x_{12}\right)\right] y_{1 n}=\mathfrak{F}\left(x_{11}\right) y_{1 n}+0, \text { for all } x_{11} \in \mathfrak{R}_{11}, x_{12} \in \mathfrak{R}_{12} . \tag{2.8}
\end{equation*}
$$

Using the definition of multiplicative b-generalized derivation in (2.8), we find that

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{11}\right)+\mathfrak{F}\left(x_{12}\right)\right] y_{1 n}=\mathfrak{F}\left(x_{11} y_{1 n}\right)-b x_{11} \mathfrak{D}\left(y_{1 n}\right) \tag{2.9}
\end{equation*}
$$

for all $x_{11} \in \Re_{11}, x_{12} \in \mathfrak{R}_{12}$. This implies that

$$
\begin{align*}
{\left[\mathfrak{F}\left(x_{11}\right)+\mathfrak{F}\left(x_{12}\right)\right] y_{1 n} } & =\mathfrak{F}\left(x_{11} y_{1 n}+x_{12} y_{1 n}\right)-b x_{11} \mathfrak{D}\left(y_{1 n}\right) \tag{2.10}\\
{\left[\mathfrak{F}\left(x_{11}\right)+\mathfrak{F}\left(x_{12}\right)\right] y_{1 n} } & =\mathfrak{F}\left(\left(x_{11}+x_{12}\right) y_{1 n}\right)-b x_{11} \mathfrak{D}\left(y_{1 n}\right) . \tag{2.11}
\end{align*}
$$

Again, using the definition of multiplicative b-generalized derivation in last relation, we get

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{11}\right)+\mathfrak{F}\left(x_{12}\right)\right] y_{1 n}=\mathfrak{F}\left(x_{11}+x_{12}\right) y_{1 n}+b\left(x_{11}+x_{12}\right) \mathfrak{D}\left(y_{1 n}\right)-b x_{11} \mathfrak{D}\left(y_{1 n}\right) \tag{2.12}
\end{equation*}
$$

On simplifying above relation, it yields that

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{11}\right)+\mathfrak{F}\left(x_{12}\right)\right] y_{1 n}=\mathfrak{F}\left(x_{11}+x_{12}\right) y_{1 n} . \tag{2.13}
\end{equation*}
$$

That is

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{11}\right)+\mathfrak{F}\left(x_{12}\right)-\mathfrak{F}\left(x_{11}+x_{12}\right)\right] y_{1 n}=0 \tag{2.14}
\end{equation*}
$$

For all $y_{2 n} \in \mathfrak{R}_{2 n}$ and for $n=\{1,2\}$, by using similar calculation, we conclude that

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{11}\right)+\mathfrak{F}\left(x_{12}\right)-\mathfrak{F}\left(x_{11}+x_{12}\right)\right] y_{2 n}=0 . \tag{2.15}
\end{equation*}
$$

From (2.14) and (2.15), we obtain

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{11}\right)+\mathfrak{F}\left(x_{12}\right)-\mathfrak{F}\left(x_{11}+x_{12}\right)\right] \mathfrak{R}=(0) . \tag{2.16}
\end{equation*}
$$

By using condition (i), we have $\mathfrak{F}\left(x_{11}\right)+\mathfrak{F}\left(x_{12}\right)-\mathfrak{F}\left(x_{11}+x_{12}\right)=0$, which implies $\mathfrak{F}\left(x_{11}+x_{12}\right)=\mathfrak{F}\left(x_{11}\right)+\mathfrak{F}\left(x_{12}\right)$ for all $x_{11} \in \mathfrak{R}_{11}, x_{12} \in \mathfrak{R}_{12}$, part (i) is done.
(ii) For all $x_{21} \in \mathfrak{R}_{21}$, let us suppose that $\mathfrak{F}\left(x_{21}\right)=f_{11}+f_{12}+f_{21}+f_{22}$ for all $f_{i j} \in \mathfrak{R}_{i j}$, where $i, j=\{1,2\}$, we have

$$
\begin{equation*}
\mathfrak{F}\left(x_{21}\right)=\mathfrak{F}\left(\left(x_{21}\right) e\right)=\mathfrak{F}\left(x_{21}\right) e+b x_{21} \mathfrak{D}(e), \text { for all } x_{21} \in \mathfrak{R}_{21} . \tag{2.17}
\end{equation*}
$$

Using the value of $\mathfrak{F}\left(x_{21}\right)=f_{11}+f_{12}+f_{21}+f_{22}$ and $\mathfrak{D}(e)=0$ in (2.17), we get

$$
\begin{equation*}
\mathfrak{F}\left(x_{21}\right)=f_{11}+f_{21} \in \mathfrak{R}_{11}+\mathfrak{R}_{21}, \text { for all } x_{21} \in \mathfrak{R}_{21} . \tag{2.18}
\end{equation*}
$$

Since x_{21} is an arbitrary element of \mathfrak{R}_{21}, therefore, we get $\mathfrak{F}\left(\mathfrak{R}_{21}\right) \subset$ $\mathfrak{R}_{11}+\mathfrak{R}_{21}$, we are done.
(iii) Let $x_{11} \in \mathfrak{R}_{11}$ and $x_{21} \in \mathfrak{R}_{21}$. Assume that $\mathfrak{F}\left(x_{11}+x_{21}\right)=$ $r_{11}+r_{12}+r_{21}+r_{22}$ for all $r_{i j} \in \mathfrak{R}_{i j}$, where $i, j=\{1,2\}$, we have

$$
\begin{gather*}
\mathfrak{F}\left(x_{11}+x_{21}\right)=\mathfrak{F}\left(\left(x_{11}+x_{21}\right) e\right)=\mathfrak{F}\left(x_{11}+x_{21}\right) e \\
+b\left(x_{11}+x_{21}\right) \mathfrak{D}(e), \text { for all } x_{11} \in \mathfrak{R}_{11} \text { and } x_{21} \in \mathfrak{R}_{21} . \tag{2.19}
\end{gather*}
$$

Using the value of $\mathfrak{F}\left(x_{11}+x_{21}\right)$ and $\mathfrak{D}(e)=0$ in (2.19), we get

$$
\begin{equation*}
\mathfrak{F}\left(x_{11}+x_{21}\right)=r_{11}+r_{21} \in \mathfrak{R}_{11}+\mathfrak{R}_{21} \tag{2.20}
\end{equation*}
$$

for all $x_{11} \in \mathfrak{R}_{11}$ and $x_{21} \in \mathfrak{R}_{21}$. Since, x_{11} and x_{21} is an arbitrary elements of \mathfrak{R}_{11} and \mathfrak{R}_{21}, therefore, we obtain $\mathfrak{F}\left(\mathfrak{R}_{11}+\mathfrak{R}_{21}\right) \subset \mathfrak{R}_{11}+\mathfrak{R}_{21}$.
(iv) Let $x_{22} \in \mathfrak{R}_{22}$, let us assume $\mathfrak{F}\left(x_{22}\right)=g_{11}+g_{12}+g_{21}+g_{22}$ for all $g_{i j} \in \mathfrak{R}_{i j}$, where $i, j=\{1,2\}$, we have

$$
\begin{equation*}
0=\mathfrak{F}\left(x_{22} e\right)=\mathfrak{F}\left(x_{22}\right) e+b x_{22} \mathfrak{D}(e), \text { for all } x_{22} \in \mathfrak{R}_{22} . \tag{2.21}
\end{equation*}
$$

Using the value of $\mathfrak{F}\left(x_{22}\right)$ and $\mathfrak{D}(e)=0$ in (2.21), we have $0=g_{11}+g_{21}$. Putting these value in $\mathfrak{F}\left(x_{22}\right)$, we arrive at $\mathfrak{F}\left(\mathfrak{R}_{22}\right) \subset \mathfrak{R}_{12}+\mathfrak{R}_{22}$. We get the result.

Lemma 2.2. $\mathfrak{F}\left(x_{21}+x_{11} z_{12}\right)=\mathfrak{F}\left(x_{21}\right)+\mathfrak{F}\left(x_{11} z_{12}\right)$ for all $x_{21} \in \mathfrak{R}_{21}$, $x_{11} \in \mathfrak{R}_{11}$ and $z_{12} \in \mathfrak{R}_{12}$.

Proof. For any $t_{1 n} \in R_{1 n}$ where $n=\{1,2\}$, we have

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{21}\right)+\mathfrak{F}\left(x_{11} z_{12}\right)\right] t_{1 n}=\mathfrak{F}\left(x_{21}\right) t_{1 n}+\mathfrak{F}\left(x_{11} z_{12}\right) t_{1 n} \tag{2.22}
\end{equation*}
$$

for all $x_{21} \in \mathfrak{R}_{21}, x_{11} \in \mathfrak{R}_{11}$ and $z_{12} \in \mathfrak{R}_{12}$. Since, $\mathfrak{F}\left(x_{11} z_{12}\right) \in \mathfrak{F}\left(\mathfrak{R}_{12}\right) \subset$ \mathfrak{R}_{12} by Lemma 2.1(i), we get $\mathfrak{F}\left(x_{11} z_{12}\right) t_{1 n}=0$. Using these value and the definition of multiplicative b-generalized derivation in (2.22), we obtain

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{21}\right)+\mathfrak{F}\left(x_{11} z_{12}\right)\right] t_{1 n}=\mathfrak{F}\left(x_{21}\right) t_{1 n}=\mathfrak{F}\left(x_{21} t_{1 n}\right)-b x_{21} \mathfrak{D}\left(t_{1 n}\right) \tag{2.23}
\end{equation*}
$$

Which implies that

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{21}\right)+\mathfrak{F}\left(x_{11} z_{12}\right)\right] t_{1 n}=\mathfrak{F}\left(\left(x_{21}+x_{11} z_{12}\right) t_{1 n}\right)-b x_{21} \mathfrak{D}\left(t_{1 n}\right) \tag{2.24}
\end{equation*}
$$

for all $x_{21} \in \mathfrak{R}_{21}, x_{11} \in \mathfrak{R}_{11}$ and $z_{12} \in \mathfrak{R}_{12}$. Using definition of multiplicative b-generalized derivation in the last relation, we have

$$
\begin{align*}
{\left[\mathfrak{F}\left(x_{21}\right)\right.} & \left.+\mathfrak{F}\left(x_{11} z_{12}\right)\right] t_{1 n}=\mathfrak{F}\left(x_{21}+x_{11} z_{12}\right) t_{1 n}+b\left(x_{21}+x_{11} z_{12}\right) \mathfrak{D}\left(t_{1 n}\right) \\
& -b x_{21} \mathfrak{D}\left(t_{1 n}\right), \text { for all } x_{21} \in \mathfrak{R}_{21}, x_{11} \in \mathfrak{R}_{11} \text { and } z_{12} \in \mathfrak{R}_{12} . \tag{2.25}
\end{align*}
$$

On simplifying, we find that

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{21}\right)+\mathfrak{F}\left(x_{11} z_{12}\right)\right] t_{1 n}=\mathfrak{F}\left(x_{21}+x_{11} z_{12}\right) t_{1 n} \tag{2.26}
\end{equation*}
$$

for all $x_{21} \in \mathfrak{R}_{21}, x_{11} \in \mathfrak{R}_{11}$ and $z_{12} \in \mathfrak{R}_{12}$. Since, $t_{1 n}$ is an arbitrary element of $\mathfrak{R}_{1 n}$, for $n=\{1,2\}$, then (2.26) reduces to

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{21}\right)+\mathfrak{F}\left(x_{11} z_{12}\right)-\mathfrak{F}\left(x_{21}+x_{11} z_{12}\right)\right] \mathfrak{R}_{1 n}=(0) . \tag{2.27}
\end{equation*}
$$

Now, for any $t_{2 n} \in \mathfrak{R}_{2 n}$ and for $n=\{1,2\}$, from the similar calculation as done above and by using Lemma 2.1(ii), we arrive at

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{21}\right)+\mathfrak{F}\left(x_{11} z_{12}\right)-\mathfrak{F}\left(x_{21}+x_{11} z_{12}\right)\right] \mathfrak{R}_{2 n}=(0) . \tag{2.28}
\end{equation*}
$$

From (2.27) and (2.28), we obtain

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{21}\right)+\mathfrak{F}\left(x_{11} z_{12}\right)-\mathfrak{F}\left(x_{21}+x_{11} z_{12}\right)\right] \mathfrak{R}=(0) \tag{2.29}
\end{equation*}
$$

for all $x_{21} \in \mathfrak{R}_{21}, x_{11} \in \mathfrak{R}_{11}$ and $z_{12} \in \mathfrak{R}_{12}$. Using condition (i) in (2.29), we get $\mathfrak{F}\left(x_{21}+x_{11} z_{12}\right)=\mathfrak{F}\left(x_{21}\right)+\mathfrak{F}\left(x_{11} z_{12}\right)$. Thus, we are done.

Lemma 2.3. $\mathfrak{F}\left(x_{11}+x_{21}\right)=\mathfrak{F}\left(x_{11}\right)+\mathfrak{F}\left(x_{21}\right)$ for all $x_{11} \in \mathfrak{R}_{11}$ and $x_{21} \in \Re_{21}$.

Proof. Let $t_{1 n} \in \mathfrak{R}_{1 n}$ and $z_{12} \in \mathfrak{R}_{12}$, we have $z_{12} t_{1 n}=0$ for $n=\{1,2\}$, we get

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{11}+x_{21}\right)-\mathfrak{F}\left(x_{11}\right)-\mathfrak{F}\left(x_{21}\right)\right] z_{12} t_{1 n}=0 . \tag{2.30}
\end{equation*}
$$

Since, $t_{1 n}$ is an arbitrary element of $\Re_{1 n}$ for $n=\{1,2\}$, above relation reduces to

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{11}+x_{21}\right)-\mathfrak{F}\left(x_{11}\right)-\mathfrak{F}\left(x_{21}\right)\right] z_{12} \mathfrak{R}_{1 n}=(0) . \tag{2.31}
\end{equation*}
$$

Now, for any $t_{2 n} \in \mathfrak{R}_{2 n}$ and $z_{12} \in \mathfrak{R}_{12}$ for $n=\{1,2\}$, we obtain

$$
\begin{equation*}
\mathfrak{F}\left(x_{11}+x_{21}\right) z_{12} t_{2 n}=\mathfrak{F}\left(\left(x_{11}+x_{21}\right) z_{12} t_{2 n}\right)-b\left(x_{11}+x_{21}\right) \mathfrak{D}\left(z_{12} t_{2 n}\right) . \tag{2.32}
\end{equation*}
$$

Above relation can be re-written as

$$
\begin{align*}
\mathfrak{F}\left(x_{11}+x_{21}\right) z_{12} t_{2 n} & =\mathfrak{F}\left(\left(x_{11} z_{12}+x_{21}\right)\left(t_{2 n}+z_{12} t_{2 n}\right)\right) \\
& -b\left(x_{11}+x_{21}\right) \mathfrak{D}\left(z_{12} t_{2 n}\right) . \tag{2.33}
\end{align*}
$$

Using the definition of multiplicative b-generalized derivation in (2.33), it yields that

$$
\begin{align*}
& \mathfrak{F}\left(x_{11}+x_{21}\right) z_{12} t_{2 n}=\mathfrak{F}\left(x_{11} z_{12}+x_{21}\right)\left(t_{2 n}+z_{12} t_{2 n}\right) \\
+ & b\left(x_{11} z_{12}+x_{21}\right) \mathfrak{D}\left(t_{2 n}+z_{12} t_{2 n}\right)-b\left(x_{11}+x_{21}\right) \mathfrak{D}\left(z_{12} t_{2 n}\right) . \tag{2.34}
\end{align*}
$$

Using [1, Lemma 2] in (2.34) and after simplifying, we find that

$$
\begin{equation*}
\mathfrak{F}\left(x_{11}+x_{21}\right) z_{12} t_{2 n}=\mathfrak{F}\left(x_{11} z_{12}+x_{21}\right)\left(t_{2 n}+z_{12} t_{2 n}\right)-b x_{11} \mathfrak{D}\left(z_{12}\right) t_{2 n} . \tag{2.35}
\end{equation*}
$$

Using Lemma 2.2 in (2.35) and solving it, we see that

$$
\begin{align*}
\mathfrak{F}\left(x_{11}+x_{21}\right) z_{12} t_{2 n} & =\mathfrak{F}\left(x_{11} z_{12}\right) t_{2 n}+\mathfrak{F}\left(x_{11} z_{12}\right) z_{12} t_{2 n}+\mathfrak{F}\left(x_{21}\right) t_{2 n} \\
& +\mathfrak{F}\left(x_{21}\right) z_{12} t_{2 n}-b x_{11} \mathfrak{D}\left(z_{12}\right) t_{2 n} . \tag{2.36}
\end{align*}
$$

Using (i) and (ii) of Lemma 2.1 in (2.36), we get

$$
\begin{equation*}
\mathfrak{F}\left(x_{11}+x_{21}\right) z_{12} t_{2 n}=\mathfrak{F}\left(x_{11}\right) z_{12} t_{2 n}+\mathfrak{F}\left(x_{21}\right) z_{12} t_{2 n} \tag{2.37}
\end{equation*}
$$

So, we have

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{11}+x_{21}\right)-\mathfrak{F}\left(x_{11}\right)-\mathfrak{F}\left(x_{21}\right)\right] z_{12} t_{2 n}=0 \tag{2.38}
\end{equation*}
$$

Since, $t_{2 n}$ is an arbitrary element of $\mathfrak{R}_{2 n}$ for $n=\{1,2\}$. So, we have

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{11}+x_{21}\right)-\mathfrak{F}\left(x_{11}\right)-\mathfrak{F}\left(x_{21}\right)\right] z_{12} \mathfrak{R}_{2 n}=(0) \tag{2.39}
\end{equation*}
$$

By (2.31) and (2.39), we found that

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{11}+x_{21}\right)-\mathfrak{F}\left(x_{11}\right)-\mathfrak{F}\left(x_{21}\right)\right] z_{12} \mathfrak{R}=(0) \tag{2.40}
\end{equation*}
$$

Using condition (i) in the above relation for all $z_{12} \in \mathfrak{R}_{12}$, we get $\left[\mathfrak{F}\left(x_{11}+x_{21}\right)-\mathfrak{F}\left(x_{11}\right)-\mathfrak{F}\left(x_{21}\right)\right] \mathfrak{R}_{12}=(0)$, i.e., $\left[\mathfrak{F}\left(x_{11}+x_{21}\right)-\mathfrak{F}\left(x_{11}\right)-\right.$ $\left.\mathfrak{F}\left(x_{21}\right)\right] e \mathfrak{R}(1-e)=(0)$. By condition (iii), we have $\left[\mathfrak{F}\left(x_{11}+x_{21}\right)-\right.$ $\left.\mathfrak{F}\left(x_{11}\right)-\mathfrak{F}\left(x_{21}\right)\right] e=0$ which implies that $\mathfrak{F}\left(x_{11}+x_{21}\right) e-\mathfrak{F}\left(x_{11}\right) e-$ $\mathfrak{F}\left(x_{21}\right) e=0$. From the definition of multiplicative b-generalized derivation and using the fact that $\mathfrak{D}(e)=0$, we obtain $\mathfrak{F}\left(\left(x_{11}+x_{21}\right) e\right)$ $\mathfrak{F}\left(x_{11} e\right)-\mathfrak{F}\left(x_{21} e\right)=0$. Hence, we get the required equation $\mathfrak{F}\left(x_{11}+\right.$ $\left.x_{21}\right)=\mathfrak{F}\left(x_{11}\right)+\mathfrak{F}\left(x_{21}\right)$ for all $x_{11} \in \mathfrak{R}_{11}$ and $x_{21} \in \mathfrak{R}_{21}$.
Lemma 2.4. $\mathfrak{F}\left(y_{21}+x_{21} z_{12}\right)=\mathfrak{F}\left(y_{21}\right)+\mathfrak{F}\left(x_{21} z_{12}\right)$ for all $x_{21}, y_{21} \in \mathfrak{R}_{21}$ and $z_{12} \in \mathfrak{R}_{12}$.

Proof. For any $t_{1 n} \in R_{1 n}$ for $n=\{1,2\}$, we have

$$
\begin{equation*}
\left[\mathfrak{F}\left(y_{21}\right)+\mathfrak{F}\left(x_{21} z_{12}\right)\right] t_{1 n}=\mathfrak{F}\left(y_{21}\right) t_{1 n}+\mathfrak{F}\left(x_{21} z_{12}\right) t_{1 n} \tag{2.41}
\end{equation*}
$$

for all $x_{21}, y_{21} \in \mathfrak{R}_{21}$ and $z_{12} \in \mathfrak{R}_{12}$. Since, $\mathfrak{F}\left(x_{21} z_{12}\right) \in \mathfrak{F}\left(\mathfrak{R}_{22}\right) \subset$ $\mathfrak{R}_{12}+\mathfrak{R}_{22}$, by Lemma 2.1 (iv), we get $\mathfrak{F}\left(x_{21} z_{12}\right) t_{1 n}=0$. Using these value and the definition of multiplicative b-generalized derivation in (2.41), we obtain

$$
\begin{equation*}
\left[\mathfrak{F}\left(y_{21}\right)+\mathfrak{F}\left(x_{21} z_{12}\right)\right] t_{1 n}=\mathfrak{F}\left(y_{21}\right) t_{1 n}=\mathfrak{F}\left(y_{21} t_{1 n}\right)-b y_{21} \mathfrak{D}\left(t_{1 n}\right) . \tag{2.42}
\end{equation*}
$$

Which implies that

$$
\begin{equation*}
\left[\mathfrak{F}\left(y_{21}\right)+\mathfrak{F}\left(x_{21} z_{12}\right)\right] t_{1 n}=\mathfrak{F}\left(\left(y_{21}+x_{21} z_{12}\right) t_{1 n}\right)-b y_{21} \mathfrak{D}\left(t_{1 n}\right) \tag{2.43}
\end{equation*}
$$

for all $x_{21}, y_{21} \in \mathfrak{R}_{21}$ and $z_{12} \in \mathfrak{R}_{12}$. Using definition of multiplicative b-generalized derivation in the last relation, we have

$$
\begin{align*}
{\left[\mathfrak{F}\left(y_{21}\right)\right.} & \left.+\mathfrak{F}\left(x_{21} z_{12}\right)\right] t_{1 n}=\mathfrak{F}\left(y_{21}+x_{21} z_{12}\right) t_{1 n}+b\left(y_{21}+x_{21} z_{12}\right) \mathfrak{D}\left(t_{1 n}\right) \\
& -b y_{21} \mathfrak{D}\left(t_{1 n}\right), \text { for all } x_{21}, y_{21} \in \mathfrak{R}_{21} \text { and } z_{12} \in \mathfrak{R}_{12} . \tag{2.44}
\end{align*}
$$

On simplifying, we find that

$$
\begin{equation*}
\left[\mathfrak{F}\left(y_{21}\right)+\mathfrak{F}\left(x_{21} z_{12}\right)\right] t_{1 n}=\mathfrak{F}\left(y_{21}+x_{21} z_{12}\right) t_{1 n} \tag{2.45}
\end{equation*}
$$

for all $x_{21}, y_{21} \in \mathfrak{R}_{21}$ and $z_{12} \in \mathfrak{R}_{12}$. Since, $t_{1 n}$ is an arbitrary element of $\mathfrak{R}_{1 n}$ for $n=\{1,2\}$, (2.45) reduces to

$$
\begin{equation*}
\left[\mathfrak{F}\left(y_{21}\right)+\mathfrak{F}\left(x_{21} z_{12}\right)-\mathfrak{F}\left(y_{21}+x_{21} z_{12}\right)\right] \mathfrak{R}_{1 n}=(0) . \tag{2.46}
\end{equation*}
$$

Now, for any $t_{2 n} \in \mathfrak{R}_{2 n}$ for $n=\{1,2\}$, from the similar calculation as done above and by using Lemma 2.1(ii), we arrive at

$$
\begin{equation*}
\left[\mathfrak{F}\left(y_{21}\right)+\mathfrak{F}\left(x_{21} z_{12}\right)-\mathfrak{F}\left(y_{21}+x_{21} z_{12}\right)\right] \mathfrak{R}_{2 n}=(0) . \tag{2.47}
\end{equation*}
$$

From (2.46) and (2.47), we obtain

$$
\begin{equation*}
\left[\mathfrak{F}\left(y_{21}\right)+\mathfrak{F}\left(x_{21} z_{12}\right)-\mathfrak{F}\left(y_{21}+x_{21} z_{12}\right)\right] \mathfrak{R}=(0) \tag{2.48}
\end{equation*}
$$

for all $x_{21}, y_{21} \in \mathfrak{R}_{21}$ and $z_{12} \in \mathfrak{R}_{12}$. Using condition (i) in (2.48), we get $\mathfrak{F}\left(y_{21}+x_{21} z_{12}\right)=\mathfrak{F}\left(y_{21}\right)+\mathfrak{F}\left(x_{21} z_{12}\right)$. Thus, we are done.
Lemma 2.5. \mathfrak{F} is additive on \mathfrak{R}_{21}.
Proof. For any $x_{21}, y_{21} \in \mathfrak{R}_{21}, z_{12} \in \mathfrak{R}_{12}$ and $t_{2 n} \in \mathfrak{R}_{2 n}$ for $n=\{1,2\}$, then we obtain

$$
\begin{equation*}
\mathfrak{F}\left(x_{21}+y_{21}\right) z_{12} t_{2 n}=\mathfrak{F}\left(\left(x_{21}+y_{21}\right) z_{12} t_{2 n}\right)-b\left(x_{21}+y_{21}\right) \mathfrak{D}\left(z_{12} t_{2 n}\right) . \tag{2.49}
\end{equation*}
$$

Above relation can be re-written as

$$
\begin{align*}
\mathfrak{F}\left(x_{21}+y_{21}\right) z_{12} t_{2 n} & =\mathfrak{F}\left(\left(x_{21} z_{12}+y_{21}\right)\left(t_{2 n}+z_{12} t_{2 n}\right)\right) \\
& -b\left(x_{21}+y_{21}\right) \mathfrak{D}\left(z_{12} t_{2 n}\right) . \tag{2.50}
\end{align*}
$$

Using the definition of multiplicative b-generalized derivation in (2.50), it yields that

$$
\begin{align*}
& \quad \mathfrak{F}\left(x_{21}+y_{21}\right) z_{12} t_{2 n}=\mathfrak{F}\left(x_{21} z_{12}+y_{21}\right)\left(t_{2 n}+z_{12} t_{2 n}\right) \\
& + \tag{2.51}\\
& +b\left(x_{21} z_{12}+y_{21}\right) \mathfrak{D}\left(t_{2 n}+z_{12} t_{2 n}\right)-b\left(x_{21}+y_{21}\right) \mathfrak{D}\left(z_{12} t_{2 n}\right) .
\end{align*}
$$

Using [1, Lemma 2] in (2.51) and after simplifying, we find that

$$
\begin{equation*}
\mathfrak{F}\left(x_{21}+y_{21}\right) z_{12} t_{2 n}=\mathfrak{F}\left(x_{21} z_{12}+y_{21}\right)\left(t_{2 n}+z_{12} t_{2 n}\right)-b x_{21} \mathfrak{D}\left(z_{12}\right) t_{2 n} . \tag{2.52}
\end{equation*}
$$

Using Lemma 2.4 in (2.52) and after solving it, we see that

$$
\begin{align*}
\mathfrak{F}\left(x_{21}+y_{21}\right) z_{12} t_{2 n} & =\mathfrak{F}\left(x_{21} z_{12}\right) t_{2 n}+\mathfrak{F}\left(x_{21} z_{12}\right) z_{12} t_{2 n}+\mathfrak{F}\left(y_{21}\right) t_{2 n} \\
& +\mathfrak{F}\left(y_{21}\right) z_{12} t_{2 n}-b x_{21} \mathfrak{D}\left(z_{12}\right) t_{2 n} . \tag{2.53}
\end{align*}
$$

Using (ii) and (iv) of Lemma 2.1 in (2.53), we get

$$
\begin{equation*}
\mathfrak{F}\left(x_{21}+y_{21}\right) z_{12} t_{2 n}=\mathfrak{F}\left(x_{21}\right) z_{12} t_{2 n}+\mathfrak{F}\left(y_{21}\right) z_{12} t_{2 n} . \tag{2.54}
\end{equation*}
$$

So, we have

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{21}+y_{21}\right)-\mathfrak{F}\left(x_{21}\right)-\mathfrak{F}\left(y_{21}\right)\right] z_{12} t_{2 n}=0 . \tag{2.55}
\end{equation*}
$$

Since, z_{12} and $t_{2 n}$ is an arbitrary element of \Re_{12} and $\Re_{2 n}$ for $n=\{1,2\}$. So, we have

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{21}+y_{21}\right)-\mathfrak{F}\left(x_{21}\right)-\mathfrak{F}\left(y_{21}\right)\right] \mathfrak{R}_{12} \mathfrak{R}_{2 n}=(0) \tag{2.56}
\end{equation*}
$$

Also, it is clear that

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{21}+y_{21}\right)-\mathfrak{F}\left(x_{21}\right)-\mathfrak{F}\left(y_{21}\right)\right] \mathfrak{R}_{12} \mathfrak{R}_{1 n}=(0) . \tag{2.57}
\end{equation*}
$$

By (2.56) and (2.57), we found that

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{21}+y_{21}\right)-\mathfrak{F}\left(x_{21}\right)-\mathfrak{F}\left(y_{21}\right)\right] \mathfrak{R}_{12} \mathfrak{R}=(0) . \tag{2.58}
\end{equation*}
$$

Using condition (i) in the above relation, we get $\left[\mathfrak{F}\left(x_{21}+y_{21}\right)-\mathfrak{F}\left(x_{21}\right)-\right.$ $\left.\mathfrak{F}\left(y_{21}\right)\right] \mathfrak{R}_{12}=(0)$, i.e., $\left[\mathfrak{F}\left(x_{21}+y_{21}\right)-\mathfrak{F}\left(x_{21}\right)-\mathfrak{F}\left(y_{21}\right)\right] e \mathfrak{R}(1-e)=$ (0). By condition (iii), we have $\left[\mathfrak{F}\left(x_{21}+y_{21}\right)-\mathfrak{F}\left(x_{21}\right)-\mathfrak{F}\left(y_{21}\right)\right] e=0$ which implies that $\mathfrak{F}\left(x_{21}+y_{21}\right) e-\mathfrak{F}\left(x_{21}\right) e-\mathfrak{F}\left(y_{21}\right) e=0$. From the definition of multiplicative b-generalized derivation and using the fact that $\mathfrak{D}(e)=0$, we obtain $\mathfrak{F}\left(\left(x_{21}+y_{21}\right) e\right)-\mathfrak{F}\left(x_{21} e\right)-\mathfrak{F}\left(y_{21} e\right)=0$. Hence, we get the required equation $\mathfrak{F}\left(x_{21}+y_{21}\right)=\mathfrak{F}\left(x_{21}\right)+\mathfrak{F}\left(y_{21}\right)$ for all $x_{21}, y_{21} \in \mathfrak{R}_{21}$.

Lemma 2.6. \mathfrak{F} is additive on $\mathfrak{R}_{11}+\mathfrak{R}_{21}=\mathfrak{R e}$.
Proof. Consider an arbitrary elements $x_{11}, y_{11} \in \mathfrak{R}_{11}$ and $x_{21}, y_{21} \in \mathfrak{R}_{21}$. We have $x_{11}+x_{21}, y_{11}+y_{21} \in \mathfrak{R}_{11}+\mathfrak{R}_{21}$, we get

$$
\begin{equation*}
\mathfrak{F}\left(\left(x_{11}+x_{21}\right)+\left(y_{11}+y_{21}\right)\right)=\mathfrak{F}\left(\left(x_{11}+y_{11}\right)+\left(x_{21}+y_{21}\right)\right) . \tag{2.59}
\end{equation*}
$$

Since, we know that $x_{11}+y_{11} \in \mathfrak{R}_{11}$ and $x_{21}+y_{21} \in \mathfrak{R}_{21}$. By using Lemma 2.3, we have

$$
\begin{equation*}
\mathfrak{F}\left(\left(x_{11}+x_{21}\right)+\left(y_{11}+y_{21}\right)\right)=\mathfrak{F}\left(x_{11}+y_{11}\right)+\mathfrak{F}\left(x_{21}+y_{21}\right) . \tag{2.60}
\end{equation*}
$$

By Lemma 2.1 and Lemma 2.5, \mathfrak{F} is additive on \mathfrak{R}_{11} and \mathfrak{R}_{21}. So, above equation reduces to

$$
\begin{equation*}
\mathfrak{F}\left(\left(x_{11}+x_{21}\right)+\left(y_{11}+y_{21}\right)\right)=\left(\mathfrak{F}\left(x_{11}\right)+\mathfrak{F}\left(y_{11}\right)\right)+\left(\mathfrak{F}\left(x_{21}\right)+\mathfrak{F}\left(y_{21}\right)\right) . \tag{2.61}
\end{equation*}
$$

Above relation can be re-written as

$$
\begin{equation*}
\mathfrak{F}\left(\left(x_{11}+x_{21}\right)+\left(y_{11}+y_{21}\right)\right)=\left(\mathfrak{F}\left(x_{11}\right)+\mathfrak{F}\left(x_{21}\right)\right)+\left(\mathfrak{F}\left(y_{11}\right)+\mathfrak{F}\left(y_{21}\right)\right) . \tag{2.62}
\end{equation*}
$$

Using Lemma 2.3 in (2.62), we obtain $\mathfrak{F}\left(\left(x_{11}+x_{21}\right)+\left(y_{11}+y_{21}\right)\right)=$ $\mathfrak{F}\left(x_{11}+x_{21}\right)+\mathfrak{F}\left(y_{11}+y_{21}\right)$ for all $x_{11}, y_{11} \in \mathfrak{R}_{11}$ and $x_{21}, y_{21} \in \mathfrak{R}_{21}$. Thus, \mathfrak{F} is additive on $\mathfrak{R}_{11}+\mathfrak{R}_{21}=\mathfrak{R} e$, we are done.

Theorem 2.7. Let \mathfrak{R} be a ring with an idempotent e and $1-e$, which satisfies the following conditions;
(i) $x \mathfrak{R} e=0$ implies $x=0$ (and hence $x \mathfrak{R}=0$ implies $x=0$)
(ii) $e \mathfrak{R} x=0$ implies $x=0$ (and hence $\mathfrak{R} x=0$ implies $x=0$)
(iii) $x e \Re(1-e)=0$ implies $x e=0$.

If f is any multiplicative b-generalized derivation of \mathfrak{R} associated with derivation d of \mathfrak{R}, then f is additive.

Proof. As we have defined earlier, we will replace, without loss of generality, the derivation d by the derivation \mathfrak{D} and the multiplicative b generalized derivation f by the multiplicative b-generalized derivation \mathfrak{F}. Let u and v be any elements of \mathfrak{R}. Then we consider $\mathfrak{F}(u)+\mathfrak{F}(v)$. Take an element $k \in \mathfrak{R}_{11}+\mathfrak{R}_{21}=\mathfrak{R e}$. Thus, we observed that $u k$ and $v k$ are also elements of $\mathfrak{R}_{11}+\mathfrak{R}_{21}=\mathfrak{R} e$. So, we have

$$
\begin{equation*}
[\mathfrak{F}(u)+\mathfrak{F}(v)] k=\mathfrak{F}(u) k+\mathfrak{F}(v) k . \tag{2.63}
\end{equation*}
$$

Using definition of multiplicative b-generalized derivation in (2.63), we get

$$
\begin{equation*}
[\mathfrak{F}(u)+\mathfrak{F}(v)] k=\mathfrak{F}(u k)-b u \mathfrak{D}(k)+\mathfrak{F}(v k)-b v \mathfrak{D}(k) . \tag{2.64}
\end{equation*}
$$

As we know that $u k, v k \in \mathfrak{R}_{11}+\mathfrak{R}_{21}=\mathfrak{R} e$, by Lemma 2.6, we find that

$$
\begin{equation*}
[\mathfrak{F}(u)+\mathfrak{F}(v)] k=\mathfrak{F}(u k+v k)-b(u+v) \mathfrak{D}(k) . \tag{2.65}
\end{equation*}
$$

That is

$$
\begin{equation*}
[\mathfrak{F}(u)+\mathfrak{F}(v)] k=\mathfrak{F}((u+v) k)-b(u+v) \mathfrak{D}(k) . \tag{2.66}
\end{equation*}
$$

Using definition of multiplicative b-generalized derivation in (2.66), we see that

$$
\begin{equation*}
[\mathfrak{F}(u)+\mathfrak{F}(v)] k=\mathfrak{F}(u+v) k+b(u+v) \mathfrak{D}(k)-b(u+v) \mathfrak{D}(k) . \tag{2.67}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
[\mathfrak{F}(u)+\mathfrak{F}(v)-\mathfrak{F}(u+v)] k=0 \tag{2.68}
\end{equation*}
$$

Since, k is an arbitrary element of $\mathfrak{R}_{11}+\mathfrak{R}_{21}=\mathfrak{R} e$. Equation (2.68), reduces to $[\mathfrak{F}(u)+\mathfrak{F}(v)-\mathfrak{F}(u+v)] \mathfrak{R} e=(0)$. By condition (i), we obtain $\mathfrak{F}(u)+\mathfrak{F}(v)-\mathfrak{F}(u+v)=0$. Which implies that $\mathfrak{F}(u+v)=\mathfrak{F}(u)+\mathfrak{F}(v)$ for all $u, v \in \mathfrak{R}$.

This shows that the multiplicative b-generalized derivation \mathfrak{F}, and also f, is additive.

Acknowledgments

The authors are greatly indebted to the referee for his/her valuable suggestions, which have immensely improved the paper. The second author is supported by DST-SERB project MATRICS, File No. MTR/2022/000153.

References

1. M. N. Daif, When is a multiplicative derivation additive?, Int. J. Math. and Math. Sci., (3) 14 (1991), 615-618.
2. M. N. Daif and M. S. Tammam-El-Sayiad, Multiplicative generalized derivations which are additive, East-West J. Math., (1) 9 (1997), 31-37.
3. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., 37 (1964).
4. W. S. Martindale, When are multiplicative mappings additive?, Proc. Amer. Math. Soc., (3) 21 (1969), 695-698.
5. N. Rehman, M. Hafedh Alnoghashi and M. Hongan, A note on generalized derivations on prime ideals, J. Algebra Relat. Topics, (1) 10 (2022), 159-169.
6. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
7. Y. Wang, The additivity of multiplicative maps on rings, Comm. Alg., (6) 37 (2009), 2351-2356.

Wasim Ahmed

Department of Mathematics, Aligarh Muslim University, 202002, Aligarh, India.
Email: wasim10041994@gmail.com

Muzibur Rahman Mozumder

Department of Mathematics, Aligarh Muslim University, 202002, Aligarh, India.
Email: muzibamu81@gmail.com

[^0]: MSC(2010): Primary: 16W25; Secondary: 17C27, 11Y50
 Keywords: Associative ring, derivation, multiplicative b-generalized derivation, Peirce decomposition.
 Received: 12 October 2023, Accepted: 6 March 2023.
 $*$ Corresponding author .

