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SINGLE VALUED NEUTROSOPHIC IDEALS OF
PSEUDO MV -ALGEBRAS

M. AALY KOLOGANI, F. KARAZMA, R.A. BORZOOEI ∗ AND Y.B. JUN

Abstract. After introducing the concept of single valued neutro-
sophic ideal in a pseudo MV-algebra, its properties are examined.
The various conditions under which a single valued neutrosophic
set can be a single valued neutrosophic ideal are examined. Char-
acterizations of a single valued neutrosophic ideal of a pseudo MV-
algebra are considered.

1. Introduction

In 1965, Zadeh introduced the concept of fuzzy set to deal with
problems with imprecise information (see [28]). Zadeh used one single
value to represent the grade of membership of the fuzzy set defined in
a universe. There is a difficulty that not all problems with imprecise
information are expressed in the class of membership value by a single
point. To overcome such difficulties, the notion of interval valued fuzzy
sets is adopted by Turksen (see [26]). As an extended notion of fuzzy
sets, Atanassov defined intuitionistic fuzzy sets which are character-
ized by grade of membership and non-membership functions (see [1]).
In intuitionistic fuzzy sets, the membership (resp. non-membership)
function represents truth (resp. false) part. Smarandache used in-
determinacy membership function as an independent component to
introduce neutrosophic sets by using three components: truth, inde-
terminacy and falsehood (see [22, 23]). Wang et al. introduced the
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notion of a single valued neutrosophic set which is an instance of neu-
trosophic sets which can be used in real scientific and engineering ap-
plications, etc. (see [27]). It is already well known that neutrosophic
sets are being applied in almost every field of study. In particular,
single valued neutrosophic sets are applied to BCK/BCI-algebras (see
[3, 4, 12, 13, 14, 15, 16, 18, 24, 25]). In 1958, C.C. Chang introduced
MV-algebras which are an extension of a two-valued reasoning (see
[5]). As a non-commutative generalization of MV-algebras, Georgescu
and Iorgulescu introduced pseudo MV-algebras (see [11]). Since then,
many researchers have been studying various things about pseudo MV-
algebras (see [6, 7, 8, 9, 10],).

The purpose of this paper is to apply the single valued neutrosophic
set to the pseudo MV-algebra. We introduce the concepts of a sin-
gle valued neutrosophic ideal in a pseudo MV-algebra, and investigate
several properties. We present conditions under which a single valued
neutrosophic set can be a single valued neutrosophic ideal. We discuss
characterizations of a single valued neutrosophic ideal.

2. Preliminaries

This section lists well-known basic knowledge about pseudo MV-
algebras and single valued neutrosophic sets required in this paper.
For further information, please refer to references [11] and [27].

Let M := (M,⊕,− ,∼ , 0, 1) be an algebra of type (2, 1, 1, 0, 0). We
set a new binary operation � on M via x � y = (y− ⊕ x−)∼ for all
x, y ∈ M . We will write x ⊕ y � z instead of x ⊕ (y � z), that is, the
operation “�” is prior to the operation “⊕”.

A pseudo MV-algebra is an algebra M := (M,⊕,− ,∼ , 0, 1) of type
(2, 1, 1, 0, 0) such that

(M1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z,
(M2) x⊕ 0 = 0⊕ x = x,
(M3) x⊕ 1 = 1⊕ x = 1,
(M4) 1∼ = 0, 1− = 0,
(M5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−,
(M6) x⊕ x∼ � y = y ⊕ y∼ � x = x� y− ⊕ y = y � x− ⊕ x,
(M7) x� (x− ⊕ y) = (x⊕ y∼)� y,
(M8) (x−)∼ = x

for all x, y, z ∈M . We define a binary relation “≤” on M as follows:

(∀x, y ∈M)
(
x ≤ y ⇔ x− ⊕ y = 1

)
. (2.1)
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Then “≤” is a partial order and (M,≤) is a lattice in with the join
x ∨ y and the meet x ∧ y of any elements x and y are given as follows:

x ∨ y = x⊕ x∼ � y = x� y− ⊕ y,
x ∧ y = x� (x− ⊕ y) = (x⊕ y∼)� y.

Proposition 2.1. Every pseudo MV-algebra M := (M,⊕,− ,∼ , 0, 1)
satisfies:

0∼ = 0− = 1, (2.2)

(∀x ∈M)
(
(x∼)− = x

)
, (2.3)

(∀x ∈M) (x� 1 = 1� x = x) , (2.4)

(∀x ∈M) (x� 0 = 0� x = 0) , (2.5)

(∀x ∈M)
(
x⊕ x∼ = 1, x− ⊕ x = 1

)
, (2.6)

(∀x ∈M)
(
x� x− = 0, x∼ � x = 0

)
, (2.7)

(∀x, y, z ∈M) (x ≤ y ⇒ x� z ≤ y � z, z � x ≤ z � y) , (2.8)

Definition 2.2. A subset F of a pseudo MV-algebraM := (M,⊕,− ,∼ , 0, 1)
is called an ideal of M if it satisfies the following conditions:

(I1) 0 ∈ F ,
(I2) (∀x, y ∈M) (x, y ∈ F ⇒ x⊕ y ∈ F ),
(I3) (∀x, y ∈M) (x ∈ F, y ≤ x ⇒ y ∈ F ).

Let M be a non-empty set. A single valued neutrosophic set (SVNS)
in M is a structure of the form:

N∼ := {〈x; ÑT (x), ÑI(x), ÑF (x)〉 | x ∈M},

where ÑT : M → [0, 1] is a truth membership function, ÑI : M → [0, 1]

is an indeterminate membership function, and ÑF : M → [0, 1] is a
false membership function. For the sake of simplicity, we shall use the

symbol N∼ := (ÑT , ÑI , ÑF ) for the SVNS

N∼ := {〈x; ÑT (x), ÑI(x), ÑF (x)〉 | x ∈M}.

Given an SVNSN∼ := (ÑT , ÑI , ÑF ) in M , we consider the following
sets.

M(ÑT ;α) := {x ∈M | ÑT (x) ≥ α},

M(ÑI ; β) := {x ∈M | ÑI(x) ≥ β},

M(ÑF ; γ) := {x ∈M | ÑF (x) ≤ γ},

which are called SVNS level subsets of M where α, β, γ ∈ [0, 1].
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We consider the following sets.

ΓTF
Ñ := {(x, y) ∈M ×M | ÑT (x) ≥ ÑT (y), ÑF (x) ≤ ÑF (y)}, (2.9)

ΓI
Ñ := {(x, y) ∈M ×M | ÑI(x) ≥ ÑI(y)}, (2.10)

ΓTF
Ñ (min,max)

:=

{
z
{x,y} ∈

M
M×M |

ÑT (z) ≥ min{ÑT (x), ÑT (y)}
ÑF (z) ≤ max{ÑF (x), ÑF (y)}

}
,

(2.11)

ΓI
Ñ (min,max)

:=
{

z
{x,y} ∈

M
M×M | ÑI(z) ≥ min{ÑI(x), ÑI(y)}

}
.

(2.12)

It is clear that

(x, y) ∈ ΓTF
Ñ ⇔ x

{y,y} ∈ ΓTF
Ñ (min,max)

, (2.13)

(x, y) ∈ ΓI
Ñ ⇔

x
{y,y} ∈ ΓI

Ñ (min,max)
, (2.14)

(x, y) ∈ ΓTF
Ñ ∩ ΓI

Ñ ⇔
x
{y,y} ∈ ΓTF

Ñ (min,max)
∩ ΓI

Ñ (min,max)
, (2.15)

(x, y) ∈ ΓTF
Ñ , (y, z) ∈ ΓTF

Ñ ⇒ (x, z) ∈ ΓTF
Ñ , (2.16)

(x, y) ∈ ΓI
Ñ , (y, z) ∈ ΓI

Ñ ⇒ (x, z) ∈ ΓI
Ñ , (2.17)

(x, y) ∈ ΓTF
Ñ ∩ ΓI

Ñ , (y, z) ∈ ΓTF
Ñ ∩ ΓI

Ñ ⇒ (x, z) ∈ ΓTF
Ñ ∩ ΓI

Ñ , (2.18)

for all x, y, z ∈M .

Proposition 2.3 ([2]). Let N∼ := (ÑT , ÑI , ÑF ) be an SVNS in M .
For any a, x, y, z ∈M , we have

a
{x,y} ∈ ΓTF

Ñ (min,max)
, (y, z) ∈ ΓTF

Ñ ⇒ a
{x,z} ∈ ΓTF

Ñ (min,max)
, (2.19)

(a, x) ∈ ΓTF
Ñ , x

{y,z} ∈ ΓTF
Ñ (min,max)

⇒ a
{y,z} ∈ ΓTF

Ñ (min,max)
. (2.20)

Corollary 2.4 ([2]). Let N∼ := (ÑT , ÑI , ÑF ) be an SVNS in M . For
any a, x, y, z ∈M , we have

a
{x,y} ∈ ΓI

Ñ (min,max)
, (y, z) ∈ ΓI

Ñ ⇒
a
{x,z} ∈ ΓI

Ñ (min,max)
, (2.21)

(a, x) ∈ ΓI
Ñ ,

x
{y,z} ∈ ΓI

Ñ (min,max)
⇒ a

{y,z} ∈ ΓI
Ñ (min,max)

. (2.22)

3. Single valued neutrosophic ideals

In what follows, let M := (M,⊕,− ,∼ , 0, 1) denote a pseudo MV-
algebra unless otherwise specified.

Definition 3.1. An SVNS N∼ := (ÑT , ÑI , ÑF ) in M is called a
single valued neutrosophic ideal (briefly, SVN-ideal) of M if the sets

M(ÑT ;α), M(ÑI ; β) and M(ÑF ; γ) are ideals of M for all α, β, γ ∈
[0, 1] with M(ÑT ;α) 6= ∅, M(ÑI ; β) 6= ∅ and M(ÑF ; γ) 6= ∅.



SINGLE VALUED NEUTROSOPHIC IDEALS OF PSEUDO MV -ALGEBRAS 127

Example 3.2. For any subset G of M , let N∼ := (ÑT , ÑI , ÑF ) be an
SVNS in M defined as follows:

ÑT : M → [0, 1], x 7→
{

0.73 if x ∈ G,
0.45 if x ∈M \G,

ÑI : M → [0, 1], x 7→
{

0.38 if x ∈ G,
0.19 if x ∈M \G,

ÑF : M → [0, 1], x 7→
{

0.27 if x ∈ G,
0.72 if x ∈M \G,

It is routine to veryfy that if G is an ideal ofM, then N∼ := (ÑT , ÑI ,

ÑF ) is an SVN-ideal of M.

Example 3.3. Let M := {(1, y) ∈ R× R | y ≥ 0} ∪ {(2, y) ∈ R× R |
y ≤ 0}. For any (a, b), (c, d) ∈ R× R, we define binary operation “⊕”
and unary operations “−” and “∼” as follows:

⊕ : M ×M →M, ((a, b), (c, d)) 7→

 (1, b+ d) if a = c = 1,
(2, ad+ b) if ac = 2, ad+ b ≤ 0,
(2, 0) otherwise,

− : M →M, (a, b) 7→
(
2
a
,−2b

a

)
,

and
∼ : M →M, (a, b) 7→

(
2
a
,− b

a

)
.

Then M := (M,⊕,− ,∼ , 0∗, 1∗) is a pseudo MV-algebra where 0∗ :=
(1, 0) and 1∗ = (2, 0) (see [6], [10]). For two subsets F := {(1, y) | y >
0} and G := {(2, y) | y < 0} of M , we define an SVNS N∼ := (ÑT , ÑI ,

ÑF ) in M := (M,⊕,− ,∼ , 0∗, 1∗) as follows:

ÑT : M → [0, 1], x 7→

 α1 if x = 0∗,
α2 if x ∈ F,
α3 if x ∈ G ∪ {1∗},

ÑI : M → [0, 1], x 7→

 β1 if x = 0∗,
β2 if x ∈ F,
β3 if x ∈ G ∪ {1∗},

and

ÑF : M → [0, 1], x 7→

 γ1 if x = 0∗,
γ2 if x ∈ F,
γ3 if x ∈ G ∪ {1∗},

where α1 > α2 > α3, β1 > β2 > β3, γ1 < γ2 < γ3 in [0, 1]. It is routine

to verify that N∼ := (ÑT , ÑI , ÑF ) is an SVN-ideal of M.
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Proposition 3.4. Every SVN-ideal N∼ := (ÑT , ÑI , ÑF ) of M satis-
fies:

(∀x, y ∈M)
(

x⊕y
{x,y} ∈ ΓTF

Ñ (min,max)

)
, (3.1)

(∀x, y ∈M)
(
x ≤ y ⇒ (x, y) ∈ ΓTF

Ñ

)
. (3.2)

Proof. Let N∼ := (ÑT , ÑI , ÑF ) be an SVN-ideal of M. Then the

setsM(ÑT ;α) andM(ÑF ; γ) are ideals ofM for all α, γ ∈ [0, 1] with

M(ÑT ;α) 6= ∅ and M(ÑF ; γ) 6= ∅. Suppose that a⊕b
{a,b} /∈ ΓTF

Ñ (min,max)

for some a, b ∈M . Then

ÑT (a⊕b) < min{ÑT (a), ÑT (b)} or ÑF (a⊕b) > max{ÑF (a), ÑF (b)}.

If ÑT (a⊕ b) < min{ÑT (a), ÑT (b)}, then

a ∈M(ÑT ;αT ) and b ∈M(ÑT ;αT ),

for αT := min{ÑT (a), ÑT (b)}. But a⊕b /∈M(ÑT ;αT ), which is a con-

tradiction. If ÑF (a ⊕ b) > max{ÑF (a), ÑF (b)}, then a ∈ M(ÑF ; γF )

and b ∈ M(ÑF ; γF ) for γF := max{ÑF (a), ÑF (b)}. But a ⊕ b /∈
M(ÑF ; γF ), which is a contradiction. Hence x⊕y

{x,y} ∈ ΓTF
Ñ (min,max)

for

all x, y ∈ M . Let x, y ∈ M be such that x ≤ y. If (x, y) /∈ ΓTF
Ñ , then

ÑT (x) < ÑT (y) or ÑF (x) > ÑF (y), which imply that

ÑT (x) < αT := 1
2

(
ÑT (x) + ÑT (y)

)
< ÑT (y)

and

ÑF (x) > γF := 1
2

(
ÑF (x) + ÑF (y)

)
> ÑF (y).

It follows that y ∈M(ÑT ;αT ) and x /∈M(ÑT ;αT ), or y ∈M(ÑF ; γF )

and x /∈ M(ÑF ; γF ). This is a contradiction, and therefore (x, y) ∈
ΓTF
Ñ . �

Corollary 3.5. Every SVN-ideal N∼ := (ÑT , ÑI , ÑF ) of M satisfies:

(∀x, y ∈M)
(

x⊕y
{x,y} ∈ ΓI

Ñ (min,max)

)
, (3.3)

(∀x, y ∈M)
(
x ≤ y ⇒ (x, y) ∈ ΓI

Ñ

)
. (3.4)

We present conditions under which an SVNS can be an SVN-ideal.

Theorem 3.6. If an SVNS N∼ := (ÑT , ÑI , ÑF ) inM satisfies (3.1),
(3.2), (3.3) and (3.4), then N∼ is an SVN-ideal of M.
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Proof. Assume that N∼ := (ÑT , ÑI , ÑF ) in M satisfies (3.1), (3.2),

(3.3) and (3.4). Let α, β, γ ∈ [0, 1] be such that M(ÑT ;α) 6= ∅,
M(ÑI ; β) 6= ∅ and M(ÑF ; γ) 6= ∅. It is clear that

0 ∈M(ÑT ;α) ∩M(ÑI ; β) ∩M(ÑF ; γ).

If x, y ∈M(ÑT ;α) ∩M(ÑI ; β) ∩M(ÑF ; γ), then

x⊕ y ∈M(ÑT ;α) ∩M(ÑI ; β) ∩M(ÑF ; γ),

by (3.1) and (3.3). Let x, y ∈ M be such that y ≤ x and x ∈
M(ÑT ;α) ∩ M(ÑI ; β) ∩ M(ÑF ; γ). Using (3.2) and (3.4), we have
(y, x) ∈ ΓTF

Ñ ∩ ΓI
Ñ and thus

y ∈M(ÑT ;α) ∩M(ÑI ; β) ∩M(ÑF ; γ).

Hence,M(ÑT ;α),M(ÑI ; β) andM(ÑF ; γ) are ideals ofM, and there-
fore ,N∼ is an SVN-ideal of M. �

Proposition 3.7. If an SVNS N∼ := (ÑT , ÑI , ÑF ) inM is an SVN-
ideal of M, then

(∀x ∈M)
(
(0, x) ∈ ΓTF

Ñ

)
. (3.5)

Proof. This is obtained directly from (3.2). �

Corollary 3.8. Every SVN-ideal N∼ := (ÑT , ÑI , ÑF ) of M satisfies:

(∀x ∈M)
(
(0, x) ∈ ΓI

Ñ

)
. (3.6)

Proposition 3.9. Every SVN-ideal N∼ := (ÑT , ÑI , ÑF ) of M satis-
fies:

(∀x, y ∈M)
(
(x ∧ y, x) ∈ ΓTF

Ñ

)
, (3.7)

(∀x, y ∈M)
(

x�y
{x,y} ∈ ΓTF

Ñ (min,max)

)
, (3.8)

(∀x, y ∈M)
(

x∧y
{x,y} ∈ ΓTF

Ñ (min,max)

)
, (3.9)

(∀x, y ∈M)
(

x∨y
{x,y} ∈ ΓTF

Ñ (min,max)

)
, (3.10)

(∀x, y ∈M)
(

y
{x,x∼�y} ∈ ΓTF

Ñ (min,max)

)
. (3.11)

Proof. Since x ∧ y ≤ x for all x, y ∈ M , we get (x ∧ y, x) ∈ ΓTF
Ñ by

(3.2). Since x � y ≤ x ∧ y ≤ x ∨ y ≤ x ⊕ y for all x, y ∈ M , we have
(x� y, x⊕ y) ∈ ΓTF

Ñ , (x ∧ y, x⊕ y) ∈ ΓTF
Ñ and (x ∨ y, x⊕ y) ∈ ΓTF

Ñ by

(3.2). It follows from (2.20) and (3.1) that
x�y
{x,y} ∈ ΓTF

Ñ (min,max)
, x∧y
{x,y} ∈ ΓTF

Ñ (min,max)
and x∨y

{x,y} ∈ ΓTF
Ñ (min,max)

.
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Since y ≤ x∨y = x⊕x∼�y for all x, y ∈M , we obtain (y, x⊕x∼�y) ∈
ΓTF
Ñ by (3.2). Using (3.1) induces x⊕x∼�y

{x,x∼�y} ∈ ΓTF
Ñ (min,max)

, which implies

from (2.20) that y
{x,x∼�y} ∈ ΓTF

Ñ (min,max)
. �

Corollary 3.10. Every SVN-ideal N∼ := (ÑT , ÑI , ÑF ) ofM satisfies:

(∀x, y ∈M)
(
(x ∧ y, x) ∈ ΓI

Ñ

)
, (3.12)

(∀x, y ∈M)
(

x�y
{x,y} ∈ ΓI

Ñ (min,max)

)
, (3.13)

(∀x, y ∈M)
(

x∧y
{x,y} ∈ ΓI

Ñ (min,max)

)
, (3.14)

(∀x, y ∈M)
(

x∨y
{x,y} ∈ ΓI

Ñ (min,max)

)
, (3.15)

(∀x, y ∈M)
(

y
{x,x∼�y} ∈ ΓI

Ñ (min,max)

)
. (3.16)

Proposition 3.11. Let N∼ := (ÑT , ÑI , ÑF ) be an SVNS in M. If
N∼ satisfies (3.5) and (3.11), then N∼ satisfies (3.2) and

(∀x, y ∈M)
(

y
{x,y�x−} ∈ ΓTF

Ñ (min,max)

)
. (3.17)

Proof. Assume that N∼ satisfies (3.5) and (3.11). Let x, y ∈M be such
that y ≤ x. Using (2.7) and (2.8), we have x∼ � y ≤ x∼ � x = 0 and
so x∼� y = 0. Thus y

{x,0} = y
{x,x∼�y} ∈ ΓTF

Ñ (min,max)
by (3.11). It follows

from (2.19) and (3.5) that y
{x,x} ∈ ΓTF

Ñ (min,max)
, that is, (y, x) ∈ ΓTF

Ñ .

Note that

(y � x−)∼ � (y � x− ⊕ x) ≤ (y � x−)∼ � (y � x−)⊕ x = 0⊕ x = x,

which implies from (3.2) that(
(y � x−)∼ � (y � x− ⊕ x), x

)
∈ ΓTF

Ñ .

Now, since x∼�y ≤ x⊕x∼�y = y�x−⊕x, we get (x∼ � y, y � x− ⊕ x) ∈
ΓTF
Ñ by (3.2). Combining this and (3.11), we have y

{x,y�x−⊕x} ∈ ΓTF
Ñ (min,max)

.

If we take x := y � x− and y := y � x− ⊕ x in (3.11), then

y�x−⊕x
{y�x−, (y�x−)∼�(y�x−⊕x)} ∈ ΓTF

Ñ (min,max)
,

and so y�x−⊕x
{y�x−, x} ∈ ΓTF

Ñ (min,max)
by (2.19). On the other hand, since

y ≤ y ∨ x = y � x− ⊕ x, we get (y, y � x− ⊕ x) ∈ ΓTF
Ñ by (3.2). Hence

using (2.20) induces y
{x,y�x−} ∈ ΓTF

Ñ (min,max)
. �
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Corollary 3.12. Let N∼ := (ÑT , ÑI , ÑF ) be an SVNS in M. If N∼
satisfies (3.6) and (3.16), then N∼ satisfies (3.4) and

(∀x, y ∈M)
(

y
{x,y�x−} ∈ ΓI

Ñ (min,max)

)
. (3.18)

Theorem 3.13. If an SVNS N∼ := (ÑT , ÑI , ÑF ) in M satisfies
(3.5), (3.6), (3.17) and (3.18), then N∼ is an SVN-ideal of M.

Proof. Let x, y ∈ M be such that x ≤ y. Then x � y− ≤ y � y− = 0
by (2.7) and (2.8), and so x � y− = 0. Hence x

{y,0} = x
{y,x�y−} ∈

ΓTF
Ñ (min,max)

∩ ΓI
Ñ (min,max)

by (3.17) and (3.18). Since (0, y) ∈ ΓTF
Ñ ∩

ΓI
Ñ by (3.5) and (3.6), it follows from (2.19) and (2.21) that x

{y,y} ∈
ΓTF
Ñ (min,max)

∩ΓI
Ñ (min,max)

, that is, (x, y) ∈ ΓTF
Ñ (min,max)

∩ΓI
Ñ (min,max)

which

shows that (3.2) and (3.4) are valid. Note that (x ⊕ y) � y− = (x ⊕
(y−)∼) � y− = x ∧ y− ≤ x for all x, y ∈ M . Thus ((x ⊕ y) � y−, x) ∈
ΓTF
Ñ ∩ ΓI

Ñ by (3.2) and (3.4). If we take x := y and y := x ⊕ y in

(3.17) and (3.18), then x⊕y
{y,(x⊕y)�y−} ∈ ΓTF

Ñ (min,max)
∩ ΓI

Ñ (min,max)
. Hence

x⊕y
{y,x} ∈ ΓTF

Ñ (min,max)
∩ ΓI

Ñ (min,max)
by (2.19) and (2.21). Using Theorem

3.6, we conclude that N∼ is an SVN-ideal of M. �

Theorem 3.14. If an SVNS N∼ := (ÑT , ÑI , ÑF ) in M satisfies
(3.5), (3.6) and

(∀x, y, z ∈M)
(

x�y
{x�y�z, z∼�y} ∈ ΓTF

Ñ (min,max)
∩ ΓI

Ñ (min,max)

)
, (3.19)

then N∼ is an SVN-ideal of M.

Proof. If we change x, y and z in (3.19) to y, 1 and x− respectively,
then

y
{y�x−, x} = y�1

{y�1�x−, (x−)∼�1} ∈ ΓTF
Ñ (min,max)

∩ ΓI
Ñ (min,max)

.

Hence N∼ is an SVN-ideal of M by Theorem 3.13. �

Theorem 3.15. If an SVNS N∼ := (ÑT , ÑI , ÑF ) in M satisfies
(3.5), (3.6) and

(∀x, y, z ∈M)
(

x�y
{x�y�z−, z�y} ∈ ΓTF

Ñ (min,max)
∩ ΓI

Ñ (min,max)

)
, (3.20)

then N∼ is an SVN-ideal of M.

Proof. If we change z in (3.20) to z∼ and use (2.3), then
x�y

{x�y�z, z∼�y} = x�y
{x�y�(z∼)−, z∼�y} ∈ ΓTF

Ñ (min,max)
∩ ΓI

Ñ (min,max)
.

Therefore N∼ is an SVN-ideal of M by Theorem 3.14. �
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The above results are combined to obtain the following characteri-
zation of an SVN-ideal:

Theorem 3.16. Given an SVNS N∼ := (ÑT , ÑI , ÑF ) in M, the
following are equivalent.

(i) N∼ is an SVN-ideal of M.
(ii) N∼ satisfies (3.1), (3.2), (3.3) and (3.4).

(iii) N∼ satisfies (3.5), (3.6), (3.11) and (3.16).
(iv) N∼ satisfies (3.5), (3.6), (3.17) and (3.18).

Given a subset A of M , we consider two SVNSs NA
∼ := (ÑA

T , ÑA
I ,

ÑA
F ) and χ∼ := (χ̃T , χ̃I , χ̃F ) in M in which

ÑA
T : M → [0, 1], x 7→

{
α1 if x ∈ A,
α2 if x ∈M \ A,

ÑA
I : M → [0, 1], x 7→

{
β1 if x ∈ A,
β2 if x ∈M \ A,

ÑA
F : M → [0, 1], x 7→

{
γ1 if x ∈ A,
γ2 if x ∈M \ A,

where α1 > α2, β1 > β2 and γ1 < γ2 in [0, 1], and

χ̃T : M → [0, 1], x 7→
{

1 if x ∈ A,
0 if x ∈M \ A,

χ̃I : M → [0, 1], x 7→
{

1 if x ∈ A,
0 if x ∈M \ A,

χ̃F : M → [0, 1], x 7→
{

0 if x ∈ A,
1 if x ∈M \ A.

We know that the SVNS NA
∼ := (ÑA

T , ÑA
I , ÑA

F ) is a generalization of
the SVNS χ∼ := (χ̃T , χ̃I , χ̃F ), which is called the characteristic SVNS.

Proposition 3.17. Every subset A is an ideal of M if and only if the

SVNS NA
∼ := (ÑA

T , ÑA
I , ÑA

F ) is an SVN-ideal of M.

Proof. Straightforward. �

Corollary 3.18. Every subset F is an ideal of M if and only if the
characteristic SVNS χ∼ := (χ̃T , χ̃I , χ̃F ) is an SVN-ideal of M.

Theorem 3.19. If N∼ := (ÑT , ÑI , ÑF ) is an SVN-ideal of M, then
the sets

MÑT
:= {x ∈M | ÑT (x) = ÑT (0)} and MÑF

:= {x ∈M | ÑF (x) = ÑF (0)},
are ideals of M.
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Proof. Straightforward. �

Corollary 3.20. If N∼ := (ÑT , ÑI , ÑF ) is an SVN-ideal of M, then
the set

MÑI
:= {x ∈M | ÑI(x) = ÑI(0)},

is an ideal of M.

Corollary 3.21. If N∼ := (ÑT , ÑI , ÑF ) is an SVN-ideal of M, then
the set

MN∼ :=MÑT
∩MÑI

∩MÑF
,

is an ideal of M.

The converse of Corollary 3.21 may not be true in general as seen in
the following example.

Example 3.22. Consider the pseudo MV-algebra M in Example 3.3.

Let N∼ := (ÑT , ÑI , ÑF ) be an SVNS in M which is given as follows:

ÑT : M → [0, 1], x 7→
{

4
5

if x = 0∗,
1
2

if x 6= 0∗,

ÑI : M → [0, 1], x 7→
{

1
3

if x = 0∗,
3
4

if x 6= 0∗,

ÑF : M → [0, 1], x 7→
{

3
5

if x = 0∗,
1
5

if x 6= 0∗,

Then MN∼ = {0∗} which is an ideal of M. But N∼ := (ÑT , ÑI , ÑF )
is not an SVN-ideal ofM since

(
0∗, (1, 3

5
)
)
/∈ ΓI

Ñ and/or
(
0∗, (2,−3

4
)
)
/∈

ΓTF
Ñ .

Theorem 3.23. Given a subset A of M , the SVNS NA
∼ := (ÑA

T , ÑA
I ,

ÑA
F ) is an SVN-ideal of M if and only if MNA

∼
is an ideal of M.

Proof. It is clear since MNA
∼

= A. �

Proposition 3.24. If N∼ := (ÑT , ÑI , ÑF ) is an SVN-ideal of M,

then the sets Ñ+
T := {x ∈ M | ÑT (x) > 0} and Ñ−F := {x ∈ M |

ÑT (x) < 1} are ideals of M when they are nonempty.

Proof. Assume that Ñ+
T 6= ∅ 6= Ñ

−
F . Obviously, 0 ∈ Ñ+

T ∩Ñ
−
F . Assume

that x, y ∈ Ñ+
T ∩ Ñ

−
F for all x, y ∈ M . Then ÑT (x) > 0, ÑT (y) > 0,

ÑF (x) < 1 and ÑF (y) < 1. It follows from (3.1) that

ÑT (x⊕y) ≥ min{ÑT (x), ÑT (y)} > 0 and ÑF (x⊕y) ≤ max{ÑF (x), ÑF (y)} < 1.
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Hence x ⊕ y ∈ Ñ+
T ∩ Ñ

−
F . Let x, y ∈ M be such that x ≤ y and

y ∈ Ñ+
T ∩Ñ

−
F . Then (x, y) ∈ ΓTF

Ñ by (3.2), and so ÑT (x) ≥ ÑT (y) > 0

and ÑF (x) ≤ ÑF (y) < 1. Thus x ∈ Ñ+
T ∩ Ñ

−
F . Therefore Ñ+

T and Ñ−F
are ideals of M. �

Corollary 3.25. If N∼ := (ÑT , ÑI , ÑF ) is an SVN-ideal of M, then
the set

Ñ+
I := {x ∈M | ÑI(x) > 0},

is an ideal of M when it is nonempty.

Corollary 3.26. If N∼ := (ÑT , ÑI , ÑF ) is an SVN-ideal of M, then

the set Ñ+
T ∩ Ñ

+
I ∩ Ñ

−
F is an ideal of M when it is nonempty.

4. Conclusions and Future Studies

MV-algebras were defined by Chang (1958) as an algebraic counter-
part of many-valued reasoning. Pseudo MV-algebras generalize MV-
algebras, and pseudo MV-algebras are an algebraic counterpart of non-
commutative reasoning. Using an indeterminacy membership function
as an independent component, Smarandache introduced the notion of
neutrosophic sets which are a part of neutrosophy which studies the
origin, nature, and scope of neutralities, as well as their interactions
with different ideational spectra. It is necessary to specify the neu-
trosophic set from a scientific or engineering perspective. Otherwise,
it will be difficult to apply it to actual applications. So, Wang et al.
introduced single valued neutrosophic sets to enhance its ease in the
real application. The aim of this paper was to study the ideal the-
ory of pseudo MV-algebras using single valued neutrosophic sets. We
have introduced the concepts of a single valued neutrosophic ideal in
a pseudo MV-algebra, and have investigated several properties. We
have presented conditions under which a single valued neutrosophic
set can be a single valued neutrosophic ideal, and have discussed char-
acterizations of a single valued neutrosophic ideal. Using the ideas
and results of this paper, we will study the neutroscopic set theory in
the related algebraic structures: pseudo effect algebras, pseudo BCK-
algebras, pseudo BE-algebras, pseudo hoops, pseudo equality algebras,
etc., in the future.
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