Journal of Algebra and Related Topics

Vol. 11, No 1, (2023), pp 137-146

ON LIE IDEALS AND SYMMETRIC BI-SEMIDERIVATIONS IN PRIME RINGS

D. YILMAZ * AND H. YAZARLI

Abstract

In this paper, we investigate the relationship between symmetric bi-semiderivations and Lie ideals of a prime ring. Additionally, we extend some well-known results concerning symmetric biderivations of prime rings to symmetric bi-semiderivations.

1. Introduction

Throughout this paper, R will represent an associative ring and Z will be its center. The symbol $[r, s]$ stands for $r s-s r$ and the symbol $r \circ s$ represent for $r s+s r$. Recall that if $r R s=(0)$ implies $r=0$ or $s=0$, then a ring R is called prime. R is called semiprime if $r R r=(0)$ implies $r=0$. An additive subgroup L of R is said to be a Lie ideal if $[L, R] \subseteq L$. A Lie ideal L is said to be square closed if for all $l \in L$, $l^{2} \in L$.

An additive map $d: R \rightarrow R$ is called derivation if $d(r s)=d(r) s+$ $r d(s)$ holds for all $r, s \in R$. A mapping f is said to be commuting on R if $[f(r), r]=0$ for all $r \in R$. The concept of commuting maps in prime rings with derivations was initiated by Posner [5]. Since then, a lot of work has been done in this concept. The notion of symmetric bi-derivation was introduced by Maksa [4]. A mapping $D: R \times R \rightarrow R$ is said to be symmetric if for all $r, s \in R, D(r, s)=D(s, r)$. A map $d: R \rightarrow R$ defined by $d(r)=D(r, r)$ is called the trace of D, where $D: R \times R \rightarrow R$ is a symmetric mapping. It is obvious that if D is bi-additive (i.e., additive in both arguments), then the trace of D
satisfies the identity $d(r+s)=d(r)+d(s)+2 D(r, s)$ for all $r, s \in R$. Also, we will use the fact that the trace of a symmetric bi-additive mapping is an even function. $D: R \times R \rightarrow R$ is called a symmetric biderivation if $D(r s, t)=D(r, t) s+r D(s, t)$ is fulfilled for all $r, s, t \in R$. In [7], introduced some results of symmetric bi-derivations on prime and semiprime rings, then the similar results on Lie ideals of R obtained in ([2], [8]). In [1], Ali and Kumar investigated cases where a nonzero square closed $*$-Lie ideal U of a $*$-prime ring R of $\operatorname{char} R \neq 2^{n}-2$ is central. Rehman and Ansari investigated the commutativity of prime and semiprime rings with symmetric bi-derivations in [6].

The notion of symmetric bi-semiderivations on prime rings is described in [9]. A symmetric bi-additive function $D: R \times R \rightarrow R$ is called a symmetric bi-semiderivation associated with a function $f: R \rightarrow R$ (or simply a symmetric bi-semiderivation) if $D(r s, t)=D(r, t) f(s)+$ $r D(s, t)=D(r, t) s+f(r) D(s, t)$ and $d(f(r))=f(d(r))$ for all $r, s, t \in$ R, where $d: R \rightarrow R$ is the trace of D. Let R be a commutative ring and $B:=\left\{\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right): a, b \in R\right\}$. Then B is a ring with matrix addition and multiplication.
$D: B \times B \rightarrow B$ by $\left(\left(\begin{array}{cc}a & b \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}c & d \\ 0 & 0\end{array}\right)\right) \mapsto\left(\begin{array}{cc}0 & b d \\ 0 & 0\end{array}\right)$ is a symmetric bi-semiderivation, where $f: B \rightarrow B$ defined by
$\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right) \mapsto\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)$.
The aim of this paper is to obtain some results symmetric bi-semiderivations on prime rings.

2. Preliminaries

Lemma 2.1. ([5], Lemma 1) Let R be a prime ring, d be a derivation of R and $r \in R$. For all $s \in R$, if $r d(s)=0$ then $d=0$ or $r=0$.

Lemma 2.2. ([3], Lemma 4) Provided that $L \nsubseteq Z$ is a Lie ideal of a prime ring R with char $R \neq 2$ and $r, s \in R$ such that $r L s=(0)$, then $r=0$ or $s=0$.

Lemma 2.3. Suppose that R is a prime ring with char $R \neq 2$ and A is a non-zero left (or right) ideal of R. Let D be a symmetric bisemiderivation and d be the trace of D. If $d(a)=0$ for all $a \in A$, then $d=0$, that is, $D=0$.

Proof. The proof is the similar with proof of ([8], Lemma 4).
Lemma 2.4. ([9], Lemma 4) Suppose that R is a prime ring with char $R \neq 2$. Let D be a symmetric bi-semiderivation of R, d be the
trace of D and a be an element of R. If $[a, d(r)]=0$ for all $r \in R$, then $a \in Z$ or $d=0$.

Theorem 2.5. ([9], Theorem 1) Let $D \neq 0$ be a symmetric bi-semiderivations of a prime ring R associated with a function f (not necessarily surjective). Then f is a homomorphism of R.

Theorem 2.6. ([7], Theorem 4) Let R be a 2-torsion free semiprime ring, $D: R \times R \rightarrow R$ be a symmetric biderivation such that $D(d(r), r)=$ 0 for all $r \in R$, where d is the trace of D. Then, $D=0$.

Theorem 2.7. Suppose that R is a noncommutative prime ring with char $R \neq 2$ and A is a non-zero ideal of R. Let D be a symmetric bi-semiderivation associated with a surjective function f such that $D(A, A) \subseteq A$ and d be the trace of D. If d is commuting on A, then $D=0$.

Proof. We have

$$
\begin{equation*}
[d(a), a]=0 \text { for all } a \in A \tag{2.1}
\end{equation*}
$$

The linearization of (2.1) gives

$$
\begin{equation*}
[d(a), b]+[d(b), a]+2[D(a, b), a]+2[D(a, b), b]=0 \text { for all } a, b \in A \tag{2.2}
\end{equation*}
$$

Substituting $-a$ for a in (2.2), we have

$$
\begin{equation*}
[d(a), b]-[d(b), a]+2[D(a, b), a]-2[D(a, b), b]=0 \tag{2.3}
\end{equation*}
$$

From (2.2) and (2.3), using char $R \neq 2$ we arrive

$$
\begin{equation*}
[d(a), b]+2[D(a, b), a]=0 \tag{2.4}
\end{equation*}
$$

Now, we write $a b$ instead of b in (2.4). Thus,

$$
\begin{aligned}
0 & =[d(a), a b]+2[d(a) f(b)+a D(a, b), a] \\
& =a[d(a), b]+2 d(a)[f(b), a]+2 a[D(a, b), a]
\end{aligned}
$$

which implies

$$
\begin{equation*}
d(a)[a, f(b)]=0 \tag{2.5}
\end{equation*}
$$

according to (2.4). Since f is a surjective function, we have

$$
\begin{equation*}
d(a)[a, c]=0, \text { for all } a \in A, c \in R . \tag{2.6}
\end{equation*}
$$

Hence, for any $a \notin Z, d(a)=0$ from (2.6) and Lemma 2.1. (note that for any fixed $a \in R$, a mapping $b \mapsto[a, b]$ is a derivation) Let $a \in Z$, $c \notin Z$. Then $-c \notin Z$ and $a+c \notin Z$. Thus, $0=d(a+c)=d(a)+2 D(a, c)$ and $0=d(a)-2 D(a, c)$. Therefore, $d(a)=0$ for all $a \in A$ and $D=0$ by Lemma 2.3.

We will use the well known following commutator identities for a ring R :
(i) $\left[r_{1} r_{2}, r_{3}\right]=r_{1}\left[r_{2}, r_{3}\right]+\left[r_{1}, r_{3}\right] r_{2}$,
(ii) $\left[r_{1}, r_{2} r_{3}\right]=r_{2}\left[r_{1}, r_{3}\right]+\left[r_{1}, r_{2}\right] r_{3}$,
(iii) $r_{1} \circ r_{2} r_{3}=\left(r_{1} \circ r_{2}\right) r_{3}-r_{2}\left[r_{1}, r_{3}\right]=r_{2}\left(r_{1} \circ r_{3}\right)+\left[r_{1}, r_{2}\right] r_{3}$,
(iv) $\left(r_{1} r_{2}\right) \circ r_{3}=r_{1}\left(r_{2} \circ r_{3}\right)-\left[r_{1}, r_{3}\right] r_{2}=\left(r_{1} \circ r_{3}\right) r_{2}+r_{1}\left[r_{2}, r_{3}\right]$.

Remark 2.8. Let R be a prime ring and L be a non-zero square closed Lie ideal of R. For all $l, m \in L$, we have $l m+m l=(l+m)^{2}-l^{2}-m^{2}$ and $l^{2} \in L$ imply that $l m+m l \in L$. Then we get $2 l m \in L$ for all $l, m \in L$. So, we obtain $2 r[l, m]=2[l, r m]-2[l, r] m \in L$ and $2[l, m] r=2[l, m r]-2 m[l, r] \in L$ for all $r \in R$. This provides that $2 R[L, L] \subseteq L$ and $2[L, L] R \subseteq L$.

3. LiE IDEALS AND SYMMETRIC BI-SEMIDERIVATIONS

Example 3.1. Let R be a commutative ring and
$F:=\left\{\left.\left(\begin{array}{ccc}0 & r & s \\ 0 & 0 & 0 \\ 0 & 0 & s\end{array}\right) \right\rvert\, r, s \in R\right\}$. Then F is a ring with matrix addition and multiplication. $D: F \times F \rightarrow F$ defined by
$\left(\left(\begin{array}{lll}0 & r & s \\ 0 & 0 & 0 \\ 0 & 0 & s\end{array}\right),\left(\begin{array}{llc}0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & y\end{array}\right)\right) \mapsto\left(\begin{array}{ccc}0 & 0 & s y \\ 0 & 0 & 0 \\ 0 & 0 & s y\end{array}\right)$ is a symmetric bisemiderivation, where $f: F \rightarrow F$ defined by $\left(\begin{array}{ccc}0 & r & s \\ 0 & 0 & 0 \\ 0 & 0 & s\end{array}\right) \mapsto\left(\begin{array}{ccc}0 & r & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.

In [6], authors showed the following properties:
Let R be a prime ring with char $R \neq 2, L$ be a square closed Lie ideal of R and D be a symmetric biderivation with the trace d.
(i) If $[d(l), m] \in Z$ for all $l, m \in L$, then $d=0$ or $L \subseteq Z$.
(ii) If $[d(l), l]=0$ for all $l \in L$, then $d=0$ or $L \subseteq Z$.
(iii) If $d([l, m])-[d(l), m] \in Z$ for all $l, m \in L$, then $d=0$ or $L \subseteq Z$.
(iv) If $d(l \circ m)-[d(l), m] \in Z$ for all $l, m \in L$, then $d=0$ or $L \subseteq Z$.
(iv) If $d(l) \circ m-[d(l), m] \in Z$ for all $l, m \in L$, then $d=0$ or $L \subseteq Z$.
(v) If $d(l) \circ d(m)-[d(l), m] \in Z$ for all $l, m \in L$, then $d=0$ or $L \subseteq Z$.
(vi) If $d(l m)-d(l) m-l d(m) \in Z$ holds for all $l, m \in L$, then either $d=0$ or $L \subseteq Z$.
(vii) If $d([l, m])-[d(l), m]-[l, d(m)] \in Z$ holds for all $l, m \in L$, then either $d=0$ or $L \subseteq Z$.

Same expressions are provided for symmetric bi-semiderivation D. The proofs are similar, so we omit them.

Theorem 3.2. Assume that R is a prime ring with char $R \neq 2$ and L is a non-zero Lie ideal of R. Let D be a symmetric bi-semiderivation associated with a surjective function f and d be the trace of D.
(i) If $d(L)=0$, then $d=0$ or $L \subseteq Z$.
(ii) If $d(L) \subseteq Z$ and L is a square closed Lie ideal, then $d=0$ or $L \subseteq Z$.
Proof. (i) We suppose that

$$
\begin{equation*}
d(l)=0 \text { for all } l \in L \tag{3.1}
\end{equation*}
$$

Since char $R \neq 2$, for all $l, m \in L$, the linearization of (3.1) gives

$$
\begin{equation*}
D(l, m)=0 . \tag{3.2}
\end{equation*}
$$

Putting $[l, r]$ instead of l in (3.2), where $r \in R$, we have

$$
D(l, m) f(r)+l D(r, m)-D(r, m) l-f(r) D(l, m)=0
$$

which implies that

$$
\begin{equation*}
[l, D(r, m)]=0 \tag{3.3}
\end{equation*}
$$

Replace in (3.3) r by $r n$, where $n \in L$. Then

$$
\begin{equation*}
D(r, m)[l, n]=0 \text { for all } l, m, n \in L, r \in R . \tag{3.4}
\end{equation*}
$$

Substituting $r s$ for r in (3.4), where $s \in R$. We obtain

$$
D(r, m) s[l, n]=0 \text { for all } l, m, n \in L, r, s \in R
$$

By primeness of $R, D(r, m)=0$ for all $r \in R, m \in L$ or $[l, n]=0$ for all $l, n \in L$. If $[l, n]=0$ for all $l, n \in L$, then $L \subseteq Z$. We suppose that

$$
\begin{equation*}
D(r, m)=0 \text { for all } r \in R, m \in L \tag{3.5}
\end{equation*}
$$

Let m be $[m, r]$ in (3.5). Then, we get

$$
\begin{equation*}
[m, d(r)]=0 \text { for all } m \in L, r \in R \tag{3.6}
\end{equation*}
$$

By (3.6) and using Lemma 2.4, we have that $d=0$ or $L \subseteq Z$.
(ii) We suppose that

$$
\begin{equation*}
d(l) \in Z \text { for all } l \in L \tag{3.7}
\end{equation*}
$$

The linearization of (3.7) gives

$$
\begin{equation*}
D(l, m) \in Z \text { for all } l, m \in L \tag{3.8}
\end{equation*}
$$

since we have assumed that char $R \neq 2$. Replace l by l^{2} in (3.8), we have

$$
l D(l, m)+D(l, m) f(l) \in Z \text { for all } l, m \in L
$$

In particular, $l d(l)+d(l) r \in Z$ for all $l \in L, r \in R$, since f is surjective. Commuting with l and using $d(l) \in Z$, we obtain

$$
d(l)[r, l]=0 \text { for all } l \in L, r \in R .
$$

Then we get $d(l)=0$ or $[r, l]=0$ for all $l \in L, r \in R$. Therefore, in two cases, we arrive at $d=0$ or $L \subseteq Z$, from Theorem (i).

Lemma 3.3. Assume that R is a prime ring with char $R \neq 2, L$ is a nonzero Lie ideal of R and f is a surjective homomorphism on R. For all $l, m \in L$, if $f([l, m])=0$ then either $f(L)=0$ or $f(L) \subseteq Z$.

Proof. We have

$$
\begin{equation*}
f([l, m])=0 \text { for all } l, m \in L \tag{3.9}
\end{equation*}
$$

Replacing l by $[r, l], r \in R$ and using f is a homomorphism, we get

$$
\begin{equation*}
0=f([r, m]) f(l)-f(l) f([r, m]) \tag{3.10}
\end{equation*}
$$

Taking r by $r s, s \in R$ in (3.10), we have

$$
\begin{gathered}
f([r, m]) f(s) f(l)+f(r) f([s, m]) f(l)-f(l) f([r, m]) f(s)- \\
f(l) f(r) f([s, m])=0
\end{gathered}
$$

for all $l, m \in L, r, s \in R$. From (3.10), we obtain

$$
f([r, m])[f(s), f(l)]+[f(r), f(l)] f([s, m])=0 .
$$

If we write $s=m$, then we arrive

$$
f([r, m])[f(m), f(l)]=0 \text { for all } l, m \in L, r \in R \text {. }
$$

In the last relation, replace r by $r t, t \in R$, we get $f([r, m]) f(t)[f(m), f(l)]$ $=0$. Since R is prime ring, f is surjective, we have $f([r, m])=0$ or $[f(m), f(l)]=0$ for all $l, m \in L, r \in R$. This implies that $f(L)=0$ or $f(L) \subseteq Z$. The proof of Lemma is completed.

Lemma 3.4. Assume that R is a prime ring with char $R \neq 2, L$ is a nonzero Lie ideal of R and D is a symmetric bi-semiderivation associated with a surjective function f and d is the trace of D. If $d(L)=0$, then $f(L)=0$ or $f(L) \subseteq Z$ or $D=0$.

Proof. Given that

$$
\begin{equation*}
d(l)=0 \text { for all } l \in L \tag{3.11}
\end{equation*}
$$

Linearizing (3.11) and using char $R \neq 2$, we have

$$
\begin{equation*}
D(l, m)=0 \text { for all } l, m \in L \tag{3.12}
\end{equation*}
$$

Let us replace l by $[l, r], r \in R$ in (3.12), we obtain

$$
\begin{equation*}
l D(r, m)-D(r, m) f(l)=0 \text { for all } l, m \in L \text { and } r \in R . \tag{3.13}
\end{equation*}
$$

Replacing r by $r n_{1}, n_{1} \in L$ and using (3.12), we have

$$
\begin{equation*}
l D(r, m) f\left(n_{1}\right)-D(r, m) f\left(n_{1} l\right)=0 \tag{3.14}
\end{equation*}
$$

If we multiply (3.13) by $f\left(n_{1}\right)$ to the right, we get

$$
\begin{equation*}
l D(r, m) f\left(n_{1}\right)-D(r, m) f\left(l n_{1}\right)=0 \tag{3.15}
\end{equation*}
$$

From (3.14) and (3.15), we find that

$$
\begin{equation*}
D(r, m) f\left(\left[l, n_{1}\right]\right)=0 \text { for all } l, m, n_{1} \in L, r \in R \tag{3.16}
\end{equation*}
$$

In (3.16), we replace r by $r n_{2}, n_{2} \in L$

$$
D(r, m) f\left(n_{2}\right) f\left(\left[l, n_{1}\right]\right)=0
$$

Since f is surjective, $D(r, m) R f\left(\left[l, n_{1}\right]\right)=(0)$ for all $l, m, n_{1} \in L$ and $r \in R$. By primeness of R, either $D(r, m)=0$ or $f\left(\left[l, n_{1}\right]\right)=0$. If $D(r, m)=0$ for all $r \in R, m \in L$, then replacing m by $[m, s], s \in R$,

$$
\begin{equation*}
f(m) D(r, s)-D(r, s) f(m)=0 \text { for all } m \in L, r, s \in R \tag{3.17}
\end{equation*}
$$

Putting s by $s n_{3}, n_{3} \in L$ in (3.17), we have

$$
\begin{equation*}
f(m) D(r, s) f\left(n_{3}\right)-D(r, s) f\left(n_{3}\right) f(m)=0 \tag{3.18}
\end{equation*}
$$

Multiplying (3.17) from right $f\left(n_{3}\right)$ and subtract (3.18), we get

$$
D(r, s) f\left(\left[m, n_{3}\right]\right)=0 \text { for all } r, s \in R \text { and } m, n_{3} \in L
$$

In the last equation, if we replace r by $t r, t \in R$, we have $D(t, s) f(r) f\left(\left[m, n_{3}\right]\right)=0$ for all $r, s, t \in R$ and $m, n_{3} \in L$. Since R is prime and f is surjective $D=0$ or $f\left(\left[m, n_{3}\right]\right)=0$ for all $m, n_{3} \in L$. Hence, Lemma 3.3 gives the proof of Lemma.

Theorem 3.5. Let R be a prime ring with char $R \neq 2, L$ be a nonzero square closed Lie ideal of R and D be a symmetric bi-semiderivation associated with surjective function f. If $D\left(\left[l_{1}, l_{2}\right],\left[m_{1}, m_{2}\right]\right)=0$ for all $l_{1}, l_{2}, m_{1}, m_{2} \in L$, then $L \subseteq Z$ or $f(L)=0$ or $f(L) \subseteq Z$ or $D(L, L)=$ 0 .

Proof. Suppose that

$$
\begin{equation*}
D\left(\left[l_{1}, l_{2}\right],\left[m_{1}, m_{2}\right]\right)=0 \text { for all } l_{1}, l_{2}, m_{1}, m_{2} \in L \tag{3.19}
\end{equation*}
$$

Replacing l_{2} by $2 l_{2} l_{1}$ in (3.19) and using (3.19), we get

$$
\left[l_{1}, l_{2}\right] D\left(l_{1},\left[m_{1}, m_{2}\right]\right)=0 \text { for all } l_{1}, l_{2}, m_{1}, m_{2} \in L
$$

since $\operatorname{char} R \neq 2$. Replacing m_{1} by $2 m_{1} m_{2}$ and using char $R \neq 2$, we have

$$
\begin{equation*}
\left[l_{1}, l_{2}\right] f\left(\left[m_{1}, m_{2}\right]\right) D\left(l_{1}, m_{2}\right)=0 \text { for all } l_{1}, l_{2}, m_{1}, m_{2} \in L \tag{3.20}
\end{equation*}
$$

Now, we substituting $\left[r, l_{2}\right]$ for l_{2} in (3.20) and we using (3.20), for all $l_{1}, l_{2}, m_{1}, m_{2} \in L, r \in R$

$$
\begin{equation*}
\left[\left[l_{1}, r\right], l_{2}\right] f\left(\left[m_{1}, m_{2}\right]\right) D\left(l_{1}, m_{2}\right)-\left[l_{1}, l_{2}\right] r f\left(\left[m_{1}, m_{2}\right]\right) D\left(l_{1}, m_{2}\right)=0 . \tag{3.21}
\end{equation*}
$$

Since L is a Lie ideal of R, we get $\left[l_{1}, r\right] \in L$. Then, from (3.21), we obtain that $\left[l_{1}, l_{2}\right] r f\left(\left[m_{1}, m_{2}\right]\right) D\left(l_{1}, m_{2}\right)=0$ for all $l_{1}, l_{2}, m_{1}, m_{2} \in L$, $r \in R$. Then, we have either $L \subseteq Z$ or $f\left(\left[m_{1}, m_{2}\right]\right) D\left(l_{1}, m_{2}\right)=0$ for all $l_{1}, m_{1}, m_{2} \in L$, by primeness of R. Let $f\left(\left[m_{1}, m_{2}\right]\right) D\left(l_{1}, m_{2}\right)=0$. Replacing m_{1} by $\left[s, m_{1}\right], s \in R$, we get

$$
\begin{equation*}
\left[f\left(\left[s, m_{2}\right], f\left(m_{1}\right)\right] D\left(l_{1}, m_{2}\right)-f\left(\left[m_{1}, m_{2}\right]\right) f(s) D\left(l_{1}, m_{2}\right)=0\right. \tag{3.22}
\end{equation*}
$$

for all $l_{1}, m_{1}, m_{2} \in L, s \in R$. Since $\left[s, m_{2}\right] \in L$, we obtain $f\left(\left[m_{1}, m_{2}\right]\right) f(s) D\left(l_{1}, m_{2}\right)=0$ for all $l_{1}, m_{1}, m_{2} \in L, s \in R$. Since f is surjective and R is prime ring, we have either $f\left(\left[m_{1}, m_{2}\right]\right)=0$ or $D\left(l_{1}, m_{2}\right)=0$ for all $l_{1}, m_{1}, m_{2} \in L$. Therefore, the proof is completed in the light of all the obtained results and using Lemma 3.3.

Now, we consider Theorem 3.5 with the condition $L \nsubseteq Z$.
Theorem 3.6. Let R be a prime ring with char $R \neq 2$, L be a nonzero square closed Lie ideal of R. Suppose that D is a symmetric bi-semiderivations such that $D\left(\left[l_{1}, l_{2}\right],\left[m_{1}, m_{2}\right]\right)=0$ for all $l_{1}, l_{2}, m_{1}, m_{2}$ $\in L$. If $L \nsubseteq Z$, then $D(L, L)=0$.

Proof. We have $D\left(\left[l_{1}, l_{2}\right],\left[m_{1}, m_{2}\right]\right)=0$. If we replace l_{2} by $2 l_{2} l_{1}$, then we get

$$
\begin{aligned}
0 & =D\left(\left[l_{1}, l_{2}\right] l_{1},\left[m_{1}, m_{2}\right]\right) \\
& =\left[l_{1}, l_{2}\right] D\left(l_{1},\left[m_{1}, m_{2}\right]\right) .
\end{aligned}
$$

Taking m_{1} by $2 m_{1} m_{2}$ and using char $R \neq 2$, we get

$$
\begin{equation*}
0=\left[l_{1}, l_{2}\right]\left[m_{1}, m_{2}\right] D\left(l_{1}, m_{2}\right) \text { for all } l_{1}, l_{2}, m_{1}, m_{2} \in L \tag{3.23}
\end{equation*}
$$

Substituting $2 l_{2} l_{3}$ for l_{2} in (3.23) and using char $R \neq 2$, we get

$$
\left[l_{1}, l_{2}\right] l_{3}\left[m_{1}, m_{2}\right] D\left(l_{1}, m_{2}\right)=0
$$

From Lemma 2.2, we obtain $\left[l_{1}, l_{2}\right]=0$ or $\left[m_{1}, m_{2}\right] D\left(l_{1}, m_{2}\right)=0$. Using our hypothesis, we get $\left[m_{1}, m_{2}\right] D\left(l_{1}, m_{2}\right)=0$ for all $l_{1}, m_{1}, m_{2} \in L$. Replacing m_{1} by $2 m_{3} m_{1}$ in the above relation, $\left[m_{3}, m_{2}\right] m_{1} D\left(l_{1}, m_{2}\right)=0$ for all $l_{1}, m_{1}, m_{2}, m_{3} \in L$. Again using Lemma 2.2, we have $\left[m_{3}, m_{2}\right]=$ 0 or $D\left(l_{1}, m_{2}\right)=0$. By our assumption, we arrive that $D\left(l_{1}, m_{2}\right)=0$ for all $l_{1}, m_{2}, \in L$.

Example 3.7. Let $R=\left\{\left.A=\left(\begin{array}{cc}0 & r \\ 0 & s\end{array}\right) \right\rvert\, r, s \in \mathbb{Z}\right\}$, where \mathbb{Z} is the set of all integers. Consider $L=\left\{\left.\left(\begin{array}{ll}0 & r \\ 0 & 0\end{array}\right) \right\rvert\, r \in \mathbb{Z}\right\}$. Hence, R is a ring and L is a Lie deal of R. Since $\left(\begin{array}{ll}0 & 0 \\ 0 & 2\end{array}\right) R\left(\begin{array}{ll}0 & 3 \\ 0 & 0\end{array}\right)=$ (0), we have that R is not prime. We define $D: R \times R \rightarrow R$ by $D\left(\left(\begin{array}{cc}0 & r \\ 0 & s\end{array}\right),\left(\begin{array}{cc}0 & t \\ 0 & w\end{array}\right)\right)=\left(\begin{array}{cc}0 & r t \\ 0 & 0\end{array}\right)$ and $f: R \rightarrow R$ by $f\left(\begin{array}{cc}0 & r \\ 0 & s\end{array}\right)$
$=\left(\begin{array}{cc}0 & 0 \\ 0 & s\end{array}\right)$. Then D is a symmetric bi-semiderivation associated with f. We can see that $D([A, B],[C, D])=0$ for all $A, B, C, D \in L$. Since L is noncentral, we arrive that the primeness of R in the above result is not redundant.

Acknowledgments

The authors would like to thank the referee for careful reading.

References

1. A. Ali and K. Kumar, Traces of permuting n-additive mappings in*-prime rings, J. Algebra Relat. Topics, (2) 8 (2020), 9-21.
2. N. Argaç and M. S. Yenigül, Lie ideals and symmetric bi-derivation on prime and semiprime rings, Pure and Applied Math. Sci. 44 (1996), 17-21.
3. J. Bergen, I. N. Herstein and J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra, 71 (1981), 259-267.
4. G. Maksa, On the trace of symmetric bi-derivations, C. R. Math. Rep. Acad. Sci. Canada, 9 (1987), 303-307.
5. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
6. N. Rehman and A. Z. Ansari, On Lie ideals with symmetric bi-additive maps in rings, Palestine Journal of Math. 2 (2013), 14-21.
7. J. Vukman, Symmetic bi-derivations on prime and semiprime rings, Aequations Math. 38 (1989), 245-254.
8. M. Yenigül and N Argaç, Ideals and symmetric biderivations on prime and semiprime rings, Math. J. Okayama Univ. 35 (1993), 189-192.
9. D. Yılmaz and H. Yazarl, On symmetric bi-semiderivatrions of prime rings, submitted.

Damla Yılmaz

Department of Mathematics, Erzurum Technical University Erzurum, Turkey.
Email: damla.yilmaz@erzurum.edu.tr

Hasret Yazarlı

Department of Mathematics, Sivas Cumhuriyet University Sivas, Turkey.
Email: hyazarli@cumhuriyet.edu.tr

