Journal of Algebra and Related Topics Vol. 11, No 1, (2023), pp 137-146

ON LIE IDEALS AND SYMMETRIC BI-SEMIDERIVATIONS IN PRIME RINGS

D. YILMAZ * AND H. YAZARLI

ABSTRACT. In this paper, we investigate the relationship between symmetric bi-semiderivations and Lie ideals of a prime ring. Additionally, we extend some well-known results concerning symmetric biderivations of prime rings to symmetric bi-semiderivations.

1. INTRODUCTION

Throughout this paper, R will represent an associative ring and Z will be its center. The symbol [r, s] stands for rs - sr and the symbol $r \circ s$ represent for rs + sr. Recall that if rRs = (0) implies r = 0 or s = 0, then a ring R is called prime. R is called semiprime if rRr = (0) implies r = 0. An additive subgroup L of R is said to be a Lie ideal if $[L, R] \subseteq L$. A Lie ideal L is said to be square closed if for all $l \in L$, $l^2 \in L$.

An additive map $d: R \to R$ is called derivation if d(rs) = d(r)s + rd(s) holds for all $r, s \in R$. A mapping f is said to be commuting on R if [f(r), r] = 0 for all $r \in R$. The concept of commuting maps in prime rings with derivations was initiated by Posner [5]. Since then, a lot of work has been done in this concept. The notion of symmetric bi-derivation was introduced by Maksa [4]. A mapping $D: R \times R \to R$ is said to be symmetric if for all $r, s \in R$, D(r, s) = D(s, r). A map $d: R \to R$ defined by d(r) = D(r, r) is called the trace of D, where $D: R \times R \to R$ is a symmetric mapping. It is obvious that if D is bi-additive (i.e., additive in both arguments), then the trace of D

Received: 4 January 2022, Accepted: 6 June 2023.

MSC(2010): 16N60; 16W25

Keywords: symmetric bi-derivations, Lie ideals, bi-semiderivations, prime rings.

^{*}Corresponding author .

YILMAZ AND YAZARLI

satisfies the identity d(r + s) = d(r) + d(s) + 2D(r, s) for all $r, s \in R$. Also, we will use the fact that the trace of a symmetric bi-additive mapping is an even function. $D: R \times R \to R$ is called a symmetric biderivation if D(rs, t) = D(r, t)s + rD(s, t) is fulfilled for all $r, s, t \in R$. In [7], introduced some results of symmetric bi-derivations on prime and semiprime rings, then the similar results on Lie ideals of R obtained in ([2], [8]). In [1], Ali and Kumar investigated cases where a nonzero square closed *-Lie ideal U of a *-prime ring R of $charR \neq 2^n - 2$ is central. Rehman and Ansari investigated the commutativity of prime and semiprime rings with symmetric bi-derivations in [6].

The notion of symmetric bi-semiderivations on prime rings is described in [9]. A symmetric bi-additive function $D: R \times R \to R$ is called a symmetric bi-semiderivation associated with a function $f: R \to R$ (or simply a symmetric bi-semiderivation) if D(rs,t) = D(r,t)f(s) + rD(s,t) = D(r,t)s + f(r)D(s,t) and d(f(r)) = f(d(r)) for all $r, s, t \in R$, where $d: R \to R$ is the trace of D. Let R be a commutative ring and $B := \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}: a, b \in R \right\}$. Then B is a ring with matrix addition and multiplication.

$$D : B \times B \to B \text{ by } \left(\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} c & d \\ 0 & 0 \end{pmatrix} \right) \mapsto \begin{pmatrix} 0 & bd \\ 0 & 0 \end{pmatrix} \text{ is a symmetric bi-semiderivation, where } f : B \to B \text{ defined by} \\ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \mapsto \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}.$$

The aim of this paper is to obtain some results symmetric bi-semiderivations on prime rings.

2. Preliminaries

Lemma 2.1. ([5], Lemma 1) Let R be a prime ring, d be a derivation of R and $r \in R$. For all $s \in R$, if rd(s) = 0 then d = 0 or r = 0.

Lemma 2.2. ([3], Lemma 4) Provided that $L \nsubseteq Z$ is a Lie ideal of a prime ring R with char $R \neq 2$ and $r, s \in R$ such that rLs = (0), then r = 0 or s = 0.

Lemma 2.3. Suppose that R is a prime ring with char $R \neq 2$ and A is a non-zero left (or right) ideal of R. Let D be a symmetric bisemiderivation and d be the trace of D. If d(a) = 0 for all $a \in A$, then d = 0, that is, D = 0.

Proof. The proof is the similar with proof of ([8], Lemma 4).

Lemma 2.4. ([9], Lemma 4) Suppose that R is a prime ring with $charR \neq 2$. Let D be a symmetric bi-semiderivation of R, d be the

trace of D and a be an element of R. If [a, d(r)] = 0 for all $r \in R$, then $a \in Z$ or d = 0.

Theorem 2.5. ([9], Theorem 1) Let $D \neq 0$ be a symmetric bi-semiderivations of a prime ring R associated with a function f (not necessarily surjective). Then f is a homomorphism of R.

Theorem 2.6. ([7], Theorem 4) Let R be a 2-torsion free semiprime ring, $D: R \times R \to R$ be a symmetric biderivation such that D(d(r), r) = 0 for all $r \in R$, where d is the trace of D. Then, D = 0.

Theorem 2.7. Suppose that R is a noncommutative prime ring with $charR \neq 2$ and A is a non-zero ideal of R. Let D be a symmetric bi-semiderivation associated with a surjective function f such that $D(A, A) \subseteq A$ and d be the trace of D. If d is commuting on A, then D = 0.

Proof. We have

$$[d(a), a] = 0 \text{ for all } a \in A.$$

$$(2.1)$$

The linearization of (2.1) gives

$$[d(a), b] + [d(b), a] + 2[D(a, b), a] + 2[D(a, b), b] = 0 \text{ for all } a, b \in A.$$
(2.2)

Substituting -a for a in (2.2), we have

$$[d(a), b] - [d(b), a] + 2[D(a, b), a] - 2[D(a, b), b] = 0.$$
(2.3)

From (2.2) and (2.3), using $charR \neq 2$ we arrive

$$[d(a), b] + 2[D(a, b), a] = 0.$$
(2.4)

Now, we write ab instead of b in (2.4). Thus,

$$0 = [d(a), ab] + 2[d(a)f(b) + aD(a, b), a]$$

= $a[d(a), b] + 2d(a)[f(b), a] + 2a[D(a, b), a]$

which implies

$$d(a)[a, f(b)] = 0 (2.5)$$

according to (2.4). Since f is a surjective function, we have

$$d(a)[a,c] = 0, \text{ for all } a \in A, c \in R.$$

$$(2.6)$$

Hence, for any $a \notin Z$, d(a) = 0 from (2.6) and Lemma 2.1. (note that for any fixed $a \in R$, a mapping $b \mapsto [a, b]$ is a derivation) Let $a \in Z$, $c \notin Z$. Then $-c \notin Z$ and $a+c \notin Z$. Thus, 0 = d(a+c) = d(a)+2D(a,c)and 0 = d(a) - 2D(a,c). Therefore, d(a) = 0 for all $a \in A$ and D = 0by Lemma 2.3. We will use the well known following commutator identities for a ring R:

 $\begin{array}{l} (i) \ [r_1r_2, r_3] = r_1[r_2, r_3] + [r_1, r_3]r_2, \\ (ii) \ [r_1, r_2r_3] = r_2[r_1, r_3] + [r_1, r_2]r_3, \\ (iii) \ r_1 \circ r_2r_3 = (r_1 \circ r_2)r_3 - r_2[r_1, r_3] = r_2(r_1 \circ r_3) + [r_1, r_2]r_3, \\ (iv) \ (r_1r_2) \circ r_3 = r_1(r_2 \circ r_3) - [r_1, r_3]r_2 = (r_1 \circ r_3)r_2 + r_1[r_2, r_3]. \end{array}$

Remark 2.8. Let R be a prime ring and L be a non-zero square closed Lie ideal of R. For all $l, m \in L$, we have $lm + ml = (l+m)^2 - l^2 - m^2$ and $l^2 \in L$ imply that $lm + ml \in L$. Then we get $2lm \in L$ for all $l, m \in L$. So, we obtain $2r[l, m] = 2[l, rm] - 2[l, r]m \in L$ and $2[l, m]r = 2[l, mr] - 2m[l, r] \in L$ for all $r \in R$. This provides that $2R[L, L] \subseteq L$ and $2[L, L]R \subseteq L$.

3. LIE IDEALS AND SYMMETRIC BI-SEMIDERIVATIONS

Example 3.1. Let R be a commutative ring and $F := \left\{ \begin{pmatrix} 0 & r & s \\ 0 & 0 & 0 \\ 0 & 0 & s \end{pmatrix} \mid r, s \in R \right\}.$ Then F is a ring with matrix addition and multiplication. $D: F \times F \to F$ defined by $\left(\begin{pmatrix} 0 & r & s \\ 0 & 0 & 0 \\ 0 & 0 & s \end{pmatrix}, \begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & y \end{pmatrix} \right) \mapsto \begin{pmatrix} 0 & 0 & sy \\ 0 & 0 & 0 \\ 0 & 0 & sy \end{pmatrix} \text{ is a symmetric bi-}$ semiderivation, where $f: F \to F$ defined by $\begin{pmatrix} 0 & r & s \\ 0 & 0 & s \end{pmatrix} \mapsto \begin{pmatrix} 0 & r & 0 \\ 0 & 0 & s \end{pmatrix} \mapsto \begin{pmatrix} 0 & r & 0 \\ 0 & 0 & s \end{pmatrix}$

In [6], authors showed the following properties:

Let R be a prime ring with $charR \neq 2$, L be a square closed Lie ideal of R and D be a symmetric biderivation with the trace d.

(i) If $[d(l), m] \in Z$ for all $l, m \in L$, then d = 0 or $L \subseteq Z$. (ii) If [d(l), l] = 0 for all $l \in L$, then d = 0 or $L \subseteq Z$. (iii) If $d([l, m]) - [d(l), m] \in Z$ for all $l, m \in L$, then d = 0 or $L \subseteq Z$. (iv) If $d(l \circ m) - [d(l), m] \in Z$ for all $l, m \in L$, then d = 0 or $L \subseteq Z$. (iv) If $d(l) \circ m - [d(l), m] \in Z$ for all $l, m \in L$, then d = 0 or $L \subseteq Z$. (v) If $d(l) \circ d(m) - [d(l), m] \in Z$ for all $l, m \in L$, then d = 0 or $L \subseteq Z$. (v) If $d(l) \circ d(m) - [d(l), m] \in Z$ for all $l, m \in L$, then d = 0 or $L \subseteq Z$.

(vi) If $d(lm) - d(l)m - ld(m) \in Z$ holds for all $l, m \in L$, then either d = 0 or $L \subseteq Z$.

(vii) If $d([l,m]) - [d(l),m] - [l,d(m)] \in \mathbb{Z}$ holds for all $l,m \in L$, then either d = 0 or $L \subseteq \mathbb{Z}$.

Same expressions are provided for symmetric bi-semiderivation D. The proofs are similar, so we omit them.

Theorem 3.2. Assume that R is a prime ring with $charR \neq 2$ and L is a non-zero Lie ideal of R. Let D be a symmetric bi-semiderivation associated with a surjective function f and d be the trace of D.

(i) If d(L) = 0, then d = 0 or $L \subseteq Z$.

(ii) If $d(L) \subseteq Z$ and L is a square closed Lie ideal, then d = 0 or $L \subseteq Z$.

Proof. (i) We suppose that

$$d(l) = 0 \text{ for all } l \in L. \tag{3.1}$$

Since $char R \neq 2$, for all $l, m \in L$, the linearization of (3.1) gives

$$D(l,m) = 0.$$
 (3.2)

Putting [l, r] instead of l in (3.2), where $r \in R$, we have

D(l,m)f(r) + lD(r,m) - D(r,m)l - f(r)D(l,m) = 0

which implies that

$$[l, D(r, m)] = 0. (3.3)$$

Replace in (3.3) r by rn, where $n \in L$. Then

$$D(r,m)[l,n] = 0 \text{ for all } l,m,n \in L, r \in R.$$

$$(3.4)$$

Substituting rs for r in (3.4), where $s \in R$. We obtain

$$D(r,m)s[l,n] = 0$$
 for all $l,m,n \in L, r,s \in R$.

By primeness of R, D(r, m) = 0 for all $r \in R$, $m \in L$ or [l, n] = 0 for all $l, n \in L$. If [l, n] = 0 for all $l, n \in L$, then $L \subseteq Z$. We suppose that

$$D(r,m) = 0 \text{ for all } r \in R, m \in L.$$
(3.5)

Let m be [m, r] in (3.5). Then, we get

$$[m, d(r)] = 0 \text{ for all } m \in L, r \in R.$$

$$(3.6)$$

By (3.6) and using Lemma 2.4, we have that d = 0 or $L \subseteq Z$.

(ii) We suppose that

$$d(l) \in Z \text{ for all } l \in L.$$
(3.7)

The linearization of (3.7) gives

$$D(l,m) \in Z \text{ for all } l,m \in L, \tag{3.8}$$

since we have assumed that $char R \neq 2$. Replace l by l^2 in (3.8), we have

$$lD(l,m) + D(l,m)f(l) \in Z$$
 for all $l,m \in L$.

YILMAZ AND YAZARLI

In particular, $ld(l) + d(l)r \in Z$ for all $l \in L, r \in R$, since f is surjective. Commuting with l and using $d(l) \in Z$, we obtain

$$d(l)[r, l] = 0$$
 for all $l \in L, r \in R$.

Then we get d(l) = 0 or [r, l] = 0 for all $l \in L, r \in R$. Therefore, in two cases, we arrive at d = 0 or $L \subseteq Z$, from Theorem (i).

Lemma 3.3. Assume that R is a prime ring with char $R \neq 2$, L is a nonzero Lie ideal of R and f is a surjective homomorphism on R. For all $l, m \in L$, if f([l, m]) = 0 then either f(L) = 0 or $f(L) \subseteq Z$.

Proof. We have

$$f([l,m]) = 0 \text{ for all } l, m \in L.$$

$$(3.9)$$

Replacing l by $[r, l], r \in R$ and using f is a homomorphism, we get

$$0 = f([r,m])f(l) - f(l)f([r,m]).$$
(3.10)

Taking r by $rs, s \in R$ in (3.10), we have

$$\begin{aligned} f([r,m])f(s)f(l) + f(r)f([s,m])f(l) - f(l)f([r,m])f(s) - \\ f(l)f(r)f([s,m]) &= 0 \end{aligned}$$

for all $l, m \in L, r, s \in R$. From (3.10), we obtain

$$f([r,m])[f(s), f(l)] + [f(r), f(l)]f([s,m]) = 0.$$

If we write s = m, then we arrive

$$f([r,m])[f(m), f(l)] = 0$$
 for all $l, m \in L, r \in R$.

In the last relation, replace r by $rt, t \in R$, we get f([r, m])f(t)[f(m), f(l)] = 0. Since R is prime ring, f is surjective, we have f([r, m]) = 0 or [f(m), f(l)] = 0 for all $l, m \in L, r \in R$. This implies that f(L) = 0 or $f(L) \subseteq Z$. The proof of Lemma is completed. \Box

Lemma 3.4. Assume that R is a prime ring with char $R \neq 2$, L is a nonzero Lie ideal of R and D is a symmetric bi-semiderivation associated with a surjective function f and d is the trace of D. If d(L) = 0, then f(L) = 0 or $f(L) \subseteq Z$ or D = 0.

Proof. Given that

$$d(l) = 0 \text{ for all } l \in L. \tag{3.11}$$

Linearizing (3.11) and using $charR \neq 2$, we have

$$D(l,m) = 0 \text{ for all } l,m \in L.$$

$$(3.12)$$

Let us replace l by $[l, r], r \in R$ in (3.12), we obtain

$$lD(r,m) - D(r,m)f(l) = 0 \text{ for all } l, m \in L \text{ and } r \in R.$$
(3.13)

Replacing r by $rn_1, n_1 \in L$ and using (3.12), we have

$$2D(r,m)f(n_1) - D(r,m)f(n_1l) = 0.$$
 (3.14)

If we multiply (3.13) by $f(n_1)$ to the right, we get

$$lD(r,m)f(n_1) - D(r,m)f(l \ n_1) = 0$$
(3.15)

From (3.14) and (3.15), we find that

$$D(r,m)f([l,n_1]) = 0 \text{ for all } l,m,n_1 \in L, r \in R.$$
(3.16)

In (3.16), we replace r by $rn_2, n_2 \in L$

$$D(r,m)f(n_2)f([l,n_1]) = 0.$$

Since f is surjective, $D(r,m)Rf([l,n_1]) = (0)$ for all $l,m,n_1 \in L$ and $r \in R$. By primeness of R, either D(r,m) = 0 or $f([l,n_1]) = 0$. If D(r,m) = 0 for all $r \in R, m \in L$, then replacing m by $[m,s], s \in R$,

$$f(m)D(r,s) - D(r,s)f(m) = 0$$
 for all $m \in L, r, s \in R.$ (3.17)

Putting s by $sn_3, n_3 \in L$ in (3.17), we have

$$f(m)D(r,s)f(n_3) - D(r,s)f(n_3)f(m) = 0.$$
 (3.18)

Multiplying (3.17) from right $f(n_3)$ and subtract (3.18), we get

 $D(r,s)f([m,n_3]) = 0$ for all $r, s \in R$ and $m, n_3 \in L$.

In the last equation, if we replace r by $tr, t \in R$, we have $D(t,s)f(r)f([m,n_3]) = 0$ for all $r, s, t \in R$ and $m, n_3 \in L$. Since R is prime and f is surjective D = 0 or $f([m,n_3]) = 0$ for all $m, n_3 \in L$. Hence, Lemma 3.3 gives the proof of Lemma. \Box

Theorem 3.5. Let R be a prime ring with char $R \neq 2$, L be a nonzero square closed Lie ideal of R and D be a symmetric bi-semiderivation associated with surjective function f. If $D([l_1, l_2], [m_1, m_2]) = 0$ for all $l_1, l_2, m_1, m_2 \in L$, then $L \subseteq Z$ or f(L) = 0 or $f(L) \subseteq Z$ or D(L, L) = 0.

Proof. Suppose that

$$D([l_1, l_2], [m_1, m_2]) = 0 \text{ for all } l_1, l_2, m_1, m_2 \in L.$$
(3.19)

Replacing l_2 by $2l_2l_1$ in (3.19) and using (3.19), we get

 $[l_1, l_2]D(l_1, [m_1, m_2]) = 0$ for all $l_1, l_2, m_1, m_2 \in L$,

since $charR \neq 2$. Replacing m_1 by $2m_1m_2$ and using $charR \neq 2$, we have

$$[l_1, l_2]f([m_1, m_2])D(l_1, m_2) = 0 \text{ for all } l_1, l_2, m_1, m_2 \in L.$$
(3.20)

YILMAZ AND YAZARLI

Now, we substituting $[r, l_2]$ for l_2 in (3.20) and we using (3.20), for all $l_1, l_2, m_1, m_2 \in L, r \in \mathbb{R}$

$$\begin{bmatrix} [l_1, r], l_2 \end{bmatrix} f([m_1, m_2]) D(l_1, m_2) - [l_1, l_2] r f([m_1, m_2]) D(l_1, m_2) = 0.$$
(3.21)

Since L is a Lie ideal of R, we get $[l_1, r] \in L$. Then, from (3.21), we obtain that $[l_1, l_2]rf([m_1, m_2])D(l_1, m_2) = 0$ for all $l_1, l_2, m_1, m_2 \in L$, $r \in R$. Then, we have either $L \subseteq Z$ or $f([m_1, m_2])D(l_1, m_2) = 0$ for all $l_1, m_1, m_2 \in L$, by primeness of R. Let $f([m_1, m_2])D(l_1, m_2) = 0$. Replacing m_1 by $[s, m_1], s \in R$, we get

$$[f([s, m_2], f(m_1)] D(l_1, m_2) - f([m_1, m_2]) f(s) D(l_1, m_2) = 0, \quad (3.22)$$

for all $l_1, m_1, m_2 \in L, s \in R$. Since $[s, m_2] \in L$, we obtain $f([m_1, m_2])f(s)D(l_1, m_2) = 0$ for all $l_1, m_1, m_2 \in L, s \in R$. Since fis surjective and R is prime ring, we have either $f([m_1, m_2]) = 0$ or $D(l_1, m_2) = 0$ for all $l_1, m_1, m_2 \in L$. Therefore, the proof is completed in the light of all the obtained results and using Lemma 3.3. \Box

Now, we consider Theorem 3.5 with the condition $L \not\subseteq Z$.

Theorem 3.6. Let R be a prime ring with $char R \neq 2$, L be a nonzero square closed Lie ideal of R. Suppose that D is a symmetric bi-semiderivations such that $D([l_1, l_2], [m_1, m_2]) = 0$ for all $l_1, l_2, m_1, m_2 \in L$. If $L \nsubseteq Z$, then D(L, L) = 0.

Proof. We have $D([l_1, l_2], [m_1, m_2]) = 0$. If we replace l_2 by $2l_2l_1$, then we get

$$0 = D([l_1, l_2]l_1, [m_1, m_2])$$

= $[l_1, l_2]D(l_1, [m_1, m_2]).$

Taking m_1 by $2m_1m_2$ and using $charR \neq 2$, we get

$$0 = [l_1, l_2][m_1, m_2]D(l_1, m_2) \text{ for all } l_1, l_2, m_1, m_2 \in L.$$
(3.23)

Substituting $2l_2l_3$ for l_2 in (3.23) and using $charR \neq 2$, we get

$$[l_1, l_2]l_3[m_1, m_2]D(l_1, m_2) = 0.$$

From Lemma 2.2, we obtain $[l_1, l_2] = 0$ or $[m_1, m_2]D(l_1, m_2) = 0$. Using our hypothesis, we get $[m_1, m_2]D(l_1, m_2) = 0$ for all $l_1, m_1, m_2 \in L$. Replacing m_1 by $2m_3m_1$ in the above relation, $[m_3, m_2]m_1D(l_1, m_2) = 0$ for all $l_1, m_1, m_2, m_3 \in L$. Again using Lemma 2.2, we have $[m_3, m_2] =$ 0 or $D(l_1, m_2) = 0$. By our assumption, we arrive that $D(l_1, m_2) = 0$ for all $l_1, m_2, \in L$.

Example 3.7. Let $R = \left\{ A = \begin{pmatrix} 0 & r \\ 0 & s \end{pmatrix} \mid r, s \in \mathbb{Z} \right\}$, where \mathbb{Z} is the set of all integers. Consider $L = \left\{ \begin{pmatrix} 0 & r \\ 0 & 0 \end{pmatrix} \mid r \in \mathbb{Z} \right\}$. Hence, R is a ring and L is a Lie deal of R. Since $\begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} R \begin{pmatrix} 0 & 3 \\ 0 & 0 \end{pmatrix} = (0)$, we have that R is not prime. We define $D : R \times R \to R$ by $D\left(\begin{pmatrix} 0 & r \\ 0 & s \end{pmatrix}, \begin{pmatrix} 0 & t \\ 0 & w \end{pmatrix}\right) = \begin{pmatrix} 0 & rt \\ 0 & 0 \end{pmatrix}$ and $f : R \to R$ by $f\begin{pmatrix} 0 & r \\ 0 & s \end{pmatrix}$. Then D is a symmetric bi-semiderivation associated with f. We can see that D([A, B], [C, D]) = 0 for all $A, B, C, D \in L$. Since L is noncentral, we arrive that the primeness of R in the above result is not redundant.

Acknowledgments

The authors would like to thank the referee for careful reading.

References

- A. Ali and K. Kumar, Traces of permuting n-additive mappings in*-prime rings, J. Algebra Relat. Topics, (2) 8 (2020), 9-21.
- N. Argaç and M. S. Yenigül, Lie ideals and symmetric bi-derivation on prime and semiprime rings, Pure and Applied Math. Sci. 44 (1996), 17-21.
- J. Bergen, I. N. Herstein and J. W. Kerr, *Lie ideals and derivations of prime rings*, J. Algebra, **71** (1981), 259-267.
- G. Maksa, On the trace of symmetric bi-derivations, C. R. Math. Rep. Acad. Sci. Canada, 9 (1987), 303-307.
- E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
- N. Rehman and A. Z. Ansari, On Lie ideals with symmetric bi-additive maps in rings, Palestine Journal of Math. 2 (2013), 14-21.
- J. Vukman, Symmetric bi-derivations on prime and semiprime rings, Aequations Math. 38 (1989), 245-254.
- M. Yenigül and N Argaç, Ideals and symmetric biderivations on prime and semiprime rings, Math. J. Okayama Univ. 35 (1993), 189-192.
- 9. D. Yılmaz and H. Yazarlı, On symmetric bi-semiderivatrions of prime rings, submitted.

Damla Yılmaz

Department of Mathematics, Erzurum Technical University Erzurum, Turkey. Email: damla.yilmaz@erzurum.edu.tr

Hasret Yazarlı

Department of Mathematics, Sivas Cumhuriyet University Sivas, Turkey. Email: hyazarli@cumhuriyet.edu.tr