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SOME RESULTS OF THE MINIMUM EDGE
DOMINATING ENERGY OF THE CAYLEY GRAPHS

FOR THE FINITE GROUP Sn

S. CHOKANI, F. MOVAHEDI ∗ AND S. M. TAHERI

Abstract. Let Γ be a finite group and S be a non-empty subset
of Γ. A Cayley graph of the group Γ, denoted by Cay(Γ, S) is
defined as a simple graph that its vertices are the elements of Γ
and two vertices u and v are adjacent if uv−1 ∈ Γ.
The minimum edge dominating energy of Cayley graph Cay(Γ, S)
is equal to the sum of the absolute values of eigenvalues of the
minimum edge dominating matrix of graph Cay(Γ, S). In this
paper, we estimate the minimum edge dominating energy of the
Cayley graphs for the finite group Sn.

1. Introduction

There has been a close relationship between group theory and graph
theory such that combinatorial properties of graphs have been em-
ployed extensively to investigate the theoretic algebraic properties of
groups and vice versa. In 1878, Arthur Cayley was considered the first
to associate graphs called the Cayley graph to finite groups [7]. Suppose
that Γ is a finite group and S ⊆ Γ\{e} such that S = S−1 = {s−1 : s ∈
S}. The graph G(V,E) = Cay(Γ, S) is an undirected and simple graph
defined by the vertices V (G) = Γ and E(G) = {(x, y) |xy−1 ∈ S}. A
Cayley graph G is connected if and only if Γ =< S > where < S >
is generating a subset of Γ [5]. The Cayley graphs have many applica-
tions in algebra, computer science, biological sciences and chemistry.
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Eigenvalues of Cayley graphs have been studied due to their roles in
algebraic graph theory and applications in chemical graph theory, quan-
tum computing, biology, etc [19]. One of the concepts of chemical graph
theory that is associated with the eigenvalues of a graph is the graph
energy proposed by Gutman in 1978 [16].
Let G = (V,E) be a simple graph with the vertex set and edge set
V = {v1, . . . , vn} and E = {e1, . . . , em}, respectively. For a graph G,
the neighborhood of vertex u ∈ V is defined NG(u) = {v ∈ V |uv ∈ E}.
The number of edges incident to vertex u in G is denoted degG(u). The
graph G is r-regular if the degree of all vertices is r.
The adjacent matrix A(G) = (aij) of G is an n×n matrix, where aij = 1
if vivj ∈ E and aij = 0 otherwise. The eigenvalues of the matrix A(G),
are called the eigenvalues of graph G [18]. Let λi be the eigenvalue of a
graph G with multiplicity mi for 1 ≤ i ≤ t. The spectrum of the graph
G is defined as follows.

Spec(G) =

(
λ1 . . . λt
m1 . . . mt

)
.

Let λ1, λ2, . . . , λn be the eigenvalues of A(G). The graph energy
E(G) of G, is defined as E(G) =

∑n
i=1 |λi| [16]. There are many kinds

of graph energies that are proposed and investigated [1, 3, 12, 13]. The
edge energy of a graph G, denoted by EE(G), is defined as the sum of
the absolute values of eigenvalues of A(LG) where LG is the line graph
of G [6]. The line graph LG of G is the graph that each vertex of it
represents an edge of G and two vertices of LG are adjacent if and only
if their corresponding edges are incident in G [18].
A subset D ⊆ V is a dominating set of a graph G if every vertex of V \D
is adjacent to some vertices in D [18]. For a graph G, any dominating
set with minimum cardinality is called a minimum dominating set of
G. The minimum dominating energy of a graph G, by denoted ED(G),
is defined as the sum of the absolute values of eigenvalues of the matrix
AD(G) in which the minimum dominating matrix AD(G) is as following
[23].

AD(G) := (aij) =

 1 if vivj ∈ E,
1 if i = j and vi ∈ D,
0 otherwise.

A subset F of edges in a graph G is the edge dominating set if
every edge e in E \ F is adjacent to at least one edge in F . The edge
domination number, denoted by γ′ is the minimum of the cardinality of
an edge dominating set of G. The concept of edge domination number
was studied by Gupta [17]. Note that the edge dominating set of graph
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G is a dominating set for its line graph and vice versa. LetG be a simple
graph with edge set {e1, e2, . . . , em} and F ⊆ E be the minimum edge
dominating set of graph G or the minimum dominating set of graph
L(G). In [2], the minimum edge dominating matrix of graph G is
defined as an m×m matrix as follows

AF (G) := (aij) =

 1 if ei and ej are adjacent,
1 if i = j and ei ∈ F,
0 otherwise.

The minimum edge dominating energy ofG is introduced and studied
in [2] as EEF (G) =

∑m
i=1 |λi|, where λ1, λ2, . . . , λm are the eigenvalues

of AF (G). The minimum edge dominating energy of graphs is obtained
and studied in [2, 9, 10, 11, 20, 21, 22].
In this paper, we investigate the minimum edge dominating energy of
some Cayley graphs on finite group Sn.
We use Kn and Cn to denote a complete graph and a cycle graph of
order n, respectively. Two graphs G1 and G2 are called isomorphic, de-
noted by G1 ' G2 if there is a bijective correspondence between their
vertices and edges.

2. Preliminaries

In this section, we state some results that will be used in the next
section.

Lemma 2.1. [2] Let Cn be the cycle graph of order n for n ≥ 3. Then,
EEF (Cn) = ED(Cn).

Lemma 2.2. [20] Let G be a graph of order n with m edges. If F is the
minimum edge dominating set of G with cardinality k, then EEF (G) ≤
4m− 2n+ k.

Lemma 2.3. [20] Let G be a graph of order n with m ≥ n edges. If F
is the minimum edge dominating set of G, then EEF (G) ≥ 4(m− n+
s) + 2p, where p and s are the number of pendant and isolated vertices
in G, respectively.

Lemma 2.4. [20] Let G be a regular graph of degree r ≥ 2 with n
vertices and m = rn

2
edges. If F is the minimum edge dominating set

with cardinality k, then

(i) If r = 2, then EEF (G) ≤ E(G) + k,
(ii) If r > 2, then EEF (G) < E(G) + k + 2n(r − 2).
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Lemma 2.5. [4] Let G be a graph of order n and γ′ be the minimum
edge domination number of G. Then, γ′ ≤ bn

2
c.

Lemma 2.6. [20] Let G be a connected graph of order n. If v+ is the
number of the positive eigenvalues of the matrix A(G), then EEF (G) ≥
2E(G)− 4v+.

3. Main Results

In this section, we compute the minimum edge dominating energy of
the Cayley graphs G = Cay(Γ, S) where Γ is the symmetric group Sn

and S is a certain subset of these group.
We first consider the finite symmetric group Sn for n = 4. The sym-
metric group Sn is a group of all permutations of n symbols of the
order n! [15]. The energy of the Cayley graph of group S4 on two dif-
ferent subsets S of S4 are obtained in [15]. We compute the minimum
edge dominating energy of Cay(S4, S) where S is the given subsets in
[15]. To do it, we need some previous results of the Cayley graph on
symmetric group S4.

Lemma 3.1. [15] Let S4 be the symmetric group and S ⊆ S4 with the
condition |S| = 1. Then, Cay(S4, S) =

⋃12
i=1K2.

Lemma 3.2. [15] Let S4 be the symmetric group and S ⊆ S4 with the
condition |S| = 2. Then, the Cayley graph of group S4 on subset S is
as follows

Cay(S4, S) =



⋃4
i=1C6 if S = {(ij), (kl)},⋃3
i=1C8 if S = {(ij), (kl)(mn)},⋃8
i=1C3 if S = {(ijk), (lmn)},⋃6
i=1C4 if S =

{
{(ij), (ij)(kl)}, {(ij)(kl), (mn)(pq)}

, {(ijkl), (mnpq)}
}
.

Theorem 3.3. Let F be the minimum edge dominating set of Cayley
graph Cay(S4, S) where S4 is the symmetric group of order 24 and
S ⊂ S4 where |S| = 1. Then

EEF

(
Cay(S4, S)

)
= 12.

Proof. Let G be the Cayley graph of symmetric group S4 on subset S
with condition |S| = 1. Using Lemma 3.1, G =

⋃12
i=1K2. On the other

hand, the line graph of K2 is K1. That is, LG =
⋃12

i=1K1.
Therefore, the spectrum of the minimum edge dominating matrixAF (G)
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consists of 1 with multiplicity 12. Thus, we have

EEF

(
Cay(S4, S)

)
= EEF (G)

=
12∑
i=1

∣∣λi(AF (G))
∣∣

= 12× (1) = 12.

�

Theorem 3.4. Let F be the minimum edge dominating set of Cayley
graph Cay(S4, S) where S4 is the symmetric group of order 24 and
S ⊂ S4 where |S| = 2. Then

EEF

(
Cay(S4, S)

)
=


33.1701 if S = {(ij), (kl)},
32.6796 if S = {(ij), (kl)(mn)},
30.6274 if S = {(ijk), (lmn)},
31.4164 if S =

{
{(ij), (ij)(kl)}, {(ij)(kl), (mn)(pq)}

, {(ijkl), (mnpq)}
}
.

Proof. Let G be the Cayley graph of the symmetric group S4 on subset
S with condition |S| = 2. According to Lemma 3.2, we consider the
following cases. First, suppose that Ci is a cycle of order i in which the
vertices are labeled as 1, 2, . . . , i.
Case 1: Assume that S = {(ij), (kl)}. By applying Lemma 3.2, G =⋃4

i=1C6. Since the line graph of Cn is the cycle Cn, the minimum edge
dominating set and the minimum dominating set of Cn are the same.
Therefore, using Lemma 2.1, it is sufficient to obtain the minimum
dominating energy of graph C6. According to the structure of cycle C6,
one can consider the dominating set as D = {1, 4}. The eigenvalues of
matrix AD(C6) are {1±

√
2,±
√

3,±1}. Therefore, we get

ED(C6) =
6∑

i=1

∣∣λi∣∣
=
∣∣1 +

√
2
∣∣+
∣∣1−√2

∣∣+
∣∣√3

∣∣
+
∣∣−√3

∣∣+
∣∣1∣∣+

∣∣− 1
∣∣

= 2(1 +
√

2 +
√

3) ' 8.2925.

Consequently, we have

EEF

(
Cay(S4, S)

)
= EEF (G)

= 4× ED(C6)

' 4× 8.2925 ' 33.1701.
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Case 2: Suppose that S = {(ij), (kl)(mn)}. Similar to the proof of
Case 1 and since G =

⋃3
i=1C8, one can consider D = {1, 4, 6} as the

minimum edge dominating set of the cycle C8. So, the eigenvalues λi,
where 1 ≤ i ≤ 8, forAD(C8) are {2.4605, 2, 1.8019,−1.6996,−1.2469,−1,
0.4450, 0.2391}. Therefore, ED(C8) =

∑8
i=1

∣∣λi∣∣ ' 10.8930.
For the minimum edge dominating energy of the graph Cay(S4, S), we
have

EEF (G) = 3× ED(C8)

' 3× 10.8930 ' 32.6790.

Case 3: For S = {(ijk), (lmn)}, using Lemma 3.2 we have G =⋃8
i=1C3. Similar to the discussion in Case 1, we obtain the minimum

dominating energy of the cycle C3. To do it, we consider D = {1} as
the minimum dominating set of C3 and the eigenvalues of AD(C3) are
{1±

√
2,−1}.

So, ED(C3) =
∣∣1 +
√

2
∣∣+ ∣∣1−√2

∣∣+ ∣∣− 1
∣∣ ' 3.8284. Therefore, we get

EEF (G) = 8× ED(C3)

' 8× 3.8284 ' 30.6272.

Case 4: Assume that S is one of the subsets {(ij), (ij)(kl)}, {(ij)(kl),
(mn)(pq)} and {(ijkl), (mnpq)} of group S4 where |S| = 2. Therefore,
by applying Lemma 3.2, we have G =

⋃6
i=1C4. Similar to the proof of

previous cases, by considering the minimum dominating set D = {1, 2}
in cycle C4, we obtain the minimum dominating energy of C4. Since the
eigenvalues of AD(C4) are {1

2

(
3±
√

5
)
, 1
2

(
− 1±

√
5
)
} thus, ED(C4) =

3 +
√

5 ' 5.2361. Therefore for the minimum edge dominating energy
of the Cayley graph Cay(S4, S), we have

EEF

(
Cay(S4, S)

)
= 6× ED(C4) ' 31.4166.

Therefore, the result is complete. �

In the following theorem, we obtain the minimum edge dominating
energy of the Cayley graph of finite symmetric group Sn for n ≥ 2 on
subset S = {(12), (13), . . . , (1n)} of Sn. Note that the Cayley graph
Cay(Sn, S) is the star Cayley graph of degree n − 1. This graph is a
connected (n− 1)-regular graph of the order n! [19].

Theorem 3.5. Let Sn be the symmetric group, where n ≥ 2 and S =
{(12), (13), . . . , (1n)} be the subset of Sn. Let F be the minimum edge
dominating set of the Cayley graph Cay(Sn, S).
i) If n = 2, then EEF (Cay(Sn, S)) = 1.
ii) If n ≥ 3, then 2n!(n− 3) ≤ EEF

(
Cay(Sn, S)

)
≤ n!

(
2n− 7

2

)
.
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Proof. The Cayley graph of group Sn on the subset
S = {(12), (13), . . . , (1n)} of Sn for n ≥ 2 is the star Cayley graph
of order n! where the degree all vertices is n − 1. Assume that G =
Cay(Sn, S). For n = 2, it is clear to see that G ' K2. Therefore
EEF (G) = 1.

For n ≥ 3, the number of edges of G is (n−1)n!
2

. Using Lemmas 2.3 and
2.5, we get

EEF

(
Cay(Sn, S)

)
≤ 4
((n− 1)n!

2

)
− 2n! + |F |

≤ 2(n− 1)n!− 2n! +
n!

2

= n!
(
2n− 7

2

)
.

The graph G is (n − 1)-regular graph. Thus, the number of pendant
and isolated vertices are 0. For the lower bound, we apply Lemma 2.3
and have

EEF

(
Cay(Sn, S)

)
≥ 4(m− n)

≥ 4
((n− 1)n!

2
− n!

)
= 2(n− 1)n!− 4n!

= 2n!(n− 3).

�

For the symmetric group Sn, we consider the other kind of Cayley
graphs as the arrangement graph. The arrangement graph A(n, k) is a
graph with all k-permutations of Sn as vertices and two k-permutations
are adjacent if they agree in exactly k − 1 positions. Graph A(n, k) is
a k(n − k)-regular graph with n!

(n−k)! vertices [14]. We determine the

minimum edge dominating energy A(n, k) for k ≤ 4. We first obtain
the graph energy of A(n, k) for k = 2, 3, 4.

Theorem 3.6. Let A(n, k) be the arrangement graph on the symmetric
group Sn for n ≥ 3.
i) If n = 3, then E(A(n, 2)) = 8,
ii) If n ≥ 4, then E(A(n, 2)) = 4(n2 − 3n+ 1).

Proof. It is easy to see that A(3, 2) is the cycle C6. Therefore, the
spectrum of C6 is

Spec(C6) =

(
−2 −1 1 2
1 2 2 1

)
.



142 CHOKANI, MOVAHEDI AND TAHERI

Thus, E(A(3, 2)) =
∑6

i=1 |λi| = 8.
For n ≥ 4, we apply Proposition 9 in [8] for the eigenvalues of the
arrangement graph A(n, 2). So, the spectrum of A(n, 2), where n ≥ 4
is as following

Spec(A(n, 2)) =

(
−2 n− 4 n− 2 2n− 4

n2 − 3n+ 1 n− 1 n− 1 1

)
.

Therefore, we get

E(A(n, 2)) =

n(n−1)∑
i=1

∣∣λi(A(n, 2))
∣∣

= (n2 − 3n+ 1)| − 2|+ (n− 1)|n− 4|
+ (n− 1)|n− 2|+ |2n− 4|
= 4(n2 − 3n+ 1).

�

Theorem 3.7. Let A(n, k) be the arrangement graph on symmetric
group Sn for n ≥ 4.
i) If n = 4, then E(A(n, 3)) = 36,
ii) If n = 5, 6, then E(A(n, 3)) = 3n3 − 8n2 − 13n+ 18,
iii) If n ≥ 7, then E(A(n, 3)) = 6(n3 − 6n2 + 8n− 1).

Proof. According to Theorem 10 in [8], the spectrum of graph A(n, 3)
for n ≥ 4 is as following

(
−3 n− 7 n− 6 n− 4 n− 3 2n− 9 2n− 6 3n− 9

n3 − 6n2 + 8n− 1 n2−3n
2

(n− 1)(n− 2) n2 − 3n
(n−1)(n−2)

2
n− 1 2n− 2 1

)
.

Therefore for the graph energy of A(n, 3), we have

E(A(n, 3)) =

n(n−1)∑
i=1

∣∣λi(A(n, 3))
∣∣

= (n3 − 6n2 + 8n− 1)| − 3|+ (
n2 − 3n

2
)|n− 7|

+ ((n− 1)(n− 2))|n− 6|

+ (n2 − 3n)|n− 4|+ (
(n− 1)(n− 2)

2
)|n− 3|+ (n− 1)|2n− 9|

+ (2n− 2)|2n− 6|+ |3n− 9|.

The result is obtained for two cases 4 ≤ n ≤ 6 and n ≥ 7 from
simplifications of the above relation. �
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Theorem 3.8. Let A(n, k) be the arrangement graph on symmetric
group Sn for n ≥ 5.
i) If 5 ≤ n ≤ 9, the graph energy of A(n, 4) is shown in Table 1.
ii) If n ≥ 10, then E(A(n, 4)) = 1

3
(25n4− 250n3 + 731n2− 638n+ 96).

Proof. Similar to the proof from Theorems 3.6 and 3.7, we have

E(A(n, 4)) =

n(n−1)(n−2)(n−3)∑
i=1

∣∣λi(A(n, 4))
∣∣.

We use Mathematica software for computing and by substituting the
obtained eigenvalues for A(n, 4), where n ≥ 5, from Theorem 11 in [8],
the result is complete. �

Table 1. The graph energy of A(n, 4) for 5 ≤ n ≤ 9.

n E(A(n, 4))
5 204
6 878
7 2532
8 5888
9 11876

Now, we investigate the minimum edge dominating energy of the
arrangement graph A(n, k) for k ≤ 4. We first determine the minimum
edge dominating energy of A(n, 1) for n ≥ 2.

Theorem 3.9. Let F be the minimum edge dominating set of graph
A(n, 1). For n ≥ 2, the minimum edge dominating energy is as follows
i) If n = 2, then EEF (A(n, 1)) = 1,
ii) If n = 3, then EEF (A(n, 1)) = 2

√
2 + 1,

iii) If n ≥ 4, then 4(n− 2) ≤ EEF (A(n, 1)) < 1
2
(4n2 − 7n− 4).

Proof. Since A(n, 1) is the complete graph, thus its eigenvalues are
n − 1 with multiplicity 1 and −1 with multiplicity n − 1. Therefore,
E(A(n, 1)) = 2(n− 1).
For n = 2, 3, it is easy to see that A(2, 1) ' K2 and A(3, 1) ' C3.
Clearly, EEF (A(2, 1)) = 1. According to the proof from Case 3 in
Theorem 3.4, we have EEF (A(3, 1)) = 1 + 2

√
2.

For n ≥ 4, by applying Lemmas 2.4(ii) and 2.5, we get

EEF (A(n, 1)) < E(A(n, 1)) + |F |+ 2n(r − 2)

≤ 2(n− 1) + bn
2
c+ 2n(n− 3)

≤ (2n2 − 4n− 2) +
n

2
.
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By simplifying of the above relation, the result is complete for the
upper bound.
For the lower bound, by setting E(A(n, 1)) = 2(n− 1) and the number
of the positive eigenvalues v+ = 1 in Lemma 2.6, the result holds. �

Theorem 3.10. Let F be the minimum edge dominating set of graph
A(n, 2). For n ≥ 3, the minimum edge dominating energy is as follows
i) If n = 3, then EEF (A(n, 2)) = 2(1 +

√
2 +
√

3),
ii) If n = 4, then 24 ≤ EEF (A(4, 2)) < 74.
iii) If n ≥ 5, then 4(2n2 − 8n + 3) ≤ EEF (A(n, 2)) < 1

2
(8n3 − 23n2 −

n+ 8).

Proof. The arrangement graph A(n, 2) is the 2(n − 2)-regular graph
with n(n− 1) vertices. We consider two following cases.
Case 1. If n = 3, then it is easy to show that A(3, 2) ' C6. Therefore,
using the proof of Case 1 in Theorem 3.4, we have EEF (A(3, 2)) =
2(1 +

√
2 +
√

3).
Case 2. Assume that n ≥ 4. By applying Lemmas 2.4(ii), 2.5 and
Theorem 3.6 we get

EEF (A(n, 2)) < E(A(n, 2)) + |F |+ 2(n2 − n)(2(n− 2)− 2)

≤ 4(n2 − 3n+ 1) + bn
2 − n

2
c+ (2n2 − 2n)(2n− 6)

≤ 1

2
(8n3 − 23n2 − n+ 8).

For the lower bound, by Lemma 2.6, we have

EEF (A(n, 2)) ≥ 2E(A(n, 2))− 4v+

in which v+ is the number of positive eigenvalues of the adjacency ma-
trix of graph A(n, 2). Thus, we compute the value v+ by the obtained
eigenvalues in [8].
For n = 4, we have v+ = 4 and E(A(4, 2)) = 20. This completes the
result. For n ≥ 5, v+ = 2n − 1 and by putting and simplifications of
the relation in Lemma 2.6, the result holds. �

Table 2. The lower and upper bounds of EEF (A(n, 3))
for 4 ≤ n ≤ 7.

n EEF (A(n, 3)) ≥ EEF (A(n, 3)) <
4 20 96
5 140 638
6 424 2040
7 880 4929
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Theorem 3.11. Let F be the minimum edge dominating set of graph
A(n, 3). For n ≥ 4, the minimum edge dominating energy is as follows
i) For 4 ≤ n ≤ 7, the lower and upper bounds EEF (A(n, 3)) are shown
in Table 2,
ii) If n ≥ 8, then

12n3−84n2+120n−16 ≤ EEF (A(n, 3)) <
1

2
(12n4−67n3+81n2+10n−12).

Proof. The arrangement graph A(n, 3) is 3(n−3)-regular graph of order
n(n− 1)(n− 2) where n ≥ 4. For the minimum edge dominating set of

A(n, 3), by Lemma 2.5 we have |F | ≤ bn(n−1)(n−2)
2

c. Therefore, for the
upper bound of EEF (A(n, 3)) by Theorem 3.7 and Lemma 2.4(ii), the
result holds.
Let v+(A(n, 3)) be the number of positive eigenvalues of A(n, 3). For
the lower bound, we compute the number of positive eigenvalues A(n, 3)
for n ≥ 4. Using the spectrum of A(n, 3) in [8], v+(A(4, 3)) = 10,
v+(A(5, 3)) = 29, v+(A(6, 3)) = 44 and v+(A(7, 3)) = 92. For n ≥ 8,
the number of positive eigenvalues of A(n, k) is equal to 3n2 − 6n+ 1.
By applying Lemma 2.6 and Theorem 3.8, the result is complete. �

Table 3. The upper bound of EEF (A(n, 4)) for 5 ≤
n ≤ 9.

n EEF (A(n, 4)) ≥ EEF (A(n, 4)) <
5 228 744
6 1140 5378
7 3352 19752
8 8656 53768
9 18840 122252
10 26256 246488

Theorem 3.12. Let F be the minimum edge dominating set of graph
A(n, 4). For n ≥ 5, the minimum edge dominating energy is as follows
i) For 5 ≤ n ≤ 10, the lower and upper bound of EEF (A(n, 4)) is
shown in Table 3.
ii) For n ≥ 11, 2

3
(25n4−274n3+839n2−746n+102) ≤ EEF (A(n, 4)) <

1
6
(48n5 − 451n4 + 1306n3 − 1169n2 + 2n− 192).

Proof. Graph A(n, 4) is a 4(n − 4)-regular graph with (n2 − n)(n −
2)(n−3) vertices. If F is the minimum edge dominating set of A(n, 3),

then using Lemma 2.5 we have |F | ≤ b (n
2−n)(n−2)(n−3)

2
c.

Therefore, the upper bound of EEF (A(n, 4)) is obtained using Theorem
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3.7 and Lemma 2.4(ii). Mathematica software is used for computing
the upper bound of the minimum edge dominating energy of graph
A(n, 4) for 5 ≤ n ≤ 9.
Let v+(A(n, 4)) be the number of positive eigenvalues of A(n, 4). For
the lower bound, we compute the number of positive eigenvalues A(n, 4)
for n ≥ 5. Using the spectrum of A(n, 4) in [8], v+(A(5, 4)) = 45,
v+(A(6, 4)) = 154, v+(A(7, 4)) = 428, v+(A(8, 4)) = 780, v+(A(9, 4)) =
1229 and v+(A(10, 4)) = 4572. For n ≥ 11, the number of positive
eigenvalues of A(n, k) is equal to 4n3 − 18n2 + 18n − 1. By applying
Lemma 2.6 and Theorem 3.8, the result is complete. �

In the following theorem, we determine the upper bound for the
minimum edge dominating energy of A(n, k) where n ≥ 6 and k ≥ 5.

Theorem 3.13. Let F be the minimum edge dominating set of the
arrangement graph A(n, k) where n ≥ 6 and k ≥ 5. Then,

EF (A(n, k)) ≤ n!

2(n− k)!

(
4k(n− k)− 3

)
.

Proof. Since graph A(n, k) is a k(n − k)-regular graph of order N =
n!

(n−k)! , the number of edges in A(n, k) is m = k(n−k)
2

(
n!

(n−k)!

)
. Using

Lemmas 2.2 and 2.5, we get

EEF (A(n, k)) ≤ 4m− 2N + |F |

= 4
(k(n− k)

2

)( n!

(n− k)!

)
− 2
( n!

(n− k)!

)
+

1

2

⌊ n!

(n− k)!

⌋
=
( n!

(n− k)!

)(
2k(n− k)− 3

2

)
.

By simplifying of the above relation, the result is complete. �

References

1. S. Akbari, A. H. Ghodrati, I. Gutman, M. H. Hosseinzadeh, E. V. Konstantinova,
On path energy of graphs, MATCH Commun. Math. Comput. Chem. (2) 81
(2019), 465–470.

2. M. H. Akhbari, K. K. Choong, F. Movahedi, A note on the minimum edge
dominating energy of graphs, J Appl Math Comput, 63 (2020), 295–310.

3. L. E. Allem, G. Molina, A. Pastine, Short note on Randic energy, MATCH
Commun. Math. Comput. Chem. (2) 82 (2019), 515–528.

4. S. Arumugam, S. Velammal, Edge Domination in Graphs, Taiwanese Journal of
Mathematics, (2) 2 (1998), 173–179.

5. L. W. Beineke, R. J. Wilson, Topics in Algebraic Graph Theory. USA: Cambridge
University Press. 2004.



MINIMUM EDGE DOMINATING ENERGY OF THE CAYLEY GRAPHS 147

6. S. B. Bozkurt, D. Bozkurt, On Incidence Energy, MATCH Commun. Math.
Comput. Chem. 72 (2014), 215–225.

7. A. Cayley, Desiderata and suggestions: No. 2. the theory of groups: Graphical
representation, Amer. J. Math. 1 (1878), 174–176.

8. B. F. Chen, E. Ghorbani, K. B. Wong, Cyclic Decomposition of k-
Permutations and Eigenvalues of the Arrangement Graphs, (4) 20 (2013),
https://doi.org/10.37236/3711.

9. S. Chokani, F. Movahedi, S. M. Taheri, Some of the graph energies of zero-divisor
graphs of finite commutative rings, Int. J. Nonlinear Anal. Appl. (7) 14 (2023),
207–216.

10. S. Chokani, F. Movahedi, S. M. Taheri, Results on some energies of the Zero-
divisor graph of the commutative ring Zn, The 14th Iranian International Group
Theory Conference, Tehran, Iran, (2022), 138–146.

11. S. Chokani, F. Movahedi, S. M. Taheri, The minimum edge dominating energy
of the Cayley graphs on some symmetric groups, Alg. Struc. Appl. (2) 10 (2023),
15–30.

12. C. Das, I. Gutman, Comparing laplacian energy and Kirchhoff index, MATCH
Commun. Math. Comput. Chem. 81(2) (2019), 419–424.

13. K. C. Das, Conjectures on resolvent energy of graphs, MATCH Commun. Math.
Comput. Chem. (2) 81 (2019), 453–464.

14. K. Day, A. Tripathi, Arrangement graphs: a class of generalized star graphs,
Inf. Process. Lett. 42 (1992), 235–241.

15. A. F. A. Fadzil, N. H. Sarmin, A. Erfanian, The Energy of Cayley Graphs for
Symmetric Groups of Order 24, ASM Sci. J., 13 (2020), 1–6.

16. I. Gutman, The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz. Graz.
103 (1978), 1–22.

17. R. P. Gupta, In: proof Techniques in graph theory (ED. F. Harary), Academic
press, New York, (1969), 61–62.

18. F. Harary, Graph Theory, Addison-Wesley, Reading, 1969.
19. E. N. Khomyakova, E. V. Konstantinova, Note on exact values of multiplicities

of eigenvalues of the star graph. Sib. Elektron. Mat. Izv., 12 (2015), 92–100.
20. F. Movahedi, The relation between the minimum edge dominating energy and

the other energies, Discrete Math. Algorithms Appl. (6) 12 (2020), 2050078 (14
pages).

21. F. Movahedi, Bounds on the minimum edge dominating energy of in-
duced subgraphs of a graph, Discrete Math. Algorithms Appl. (6) 13 (2021),
https://doi.org/10.1142/S1793830921500804.

22. F. Movahedi, M. H. Akhbari, New results on the minimum edge dominating
energy of a graph, J. Math. Ext. (5) 16 (2022), 1–17.

23. M. R. Rajesh Kanna, B. N. Dharmendra, G. Sridhara, The minimum dominat-
ing energy of a graph, Int J Pure Appl Math, 85 (2013), 707–718.

Sharife Chokani
Department of Mathematics, Faculty of Sciences, Golestan University, Gorgan,
Iran.
Email: chookanysharyfeh@gmail.com



148 CHOKANI, MOVAHEDI AND TAHERI

Fateme Movahedi
Department of Mathematics, Faculty of Sciences, Golestan University, Gorgan,
Iran.
Email: f.movahedi@gu.ac.ir

Seyyed Mostafa Taheri
Department of Mathematics, Faculty of Sciences, Golestan University, Gorgan,
Iran.
Email: sm.taheri@gu.ac.ir


	1. Introduction
	2. Preliminaries
	3. Main Results
	References

