Journal of Algebra and Related Topics

Vol. 10, No 1, (2022), pp 11-33

GENERALIZATION OF n-IDEALS

S. KARIMZADEH * AND S. HADJIREZAEI

Abstract

Let $f: A \rightarrow B$ be a ring homomorphism and let J be an ideal of B. We proved several results concerning n-ideals and $(2, n)$-ideals of $A \bowtie^{f} J$. Then we recall a proper ideal I of A as $\sqrt{\delta(0)}$-ideal if $a b \in I$ then $b \in I$ or $a \in \sqrt{\delta(0)}$ for every $a, b \in A$. We investigate several properties of the $\sqrt{\delta(0)}$-ideal with similar n-ideals and J-ideals.

1. Introduction and Preliminaries

We assume throughout this paper that all rings are commutative with $1 \neq 0$. Let A and B be commutative rings with unity, let J be an ideal of B and let $f: A \rightarrow B$ be a ring homomorphism. In this setting, we can consider the following subring of $A \times B: A \bowtie^{f} J:=$ $\{(a, f(a)+j) \mid a \in A, j \in J\}$ called the amalgamation of A with B along J to f.

If I is an ideal of A with $I \neq A$, then I is called a proper ideal. For a ring A, the Jacobson radical of A and the set of zero-divisors in A are denoted by $J(A)$ and $Z(A)$, respectively.

In 2015, "Rostam Mohamadian" defined and studied r-ideals in commutative rings. A proper ideal I of a ring A is called an r-ideal if whenever $a, b \in A$ with $a b \in I$ and $\operatorname{Ann}(a)=0$, then $b \in I$ where $\operatorname{Ann}(a)=\{r \in A: r a=0\}$. U. Tekir et al. introduced n-ideals in [14], a proper ideal I of A is said to be an n-ideal if the condition $a b \in I$ with $a \notin \sqrt{0_{A}}$ implies $b \in I$ for every $a, b \in A$. If I is an n-ideal, then $\sqrt{I}=\sqrt{0_{A}}$ is a prime ideal, hence I is quasi-primary and weakly

[^0]irreducible by [12]. A proper ideal I of a ring A is called a J-ideal if whenever $a, b \in A$ with $a b \in I$ and $a \notin J(A)$, then $b \in I[10]$. We shall use $\operatorname{Id}(A)$ to denote the set of all ideals of the ring A.

We prove in Theorem 2.5, I is an n-ideal of A and $J \subseteq \sqrt{0_{B}}$ if and only if $I \bowtie^{f} J:=\{(a, f(a)+j) \mid a \in I, j \in J\}$ is an n-ideal of $A \bowtie^{f} J$. In Proposition 2.6, we determine when $\bar{Q}^{f}:=\{(a, f(a)+j) \mid a \in A, j \in$ $J, f(a)+j \in Q\}$ is an n-ideal of $A \bowtie^{f} J$. We also show that, If N is an n-ideal of $A \bowtie^{f} J$ and $\operatorname{kerf} \nsubseteq \sqrt{0_{A}}$, then there exists an ideal I of A such that I is an n-ideal of A and $N=I \bowtie^{f} J$ (Theorem 2.10).

In Theorem 2.17, we obtain necessary and sufficient conditions for every ideal I of A such that $I \subseteq \sqrt{0_{A}}$ is an n-ideal of A.

Tamekkante and Bouba in [13] defined another class of ideals and called it a $(2, n)$-ideal a proper ideal I of A is called $(2, n)$-ideal of A if whenever $a, b, c \in A$ and $a b c \in I$, then $a b \in I$ or $a c \in \sqrt{0_{A}}$ or $b c \in \sqrt{0_{A}}$. It is shown (in Proposition 3.2) I is a $(2, n)$-ideal of A and $J \subseteq \sqrt{0_{B}}$ if and only if $I \bowtie^{f} J:=\{(a, f(a)+j) \mid a \in I, j \in J\}$ is a $(2, n)$-ideal of $A \bowtie^{f} J$.

Let M be an A-module. The trivial ring extension of A by M (or the idealization of M over A) is the ring $R=A(+) M=\{(a, m) \mid a \in$ $A, m \in M\}$ whose underlying group is $A \times M$ with multiplication given by $\left(a, m_{1}\right)\left(c, m_{2}\right)=\left(a c, a m_{2}+c m_{1}\right)$ (for example see [23]). In section 4, we study $(2, n)$-ideals, in the ring $R=A(+) M$.

In section 5 , we give the notion of $\sqrt{\delta(0)}$-ideals, and we investigate many properties of $\sqrt{\delta(0)}$-ideal with similar n-ideals and J-ideals.

A proper ideal I of A is said to be a $\sqrt{\delta(0)}$-ideal if the condition $a b \in I$ with $a \notin \sqrt{\delta(0)}$ implies $b \in I$ for every $a, b \in A$. Among many results in this paper, it is shown (in Theorem 5.14) that a proper ideal I of A is a $\sqrt{\delta(0)}$-ideal of A if and only if $I=(I: a)$ for every $a \notin \sqrt{\delta(0)}$. In the Corollary 5.30, we show that if I is a $\sqrt{\delta(0)}$ ideal of von Neumann regular ring A, then I is a maximal ideal of A. Furthermore, in Proposition 5.36, If I is a $\sqrt{\delta(0)}$-ideal of A, S is a multiplicatively closed subset of A and $S \cap \sqrt{\delta(0)}=\emptyset$, then $S^{-1} I$ is a $\sqrt{\bar{\delta}(0)}$-ideal of $S^{-1} A$. In Theorem 5.38 , we give necessary and sufficient conditions for every ideal of A is a $\sqrt{\delta(0)}$-ideal.

2. n-IDEALS

In this section, we demonstrate that I is an n-ideal of A and that $J \subseteq \sqrt{0}_{B}$ if and only if $I \bowtie^{f} J$ is an n-ideal of $A \bowtie^{f} J$. We found out when \bar{Q}^{f} is an n-ideal of $A \bowtie^{f} J$. We also show that if N is an n-ideal
of $A \bowtie^{f} J$ and $\operatorname{kerf} \nsubseteq \sqrt{0_{A}}$, then there exists an ideal I of A where I is an n-ideal of A and $N=I \bowtie^{f} J$. We discover necessary and sufficient conditions such that $I \subseteq \sqrt{0_{A}}$ is an n-ideal of A for every ideal I of A.
Definition 2.1. $[6,7]$ Let A and B be two rings with unitary, J an ideal of B, and $f: A \rightarrow B$ a ring homomorphism. In this case, we can consider the following subring of $A \times B: A \bowtie^{f} J:=\{(a, f(a)+j) \mid a \in$ $A, j \in J\}$ called the amalgamation of A and B along J with respect to f.

We next wish to determine when $I \bowtie^{f} J$ and \bar{Q}^{f} are n-ideals, but to do so we need to find $\sqrt{0_{A \bowtie^{f} J}}$ of $A \bowtie^{f} J$. We will use the following Proposition several times.

Proposition 2.2. Let $f: A \rightarrow B$ be a ring homomorphism, J be an ideal of $B . \sqrt{0_{A \bowtie \bowtie^{f} J}}=\left\{(a, f(a)+j) \mid a \in \sqrt{0_{A}}, j \in \sqrt{0_{B}}\right\}$.

Proof. Let $(a, f(a)+j) \in \sqrt{0_{A \bowtie^{f} J}}$. So, there exists $n \in \mathbb{N}$ such that $(a, f(a)+j)^{n}=(0,0)$. Therefore, $\left(a^{n},(f(a)+j)^{n}\right)=(0,0)$. It implies that $a \in \sqrt{0_{A}}$ and $f(a)+j \in \sqrt{0_{B}}$. Hence $j \in \sqrt{0_{B}}$. We conclude that $\sqrt{0_{A \bowtie^{f} J}} \subseteq\left\{(a, f(a)+j) \mid a \in \sqrt{0_{A}}, j \in \sqrt{0_{B}}\right\}$.

Now assume that $a \in \sqrt{0_{A}}$ and $j \in \sqrt{0_{B}}$. Hence $f(a)+j \in \sqrt{0_{B}}$. Therefore, $(a, f(a)+j) \in \sqrt{0_{A \bowtie ®^{f} J}}$.

Remark 2.3. Let $f: A \rightarrow B$ be a ring homomorphism and J be an ideal of B. Then,
(1) $\sqrt{0_{f(A)+J}} \subseteq \sqrt{0_{B}}$.
(2) $\sqrt{0_{A \bowtie^{f} J}}=\left(A \bowtie^{f} J\right) \cap\left(\sqrt{0_{A}} \times \sqrt{0_{B}}\right)$.

Proposition 2.4. Let $f: A \rightarrow B$ be a ring homomorphism, J be an ideal of B. If there exists an n-ideal of $A \bowtie^{f} J$, then $J \subseteq \sqrt{0_{B}}$ or $k e r(f) \subseteq \sqrt{0_{A}}$.
Proof. According to [14, Theorem 2.12], $\sqrt{0_{A \bowtie \bowtie^{f} J}}$ is prime because $A \bowtie^{f}$ J has n-ideal. Assume that $J \nsubseteq \sqrt{0_{B}}$ and $a \in \operatorname{ker}(f)$. So, there exists $j \in J-\sqrt{0_{B}}$. By Proposition 2.2, we get $(0, j) \notin \sqrt{0_{A \bowtie \bowtie^{f} J}}$. We have $(a, 0)(0, j) \in \sqrt{0_{A \bowtie \bowtie^{f} J}}$. It implies that $(a, 0) \in \sqrt{0_{A \bowtie^{f} J}}$. Hence $\operatorname{ker}(f) \subseteq \sqrt{0_{A}}$.

We next determine when $I \bowtie^{f} J$ is an n-ideal.
Theorem 2.5. Let $f: A \rightarrow B$ be a ring homomorphism, J be an ideal of B. Then, I is an n-ideal of A and $J \subseteq \sqrt{0_{B}}$ if and only if $I \bowtie^{f} J:=\{(a, f(a)+j) \mid a \in I, j \in J\}$ is an n-ideal of $A \bowtie^{f} J$.

Proof. (\Rightarrow) Let $\left(a, f(a)+j_{1}\right)\left(b, f(b)+j_{2}\right) \in I \bowtie^{f} J$ where $\left(a, f(a)+j_{1}\right) \in$ $A \bowtie^{f} J \backslash \sqrt{0_{A \bowtie^{f} J}}$ and $\left(b, f(b)+j_{2}\right) \in A \bowtie^{f} J$. Because $J \subseteq \sqrt{0_{B}}$ and
$\left(a, f(a)+j_{1}\right) \notin \sqrt{0_{A \bowtie^{f} J}}$, we obtain $a \notin \sqrt{0_{A}}$ according to Proposition 2.2. We obtain $b \in I$ because $a b \in I$ and I is an n-ideal of A. So, $\left(b, f(b)+j_{2}\right) \in I \bowtie^{f} J$. Consequently, $I \bowtie^{f} J$ is an n-ideal of $A \bowtie^{f} J$.
(\Leftarrow) Assume that $a b \in I$ with $a \notin \sqrt{0_{A}}$ for $a, b \in A$. Then we have $(a, f(a))(b, f(b)) \in I \bowtie^{f} J$ and $(a, f(a)) \notin \sqrt{0_{A \bowtie^{f} J}}$. Since $I \bowtie^{f} J$ is an n-ideal of $A \bowtie^{f} J$, it follows that $(b, f(b)) \in I \bowtie^{f} J$, and so $b \in I$. Consequently, I is an n-ideal of A.

Suppose that $j \in J$. Since I is a proper ideal of A, there exists $a \in A \backslash I$. It implies that $(0, j)(a, f(a)) \in I \bowtie^{f} J$. Therefore, $(0, j) \in$ $\sqrt{0_{A \bowtie^{f} J}}$ because $I \bowtie^{f} J$ is an n-ideal and $(a, f(a)) \notin I \bowtie^{f} J$. Hence, by Proposition 2.2, $j \in \sqrt{0_{B}}$, and so $J \subseteq \sqrt{0_{B}}$.
Proposition 2.6. Let $f: A \rightarrow B$ be a ring homomorphism, J be an ideal of B and Q be an ideal of B. Then, $Q \cap(f(A)+J)$ is an n-ideal of $f(A)+J, f(A) \cap J \subseteq \sqrt{0_{B}}$ and $\operatorname{ker}(f) \subseteq \sqrt{0_{A}}$ if and only if $\bar{Q}^{f}:=\{(a, f(a)+j) \mid a \in A, j \in J, f(a)+j \in Q\}$ is an n-ideal of $A \bowtie^{f} J$.
Proof. (\Rightarrow) Let $\left(a, f(a)+j_{1}\right)\left(b, f(b)+j_{2}\right) \in \bar{Q}^{f}$ and $\left(a, f(a)+j_{1}\right) \notin$ $\sqrt{0_{A \bowtie f} J}$. Then we have $\left(f(a)+j_{1}\right)\left(f(b)+j_{2}\right) \in Q \cap(f(A)+J)$. Now we show that $f(a)+j_{1} \notin \sqrt{0_{(f(A)+J)}}$. Suppose $f(a)+j_{1} \in \sqrt{0_{(f(A)+J)}}$. Then we get there exists $n \in \mathbb{N}$ such that $\left(f(a)+j_{1}\right)^{n}=0$. Hence there exist $j \in J$ such that $(f(a))^{n}=j \in f(A) \cap J$. Since $f(A) \cap J \subseteq \sqrt{0_{B}}$, there exists $k \in \mathbb{N}$ such that $(f(a))^{k n}=0$. Because $\operatorname{ker}(f) \subseteq \sqrt{0_{A}}$, the result is $a \in \sqrt{0_{A}}$. It implies that $\left(a, f(a)+j_{1}\right) \in \sqrt{0_{A \bowtie^{f} J}}$, a contradiction. Thus, we have $f(a)+j_{1} \notin \sqrt{0_{(f(A)+J)}}$. Since $Q \cap(f(A)+$ $J)$ is an n-ideal of $(f(A)+J)$, it follows that $f(b)+j_{2} \in Q \cap(f(A)+J)$. We get the result that $\left(b, f(b)+j_{2}\right) \in \bar{Q}^{f}$.
(\Leftarrow) Let $\left(f\left(a_{1}\right)+j_{1}\right)\left(f\left(a_{2}\right)+j_{2}\right) \in Q \cap(f(A)+J)$ such that $a_{1}, a_{2} \in A$ and $j_{1}, j_{2} \in J$. If $f\left(a_{1}\right)+j_{1} \notin \sqrt{0_{A+J}}$, then $\left(a_{1}, f\left(a_{1}\right)+j_{1}\right) \notin \sqrt{0_{A \bowtie^{f} J}}$. Since \bar{Q}^{f} is an n-ideal of $A \bowtie^{f} J$, it follows that $\left(a_{2}, f\left(a_{2}+j_{2}\right)\right) \in \bar{Q}^{f}$. Therefore, $\left(f\left(a_{2}\right)+j_{2}\right) \in Q \cap(f(A)+J)$. We conclude $Q \cap(f(A)+J)$ is an n-ideal of $f(A)+J$.

We show that $\operatorname{ker}(f) \subseteq \sqrt{0_{A}}$. Assume that $a \in \operatorname{ker}(f)$. Let $(b, f(b)+$ $j) \notin \bar{Q}^{f}$. We have $(a, 0)((b, f(b)+j)) \in \bar{Q}^{f}$. Because \bar{Q}^{f} is an n-ideal, the result is $(a, 0) \in \sqrt{0_{A \bowtie^{f} J}}$. Therefore, by Proposition 2.2, $a \in \sqrt{0_{A}}$. It implies that $\operatorname{ker}(f) \subseteq \sqrt{0_{A}}$.

We show that $f(A) \cap J \subseteq \sqrt{0_{B}}$. Assume that $f(a)=j \in J \cap f(A)$. Therefore, $(a, f(a)-j)=(a, 0) \in A \bowtie^{f} J$. Suppose that $(b, f(b)+j) \in$ $A \bowtie^{f} J \backslash \bar{Q}^{f}$. Therefore, $(a, 0)(b, f(b)+j) \in \bar{Q}^{f}$. Since \bar{Q}^{f} is an n-ideal, it follows that $(a, 0) \in \sqrt{0_{A \bowtie \bowtie_{J} J}}$. By Proposition 2.2 , we have $a \in \sqrt{0_{A}}$. Hence $f(a) \in \sqrt{0_{B}}$. It implies that $f(A) \cap J \subseteq \sqrt{0_{B}}$.

Proposition 2.7. Let $f: A \rightarrow B$ be a ring homomorphism, J be an ideal of B. Let I be an n-ideal of $A \bowtie^{f} J$. Then,
(1) If $K=\{f(a)+j \mid(a, f(a)+j) \in I\}$ and $K \neq f(A)+J$, then K is an n-ideal of $f(A)+J$.
(2) If $L=\{a \mid(a, f(a)) \in I\}$ and $L \neq A$, then L is an n-ideal of A.

Proof. (1) Let $\left(f(a)+j_{1}\right)\left(f(b)+j_{2}\right) \in K$ and $f(a)+j_{1} \notin \sqrt{0_{(f(A)+J)}}$. So, $\left(a, f(a)+j_{1}\right)\left(b, f(b)+j_{2}\right) \in I$ and $\left(a, f(a)+j_{1}\right) \notin \sqrt{0_{A \bowtie f} J}$. Therefore, $\left(b, f(b)+j_{2}\right) \in I$. Hence $\left(f(b)+j_{2}\right) \in K$. It implies that K is an n-ideal of $f(A)+J$.
(2) Let $a, b \in A$ such that $a b \in L$ and $a \notin \sqrt{0_{A}}$. So, $(a b, f(a b)) \in I$. By Proposition 2.2, $(a, f(a)) \notin \sqrt{0_{A \bowtie^{f} J}}$. Since I is an n-ideal, it follows that $(b, f(b)) \in I$. Hence $b \in L$.

Proposition 2.8. Let I be an ideal of $A \bowtie^{f} J$ and $J \subseteq \sqrt{0_{B}}$ and $\operatorname{ker} f \subseteq \sqrt{0_{A}}$. If $K=\{f(a)+j \mid(a, f(a)+j) \in I\}$ is an n-ideal of $f(A)+J$, then I is an n-ideal.
Proof. Let $(a, f(a)+j)\left(b, f(b)+j^{\prime}\right) \in I$ for $(a, f(a)+j),\left(b, f(b)+j^{\prime}\right) \in$ $A \bowtie^{f} J$. Hence $(f(a)+j)\left(f(b)+j^{\prime}\right) \in K$. Since K is an n-ideal, it follows that $(f(a)+j) \in \sqrt{0_{f(A)+J}}$ or $\left(f(b)+j^{\prime}\right) \in K$.

Case 1: Assume that $f(a)+j \in \sqrt{0_{f(A)+J}}$. By Remark 2.3, $f(a)+j \in \sqrt{0_{B}}$. Because $J \subseteq \sqrt{0_{B}}$ and $\operatorname{ker} f \subseteq \sqrt{0_{A}}$, we obtain $a \in \sqrt{0_{A}}$. Therefore, by Proposition 2.2, $(a, f(a)+j) \in \sqrt{0_{A \bowtie^{f} J}}$. Case 2: Assume that $\left(f(b)+j^{\prime}\right) \in K$. Since $K=\{f(a)+j \mid$ $(a, f(a)+j) \in I\}$, it follows that $\left(b, f(b)+j^{\prime}\right) \in I$.
By case 1 and case $2, I$ is an n-ideal of $A \bowtie^{f} J$.
We show that the converse Proposition 2.7 is not true in general.
Example 2.9. (1) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be an identity homomorphism and $J=2 \mathbb{Z}$. Let $I=0 \bowtie^{f} J$ be an ideal of $A \bowtie^{f} J . L=$ $\{a \mid(a, f(a)) \in I\}=\langle 0\rangle$ is an n-ideal of \mathbb{Z}. We have $(0,2)(1,2)=$ $(0,4) \in I,(0,2) \notin \sqrt{0_{A \bowtie^{f} J}}$ and $(1,2) \notin I$. So, I is not an n ideal.
(2) Assume that $A=\mathbb{Z}$ and $B=\mathbb{Z} / 4 \mathbb{Z}$. Let $f: A \rightarrow B$ be a canonical homomorphism and $J=\langle\overline{0}\rangle$. Let $I=4 \mathbb{Z} \bowtie^{f} J$ and $K=\{f(a)+j \mid(a, f(a)+j) \in I\}$. K is an n-ideal of $f(A)+J=B$ because $K=\langle\overline{0}\rangle$. We have $(2, \overline{2})(2, \overline{2})=(4, \overline{0}) \in$ $I,(2, \overline{2}) \notin \sqrt{0_{A \bowtie^{f} J}}$ and $(2, \overline{2}) \notin I$. So, I is not an n-ideal.

Theorem 2.10. Let $f: A \rightarrow B$ be a ring homomorphism, J be an ideal of B and $\operatorname{ker}(f) \nsubseteq \sqrt{0_{A}}$. Then, N is an n-ideal of $A \bowtie^{f} J$ if
and only if there exists an n-ideal I of A such that $N=I \bowtie^{f} J$ and $J \subseteq \sqrt{0_{B}}$.

Proof. (\Rightarrow) Suppose that N is an n-ideal of $A \bowtie^{f} J$ and $\operatorname{ker}(f) \nsubseteq \sqrt{0_{A}}$. So, there exists $a \in \operatorname{ker}(f) \backslash \sqrt{0_{A}}$. By Proposition $2.2,(a, 0) \notin \sqrt{0_{A \bowtie \bowtie^{f} J}}$. If $j \in J$, then $(a, 0)(0, j) \in N$. Therefore, $(0, j) \in N$, and so $0 \times J \subseteq N$.

Set $I=\{a \mid(a, f(a)) \in N\}$. Since $N \neq A \bowtie^{f} J$ and $0 \times J \subseteq N$, it follows that $I \neq A$. By Proposition 2.7, I is an n-ideal of A. We have $N=I \bowtie^{f} J$.

By Proposition 2.4, $J \subseteq \sqrt{0_{B}}$, since $\operatorname{ker}(f) \nsubseteq \sqrt{0_{A}}$.
(\Leftarrow) According to Theorem 2.5, $I \bowtie^{f} J$ is an n-ideal of $A \bowtie^{f} J$, as I is an n-ideal of A and $J \subseteq \sqrt{0_{B}}$.

Theorem 2.11. Let $f: A \rightarrow B$ be a ring homomorphism and J be an ideal of B. If N is an n-ideal of $A \bowtie^{f} J, f(A) \cap J=0$ and ker $f \times 0 \subseteq N$, then there exists an ideal Q of $f(A)+J$ such that Q is an n-ideal of $f(A)+J$ and $N=\{(a, f(a)+j) \mid a \in A, j \in J, f(a)+j \in Q\}$.

Proof. Consider $Q=\{f(a)+j \mid(a, f(a)+j) \in N\}$. Because $N \neq A \bowtie^{f}$ $J, f(A) \cap J=0$ and $\operatorname{kerf} \times 0 \subseteq N$, we obtain $Q \neq f(A)+J$. We get Q is an n-ideal of $f(A)+J$, by Proposition 2.7. It is clear that $N=\{(a, f(a)+j) \mid a \in A, j \in J, f(a)+j \in Q\}$.

Corollary 2.12. Let $f: A \rightarrow B$ be a ring homomorphism and J be an ideal of B. If N is an n-ideal of $A \bowtie^{f} J$ and $0 \times J \subseteq N$, then there exists an ideal I of A such that $N=I \bowtie^{f} J$.

Proposition 2.13. Let A be a ring and $\sqrt{0_{A}}$ be a finitely generated ideal of A. If every ideal $I \subseteq \sqrt{0_{A}}$ is an n-ideal, then every ascending chain of principal ideals $\left\{A x_{j}\right\}_{j=1}^{\infty}$ where $A x_{j} \subseteq \sqrt{0_{A}}$ stops.

Proof. Let $A x_{1} \subsetneq A x_{2} \subsetneq A x_{3} \subsetneq \cdots \subsetneq A x_{i} \subsetneq \ldots$ be a chain of principal ideals of A where $A x_{i} \subseteq \sqrt{0_{A}}$ for all $i \in \mathbb{N}$. We conclude $x_{1}=r_{2} x_{2}=$ $r_{2} r_{3} x_{3}=\cdots=r_{2} \ldots r_{k} x_{k}=\ldots$ for $r_{1}, r_{2}, \cdots \in A$. Since $A x_{i}$ is an n-ideal, it follows that $r_{i} \in \sqrt{0_{A}}$. On the other hand, since $\sqrt{0_{A}}$ is a finitely generated ideal of A, there exists $n \in \mathbb{N}$ such that $\left(\sqrt{0_{A}}\right)^{n}=\langle 0\rangle$. So, $x_{1}=r_{2} \ldots r_{n} r_{n+1} x_{n+1}=0$. It follows that $x_{i}=0$, for all $i \in \mathbb{N}$, which is a contradiction. Therefore, every ascending chain of principal ideals $\left\{A x_{j}\right\}_{j=1}^{\infty}$ where $A x_{j} \subseteq \sqrt{0_{A}}$ stops.

Definition 2.14. A prime ideal P of a ring A is called divided if $P \subseteq\langle x\rangle$ for every $x \in A-P$.

Lemma 2.15. If every ideal $I \subseteq \sqrt{0_{A}}$ of A is an n-ideal, then $\sqrt{0_{A}}$ is a divided prime ideal.

Proof. By [14, Theorem 2.12], $\sqrt{0_{A}}$ is a prime ideal of A. Assume that $r \in A$. If $\left(r \sqrt{0_{A}}\right)=\sqrt{0_{A}}$, then $\sqrt{0_{A}} \subseteq\langle r\rangle$. If $\left(r \sqrt{0_{A}}\right) \varsubsetneqq \sqrt{0_{A}}$, then there exists $x \in \sqrt{0_{A}} \backslash\left(r \sqrt{0_{A}}\right)$. We get $r x \in\left(r \sqrt{0_{A}}\right)$. By our assumption, $r \sqrt{0_{A}}$ is an n-ideal, therefore $r \in \sqrt{0_{A}}$. Hence for every $r \in A$, we have $r \in \sqrt{0_{A}}$ or $\sqrt{0_{A}} \subseteq\langle r\rangle$.

Proposition 2.16. If $\sqrt{0_{A}}$ is a divided prime ideal of A such that every ascending chain of principal ideals $\left\{I_{j}\right\}_{j=1}^{\infty}$ where $I_{j} \subseteq \sqrt{0_{A}}$ stops, then every ideal $I \subseteq \sqrt{0_{A}}$ of A is an n-ideal.

Proof. Assume that $\sqrt{0_{A}} \neq\langle 0\rangle$.
Let $I \subseteq \sqrt{0_{A}}$ be an ideal of A and $r x \in I$, for $x \in A$ and $r \in A \backslash \sqrt{0_{A}}$. Because $\sqrt{0_{A}}$ is a divided prime ideal of A and $r x \in \sqrt{0_{A}}$, we obtain $x \in \sqrt{0_{A}}$ and $\sqrt{0_{A}} \subseteq\langle r\rangle$. So, there exists $x_{1} \in A$ such that $x=r x_{1}$. $x_{1} \in \sqrt{0_{A}}$ is obtained because $\sqrt{0_{A}}$ is a prime ideal and $r \notin \sqrt{0_{A}}$. So, we have $x=r x_{1}=r^{2} x_{2}=r^{3} x_{3}=\cdots=r^{n} x_{n}=\ldots$ for some $x_{i} \in \sqrt{0_{A}}$. Then $A x_{1} \subseteq A x_{2} \subseteq A x_{3} \subseteq \cdots \subseteq A x_{i} \subseteq \ldots$. Since every ascending chain of principal ideal stops, there exists $n \in \mathbb{N}$ such that $A x_{n}=A x_{i}$, for every $i \geq n$. So, there exists $s \in A$ such that $x_{n+1}=s x_{n}$. It follows that $x_{n}=r s x_{n}$. We can conclude $(1-r s) x=0$ and $x=s r x$. As $r x \in I$, so $x \in I$.

Theorem 2.17. Let A be a ring and $\sqrt{0_{A}}$ be a finitely generated ideal of A. Then, every ideal $I \subseteq \sqrt{0_{A}}$ is an n-ideal if and only if every ascending chain of principal ideals $\left\{A x_{j}\right\}_{j=1}^{\infty}$ where $A x_{j} \subseteq \sqrt{0_{A}}$ stops, and $\sqrt{0_{A}}$ is a divided prime ideal.

Proof. By Proposition 2.13, Lemma 2.15 and Proposition 2.16.
Proposition 2.18. Suppose that $I_{1}, I_{2}, \ldots, I_{n}$ are primary ideals of A such that $\sqrt{I_{j}}$'s are not comparable. Then, $\cap_{j=1}^{n} I_{j}$ is an n-ideal, if and only if I_{j} is an n-ideal for each $j \in\{1,2, \ldots, n\}$.

Proof. (\Rightarrow) Let $a x \in I_{k}$ with $a \notin \sqrt{0}$, for $x \in A$ and $1 \leq k \leq n$. Since $\sqrt{I_{j}}$'s are not comparable, there exists $r \in \cap_{j=1}^{n} \sqrt{I_{j}}-\sqrt{I_{k}}$. So, there exists $t \in \mathbb{N}$ such that $r^{t} a x \in \cap_{j=1}^{n} I_{j}$. It follows that $r^{t} x \in I_{k}$. Thus, $x \in I_{k}$, and so I_{k} is an n-ideal.
(\Leftarrow) [14, Proposition 2.4].
Theorem 2.19. Let A be a ring. Then, $\langle 0\rangle$ is an n-ideal of A if and only if $\varphi: A \rightarrow S^{-1} A$ is either injective or $\varphi=0$, for every multiplicative closed subset S of A.

Proof. (\Rightarrow) Suppose that φ is not injective. Hence $\operatorname{ker}(\varphi) \neq 0$. So, there exists $0 \neq r \in \operatorname{ker}(\varphi)$. It implies that $s r=0$ for some $s \in S$. As
$\langle 0\rangle$ is an n-ideal and $0 \neq r$, we obtain $s \in S \cap \sqrt{0_{A}}$. We get $S^{-1} A=0$ and $\operatorname{ker}(\varphi)=A$. Therefore, $\varphi=0$.
(\Leftarrow) Assume that $r x \in\langle 0\rangle$ and $r, x \in A$. Set $S=\left\{r^{n}: n \in \mathbb{N} \cup\{0\}\right\}$. So, S is a multiplicative closed subset of A. If $\operatorname{ker}(\varphi)=0$, then as $\varphi(x)=x / 1=r x / r=0$, we get $x=0$. Let $\varphi=0$. So, $\operatorname{ker}(\varphi)=A$. Therefore, $\varphi(1)=0$. It implies that there exists $n \in \mathbb{N}$ such that $r^{n}=0$. Hence $r \in \sqrt{0_{A}}$. Therefore, $\langle 0\rangle$ is an n-ideal of A.

Corollary 2.20. Let A be a ring and $I \subseteq \sqrt{0_{A}}$. Then, I is an n-ideal of A if and only if $\varphi: A / I \rightarrow S^{-1}(A / I)$ is either injective or $\varphi=0$, for every multiplicative closed subset S of A / I.

3. $(2, n)$-IDEALS

In this section, we discuss $(2, n)$-ideals of $A \bowtie^{f} J$, and we determine when $I \bowtie^{f} J$ and \bar{Q}^{f} are $(2, n)$-ideals.

Definition 3.1. [13] A proper ideal I of A is called a $(2, n)$-ideal of A if whenever $a, b, c \in A$ and $a b c \in I$, then $a b \in I$ or $a c \in \sqrt{0_{A}}$ or $b c \in \sqrt{0_{A}}$.

Proposition 3.2. Let $f: A \rightarrow B$ be a ring homomorphism and J be an ideal of B. Then, I is a $(2, n)$-ideal of A and $J \subseteq \sqrt{0_{B}}$ if and only if $I \bowtie^{f} J:=\{(a, f(a)+j) \mid a \in I, j \in J\}$ is a $(2, n)$-ideal of $A \bowtie^{f} J$.

Proof. (\Rightarrow) Let $x_{i}=\left(a_{i}, f\left(a_{i}\right)+j_{i}\right) \in A \bowtie^{f} J$ for $1 \leq i \leq 3$. Suppose that $x_{1} x_{2} x_{3} \in I \bowtie^{f} J$ where $x_{1} x_{3} \in A \bowtie^{f} J \backslash \sqrt{0_{A \bowtie^{f} J}}$ and $x_{2} x_{3} \in$ $A \bowtie^{f} J \backslash \sqrt{0_{A \bowtie f} J}$. Since $J \subseteq \sqrt{0_{B}}$, it follows that $a_{1} a_{3} \notin \sqrt{0_{A}}$ and $a_{2} a_{3} \notin \sqrt{0_{A}}$. Since I is a $(2, n)$-ideal of A, it follows that $a_{1} a_{2} \in I$, and so $x_{1} x_{2} \in I \bowtie^{f} J$. Consequently, $I \bowtie^{f} J$ is a $(2, n)$-ideal of $A \bowtie^{f} J$.
(\Leftarrow) Let $a b c \in I$ with $a c \notin \sqrt{0_{A}}$ and $b c \notin \sqrt{0_{A}}$ for $a, b, c \in A$. Then we have $(a, f(a))(b, f(b))(c, f(c)) \in I \bowtie^{f} J$ and $(a, f(a))(c, f(c)) \notin$ $\sqrt{0_{A \bowtie^{f} J}}$ and $(b, f(b))(c, f(c)) \notin \sqrt{0_{A \bowtie^{f} J}}$. Since $I \bowtie^{f} J$ is a $(2, n)$-ideal of $A \bowtie^{f} J$, it follows that $(a, f(a))(b, f(b)) \in I \bowtie^{f} J$, and so $a b \in I$. Consequently, I is a $(2, n)$-ideal of A.

We show that $J \subseteq \sqrt{0_{B}}$. By [13, Theorem 2.4], $I \bowtie^{f} J \subseteq \sqrt{0_{A \bowtie^{f} J}}$. Hence $0 \times J \subseteq \sqrt{0_{A \bowtie ®^{f} J}}$. By Proposition 2.2, $J \subseteq \sqrt{0_{B}}$.

Proposition 3.3. Let $f: A \rightarrow B$ be a ring homomorphism and J be an ideal of B. Let Q be an ideal of B. Then, $Q \cap(f(A)+J)$ is a (2,n)-ideal of $f(A)+J$ and $J \cap f(A) \subseteq \sqrt{0_{B}}, \operatorname{ker}(f) \subseteq \sqrt{0_{A}}$ if and only if $\bar{Q}^{f}:=\{(a, f(a)+j) \mid a \in A, j \in J, f(a)+j \in Q\}$ is a (2,n)-ideal of $A \bowtie^{f} J$.

Proof. (\Rightarrow) Let $x_{i}=\left(a_{i}, f\left(a_{i}\right)+j_{i}\right) \in A \bowtie^{f} J$ and $y_{i}=f\left(a_{i}\right)+j_{i}$ for $1 \leq i \leq 3$. Suppose that $x_{1} x_{2} x_{3} \in \bar{Q}^{f}$ and $x_{1} x_{3} \notin \sqrt{0_{A \bowtie^{f} J}}$ and $x_{2} x_{3} \notin \sqrt{0_{A \bowtie^{f} J}}$. Then we have $y_{1} y_{2} y_{3} \in Q \cap(f(A)+J)$.

Now, we show that $y_{1} y_{3} \notin \sqrt{0_{(f(A)+J)}}$ and $y_{2} y_{3} \notin \sqrt{0_{(f(A)+J)}}$. Assume that $y_{1} y_{3} \in \sqrt{0_{(f(A)+J)}}$. Then there exists $n \in \mathbb{N}$ such that $\left(y_{1} y_{3}\right)^{n}=0$. Hence $f\left(a_{1} a_{3}\right)^{n} \in f(A) \cap J$. Since $J \cap f(A) \subseteq \sqrt{0_{B}}$, there exists $k \in \mathbb{N}$ such that $\left(f\left(a_{1} a_{3}\right)\right)^{n k}=0$. Since $\operatorname{ker}(f) \subseteq \sqrt{0_{A}}$, it follows that $a_{1} a_{3} \in \sqrt{0_{A}}$. It implies that $x_{1} x_{3} \in \sqrt{0_{A \bowtie^{f} J}}$, a contradiction. Thus, we have $y_{1} y_{3} \notin \sqrt{0_{(f(A)+J)}}$ and $y_{2} y_{3} \notin \sqrt{0_{(f(A)+J)}}$. Since $Q \cap(f(A)+J)$ is a $(2, n)$-ideal of $(f(A)+J)$, it follows that $y_{1} y_{2} \in Q \cap(f(A)+J)$. We get the result that $x_{1} x_{2} \in \bar{Q}^{f}$.
(\Leftarrow) Let $\left(f(a)+j_{1}\right)\left(f(b)+j_{2}\right)\left(f(c)+j_{3}\right) \in Q \cap(f(A)+J)$ such that $a, b, c \in A$ and $j_{1}, j_{2}, j_{3} \in J$. If $\left(f(a)+j_{1}\right)\left(f(b)+j_{2}\right) \notin \sqrt{0_{f(A)+J}}$ and $\left(f(b)+j_{2}\right)\left(f(c)+j_{3}\right) \notin \sqrt{0_{f(A)+J}}$, then $\left(a, f(a)+j_{1}\right)(c, f(c)+$ $\left.j_{3}\right) \notin \sqrt{0_{A \bowtie^{f} J}}$ and $\left(b, f(b)+j_{2}\right)\left(c, f(c)+j_{3}\right) \notin \sqrt{0_{A \bowtie^{f} J}}$. Since \bar{Q}^{f} is a $(2, n)$-ideal of $A \bowtie^{f} J$, it follows that $\left(a, f\left(a+j_{1}\right)\left(b, f(b)+j_{2}\right) \in \bar{Q}^{f}\right.$. Therefore, $\left(f(a)+j_{1}\right)\left(f(b)+j_{2}\right) \in Q \cap(f(A)+J)$. We conclude $Q \cap(f(A)+J)$ is a $(2, n)$-ideal of $f(A)+J$.

Now, we show that $\operatorname{ker}(f) \subseteq \sqrt{0_{A}}$. Assume that $a \in \operatorname{ker}(f)$. Therefore, $(1,1)(1,1)(a, 0) \in \bar{Q}^{f}$. We have $(1,1) \notin \bar{Q}^{f}$, and so $(a, 0) \in$ $\sqrt{0_{A \bowtie^{f} J}}$. By Proposition 2.2, $a \in \sqrt{0_{A}}$. Hence $\operatorname{ker}(f) \subseteq \sqrt{0_{A}}$.

Now, we show that $J \cap f(A) \subseteq \sqrt{0_{B}}$. Let $f(a) \in J \cap f(A)$. So, $(a, 0) \in \bar{Q}^{f}$. Hence $(1,1)(1,1)(a, 0) \in \bar{Q}^{f}$. As \bar{Q}^{f} is a $(2, n)$-ideal and $(1,1) \notin \bar{Q}^{f}$, we obtain $(a, 0) \in \sqrt{0_{A \bowtie^{f} J}}$. By Proposition 2.2, $a \in \sqrt{0_{A}}$. Hence $f(a) \in \sqrt{0_{B}}$. Therefore, $J \cap f(A) \subseteq \sqrt{0_{B}}$.

Proposition 3.4. Let $f: A \rightarrow B$ be a ring homomorphism and J be an ideal of B. Let I be a $(2, n)$-ideal of $A \bowtie^{f} J$. Then,
(1) If $K=\{f(a)+j \mid(a, f(a)+j) \in I\}$ and $K \neq f(A)+J$, then K is a $(2, n)$-ideal of $f(A)+J$.
(2) If $L=\{a \mid(a, f(a)) \in I\}$ and $L \neq A$, then L is a (2,n)-ideal of A.

Proof. (1) Let $\left(f(a)+j_{1}\right)\left(f(b)+j_{2}\right)\left(f(c)+j_{3}\right) \in K$ and $(f(a)+$ $\left.j_{1}\right)\left(f(c)+j_{3}\right) \notin \sqrt{0_{(f(A)+J)}}$ and $\left(f(b)+j_{2}\right)\left(f(c)+j_{3}\right) \notin \sqrt{0_{(f(A)+J)}}$. So, $\left(a, f(a)+j_{1}\right)\left(b, f(b)+j_{2}\right)\left(c, f(c)+j_{3}\right) \in I$ and $\left(a, f(a)+j_{1}\right)(c, f(c)+$ $\left.j_{3}\right) \notin \sqrt{0_{A \bowtie^{f} J}}$ and $\left(b, f(b)+j_{2}\right)\left(c, f(c)+j_{3}\right) \notin \sqrt{0_{A \bowtie^{f} J}}$. Therefore, $\left(a, f(a)+j_{1}\right)\left(b, f(b)+j_{2}\right) \in I$. Hence $\left(f(a)+j_{1}\right)\left(f(b)+j_{2}\right) \in K$. It implies that K is a $(2, n)$-ideal of $f(A)+J$.
(2) Let $a, b, c \in A$ such that $a b c \in L$ and $a c \notin \sqrt{0_{A}}$ and $b c \notin \sqrt{0_{A}}$. So, $(a b c, f(a b c)) \in I$ and $(a, f(a))(c, f(c)) \notin \sqrt{0_{A \bowtie \bowtie^{f} J}}$ and $(b, f(b))(c, f(c)) \notin$ $\sqrt{0_{A \bowtie^{f} J}}$. Since I is a $(2, n)$-ideal, it follows that $(a, f(a))(b, f(b)) \in I$. Hence $a b \in L$.

Corollary 3.5. If A has a $(2, n)$-ideal, then $\sqrt{0_{A}}$ is a 2-absorbing ideal.
Proof. By [13, Theorem 2.4] we have $\sqrt{I}=\sqrt{0_{A}}$. By [4, Theorem 2.2], \sqrt{I} is a 2 -absorbing ideal. It implies that $\sqrt{0_{A}}$ is a 2 -absorbing ideal.

Lemma 3.6. Let A be a ring and $\sqrt{0_{A}}$ be a prime ideal. If $I \subseteq \sqrt{0_{A}}$ is an ideal of A, then I is a $(2, n)$-ideal.

Proposition 3.7. Suppose that $I_{1}, I_{2}, \ldots, I_{n}$ are 2-absorbing primary ideals of A such that $\sqrt{I_{j}}$'s are not comparable and $\sqrt{0_{A}}$ is a prime ideal. Then, $\cap_{j=1}^{n} I_{j}$ is a $(2, n)$-ideal, if and only if I_{j} is a $(2, n)$-ideal for each $j \in\{1,2, \ldots, n\}$.

Proof. (\Rightarrow) Let $a b c \in I_{k}$ with $a c \notin \sqrt{0_{A}}$ and $b c \notin \sqrt{0_{A}}$, for $a, b, c \in A$ and $1 \leq k \leq n$. Since $\sqrt{I_{j}}$'s are not comparable, there exists $r \in$ $\cap_{j=1, j \neq k}^{n} \sqrt{I_{j}} \backslash \sqrt{I_{k}}$. So, there exists $t \in \mathbb{N}$ such that $r^{t} a b c \in \cap_{j=1}^{n} I_{j}$. We get $a b \in I_{k}$ or $r^{t} a c \in \sqrt{0_{A}}$ or $r^{t} b c \in \sqrt{0_{A}}$. Since $r \notin \sqrt{I_{k}}$, it follows that $r^{t} \notin \sqrt{0_{A}}$. It implies that $a c \in \sqrt{0_{A}}$ or $b c \in \sqrt{0_{A}}$. Therefore, I_{k} is a $(2, n)$-ideal.
$\Leftarrow[13$, Proposition 2.8].

4. (2,N)-IDEALS IN TRIVIAL RING EXTENSIONS

This section will go over the $(2, n)$-ideals in ring $A(+) M$ in detail, such as I is a $(2, n)$-ideal if and only if $I(+) M$ is also a $(2, n)$-ideal.

Definition 4.1. [1] Assume the commutative ring A and the A-module M. The trivial ring extension of A by M (or the idealization of M over A) is the ring $A(+) M$ whose underlying group is $A \times M$ with multiplication given by $(a, m)(b, n)=(a b, a n+b m)$.

Note 4.2. The nil radical of $A(+) M$ is characterized as follows: $\sqrt{0_{A(+) M}}=$ $\sqrt{0_{A}}(+) M$. Notice that $(r, m) \notin \sqrt{0_{A(+) M}}$ if and only if $r \notin \sqrt{0_{A}}[1$, Theorem 3.2].

Proposition 4.3. Let A be a commutative ring, I be a proper ideal of A, M be an A-module, and $R=A(+) M$. Then, I is a $(2, n)$-ideal of A if and only if $I(+) M$ is a $(2, n)$-ideal of R.

Proof. (\Rightarrow) Let $x_{i}=\left(r_{i}, m_{i}\right) \in R$ for $1 \leq i \leq 3$. Suppose that $x_{1} x_{2} x_{3} \in$ $I(+) M$ with $x_{1} x_{3} \notin \sqrt{0_{A(+) M}}$ and $x_{2} x_{3} \notin \sqrt{0_{A(+) M}}$. Then, we have $r_{1} r_{2} r_{3} \in I$ and $r_{1} r_{3} \notin \sqrt{0_{A}}$ and $r_{2} r_{3} \notin \sqrt{0_{A}}$. Since I is a $(2, n)$-ideal of A, it follows that $r_{1} r_{2} \in I$, and so $x_{1} x_{2} \in I(+) M$. Consequently, $I(+) M$ is a $(2, n)$-ideal of R.
(\Leftarrow) Let $a b c \in I$ with $a c \notin \sqrt{0_{A}}$ and $b c \notin \sqrt{0_{A}}$. So, $(a, 0)(b, 0)(c, 0) \in$ $I(+) M$ and $(a, 0)(c, 0),(b, 0)(c, 0) \notin \sqrt{0_{A(+) M}}$. Since $I(+) M$ is a $(2, n)-$ ideal of R, it follows that $(a, 0)(b, 0) \in I(+) M$. Hence $a b \in I$ and I is a $(2, n)$-ideal of A.

Proposition 4.4. Let M be an A-module, $R=A(+) M$. Let I be a proper ideal of A and N be a submodule of M such that $I M \subseteq N$. Then:
(1) If $I(+) N$ is a $(2, n)$-ideal of R, then I is a $(2, n)$-ideal of A.
(2) If I is a $(2, n)$-ideal of A, N is an n-submodule of M and $\operatorname{Nil}(M) \subseteq \sqrt{0_{A}}$, then $I(+) N$ is a $(2, n)$-ideal of $A(+) M$.
(3) Let N be a $\sqrt{0_{A}}$-primary submodule. If I is a $(2, n)$-ideal of A, then $I(+) N$ is a $(2, n)$-ideal of $A(+) M$.
(4) If N is a $\sqrt{0_{A}}$-prime submodule, then $\sqrt{0_{A}}(+) N$ is a (2, n)-ideal.

Proof. (1) Assume that $a b c \in I$ with $a c \notin \sqrt{0_{A}}$ and $b c \notin \sqrt{0_{A}}$. Then $(a, 0)(b, 0)(c, 0) \in I(+) N$ and $(a, 0)(c, 0),(b, 0)(c, 0) \notin \sqrt{0_{R}}$. Therefore, $(a, 0)(b, 0) \in I(+) N$. We get $a b \in I$.
(2) Suppose that $x_{i}=\left(a_{i}, m_{i}\right) \in R, 1 \leq i \leq 3$ and $x_{1} x_{2} x_{3} \in I(+) N$ with $x_{1} x_{3}, x_{2} x_{3} \notin \sqrt{0_{A(+) M}}$. We have $a_{1} a_{2} a_{3} \in I$ and $a_{1} a_{3}, a_{2} a_{3} \notin \sqrt{0_{A}}$. Since I is a $(2, n)$-ideal, it follows that $a_{1} a_{2} \in I$. By our assumption, $I M \subseteq N$ and $x_{1} x_{2} x_{3} \in I(+) N$, we get $a_{3}\left(a_{1} m_{2}+a_{2} m_{1}\right) \in N$. Since $a_{1} a_{3}, a_{2} a_{3} \notin \sqrt{0_{A}}$, it follows that $a_{3} \notin \sqrt{0_{A}}$. So, $a_{1} m_{2}+a_{2} m_{1} \in N$ because N is an n-submodule, $a_{3}\left(a_{1} m_{2}+a_{2} m_{1}\right) \in N$ and $a_{3} \notin \sqrt{0_{A}}$. Therefore, $x_{1} x_{2} \in I(+) N$ and $I(+) N$ is a (2,n)-ideal.
(3) Assume that $x_{i}=\left(a_{i}, m_{i}\right) \in R, 1 \leq i \leq 3$ and $x_{1} x_{2} x_{3} \in I(+) N$ with $x_{1} x_{3}, x_{2} x_{3} \notin \sqrt{0_{A(+) M}}$. So, $a_{1} a_{2} a_{3} \in I$ and $a_{1} a_{3}, a_{2} a_{3} \notin \sqrt{0_{A}}$. Hence $a_{1} a_{2} \in I$, because I is a $(2, n)$-ideal. We can conclude $a_{1} m_{2}+$ $a_{2} m_{1} \in N$. Then $x_{1} x_{2} \in I(+) N$ and $I(+) N$ is a ($2, n$)-ideal.
(4) Since $\sqrt{0_{A}}$ is a prime ideal, $\sqrt{0_{A}}$ is a $(2, n)$-ideal. It is clear that N is an n-submodule and $\sqrt{0_{A}} M \subset N$ and $N i l(M) \subseteq \sqrt{0_{A}}$. Therefore, by (2) we have $\sqrt{0_{A}}(+) N$ is a $(2, n)$-ideal.

In the next example, we show that the converse of parts (3) and (4) of Proposition 4.4 is not true in general.

Example 4.5. Let $A=\mathbb{Z}_{6}, M=\mathbb{Z}_{6}$ and $R=A(+) M$. Assume that $\left(r_{1}, x_{1}\right)\left(r_{2}, x_{2}\right)\left(r_{3}, x_{3}\right) \in I(+) N$ for $\left(r_{1}, x_{1}\right),\left(r_{2}, x_{2}\right),\left(r_{3}, x_{3}\right) \in R$. We
get $r_{1} r_{2} r_{3} \in \overline{0}$. Since $\overline{0}$ is a $(2, n)$-ideal, it follows that $r_{1} r_{2} \in \overline{0}$ or $r_{2} r_{3} \in \sqrt{\overline{0}}$ or $r_{1} r_{3} \in \sqrt{\overline{0}}$.

Case 1: If $r_{2} r_{3} \in \sqrt{\overline{0}}$ or $r_{1} r_{3} \in \sqrt{\overline{0}}$, then $\left(r_{2}, x_{2}\right) \in \sqrt{0_{A(+) M}}$ or $\left(r_{3}, x_{3}\right) \in \sqrt{0_{A(+) M}}$.
Case 2: Assume that $r_{1} r_{2} \in \overline{0}$ and $r_{2} r_{3} \notin \sqrt{\overline{0}}$ and $r_{1} r_{3} \notin \sqrt{\overline{0}}$. We get $r_{1} \neq \overline{0}$ and $r_{2} \neq \overline{0}$. Without loose generality assume that $r_{1} \in\langle\overline{2}\rangle, r_{2} \in\langle\overline{3}\rangle, r_{1} \notin\langle\overline{3}\rangle$ and $r_{2} \notin\langle\overline{2}\rangle$. As $r_{2} r_{3} \notin \sqrt{\overline{0}}$ and $r_{1} r_{3} \notin \sqrt{\overline{0}}$, we obtain $r_{3} \notin\langle\overline{3}\rangle$ and $r_{3} \notin\langle\overline{3}\rangle$. We have $r_{3}\left(r_{1} x_{2}+r_{2} x_{1}\right)=0 . \quad\left(r_{1} x_{2}+r_{2} x_{1}\right)=0$ is obtained because $r_{3} \notin\langle\overline{2}\rangle$ and $r_{3} \notin\langle\overline{3}\rangle$.
Therefore, $I(+) N$ is a $(2, n)$-ideal. N is not a primary submodule and N is not an n-submodule.

Proposition 4.6. Let M be an A-module, N be a submodule of M, and $\sqrt{0_{A}}$ be a prime ideal. If $R=A(+) M$ and $I \subseteq \sqrt{0_{A}}$, then $I(+) N$ is a $(2, n)$-ideal of R.

Proof. Since $\sqrt{0_{A}}$ is a prime ideal, it follows that $\sqrt{0_{A(+) M}}$ is a prime ideal. By Lemma 3.6, $I(+) N$ is a $(2, n)$-ideal.

$$
\text { 5. } \sqrt{\delta(0)}-\mathrm{IDEAL}
$$

In this section, we give some properties of $\sqrt{\delta(0)}$-ideal. We show that a proper ideal I of A is a $\sqrt{\delta(0)}$-ideal of A if and only if $I=(I: a)$ for every $a \notin \sqrt{\delta(0)}$. We demonstrate that if I is a $\sqrt{\delta(0)}$-ideal of the von Neumann regular ring A, then I is A 's maximal ideal.

Definition 5.1. [5] Let $\operatorname{Id}(A)$ be the set of all ideals of R and δ : $\operatorname{Id}(A) \rightarrow \operatorname{Id}(A)$ be a function of ideals of $A . \delta$ is called an expansion function of $\operatorname{Id}(A)$ if it satisfies the following two conditions:
(1) $I \subseteq \delta(I)$.
(2) If $I \subseteq J$, then $\delta(I) \subseteq \delta(J)$ for any ideals I, J of A.

Example 5.2. [5]

(1) The identity function δ_{0}, where $\delta_{0}(I)=I$ for every ideal I of R, is an expansion of ideals.
(2) For each ideal I define $\delta_{1}(I)=\sqrt{I}$. Then δ_{1} is an expansion of ideals.
For other examples, see [8].
Definition 5.3. [5] Given an expansion δ of ideals, an ideal I of A is called δ-primary if $a b \in I$ and $a \notin \delta(I)$ imply $b \in I$ for all $a, b \in A$.

Definition 5.4. Suppose that δ is an expansion function of $\operatorname{Id}(A)$ and $\delta(0)$ is a proper ideal of A. A proper ideal I of A is called a $\sqrt{\delta(0)}$-ideal if whenever $a, b \in A$ with $a b \in I$ and $a \notin \sqrt{\delta(0)}$, then $b \in I$.

Example 5.5. Let A be a commutative ring. Define the following expansion functions $\delta_{\alpha}: \operatorname{Id}(A) \rightarrow \operatorname{Id}(A)$ and the corresponding $\sqrt{\delta_{\alpha}(0)}$ ideal:

δ_{0}	$\delta_{0}(I)=I$	n-ideal
δ_{1}	$\delta_{1}(I)=\sqrt{I}$	n-ideal
δ_{2}	$\delta_{2}(I)=\cap_{I \subseteq m, m \in \max (A)} m$	J-ideal

We recall from [2] that A is a local ring if A has exactly one maximal ideal.

Example 5.6. (1) Note that a $\sqrt{\delta(0)}$-ideal is not necessarily an n-ideal. Assume that $\delta: \operatorname{Id}(\mathbb{Z}) \rightarrow \operatorname{Id}(\mathbb{Z})$ where $\delta(n \mathbb{Z})=3 \mathbb{Z}$ if $3 \mid n$ and $\delta(n \mathbb{Z})=\mathbb{Z}$ if $3 \nmid n$. we have $3 \mathbb{Z}=\sqrt{\delta(0)}$. Let $a b \in 9 \mathbb{Z}$ and $a \notin \sqrt{\delta(0)}$. So, $3 \nmid a$. Hence $9 \mid b$ and $b \in 9 \mathbb{Z}$. We get $9 \mathbb{Z}$ is a $\sqrt{\delta(0)}$-ideal of \mathbb{Z}. But $3 \times 3 \in 9 \mathbb{Z}$ and $3 \notin \sqrt{0}$ and $3 \notin 9 \mathbb{Z}$. Therefore, $9 \mathbb{Z}$ is not an n-ideal.
(2) Let (A, m) be a local ring with exactly two minimal prime ideals P_{1}, P_{2}. Put $\delta: \operatorname{Id}(A) \rightarrow \operatorname{Id}(A)$ where $\delta(I)=m$ for $I \neq A$ and $\delta(A)=A . P_{1} \cap P_{2}$ is a $\sqrt{\delta(0)}$-ideal and $P_{1} \cap P_{2}$ is not primary ideal.

Lemma 5.7. Let I be a proper ideal of A and δ be an expansion function of $\operatorname{Id}(A)$.
(1) If I is a $\sqrt{\delta(0)}$-ideal of A, then $I \subseteq \sqrt{\delta(0)}$.
(2) If I is a $\sqrt{\delta(0)}$-ideal of A, then \sqrt{I} is a $\sqrt{\delta(0)}$-ideal.
(3) If I is a $\sqrt{\delta(0)}$-ideal of A, then I is a $\delta_{1} o \delta$-primary.

Proof. (1) It is clear.
(2) Let $a b \in \sqrt{I}$ with $a \notin \sqrt{\delta(0)}$ for $a, b \in A$. Then there exists $n \in \mathbb{N}$ such that $a^{n} b^{n} \in I$. Since I is a $\sqrt{\delta(0)}$-ideal, it follows that $b^{n} \in I$, and so $b \in \sqrt{I}$.
Example 5.8. Consider the ring $A=\mathbb{Z}_{8}[x]$ and note that $\sqrt{0}_{A}=$ $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}[x]$. Since $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$ is a prime ideal of \mathbb{Z}_{8}, it follows that $\sqrt{0}_{A}$ is a prime ideal of A. We have $\sqrt{\delta_{0}(0)}=\sqrt{0}_{A}$. Therefore, $\sqrt{\delta_{0}(0)}$ is a prime ideal. Put $I=\{\overline{0}, \overline{4}\}\langle x\rangle$. It is clear that $I \subseteq \sqrt{\delta_{0}(0)}$. So, $\sqrt{I}=\sqrt{\delta_{0}(0)}$. It implies that \sqrt{I} is a $\sqrt{\delta_{0}(0)}$-ideal. But $x \overline{4} \in I$ and $x \notin \sqrt{\delta_{0}(0)}, \overline{4} \notin I$, so I is not an $\sqrt{\delta_{0}(0)}$-ideal.

Definition 5.9. Given two expansion functions $\gamma, \delta: \operatorname{Id}(A) \rightarrow \operatorname{Id}(A)$, we define $\gamma \leq \delta$ if $\gamma(J) \subseteq \delta(J)$ for all $J \in \operatorname{Id}(A)$.

Proposition 5.10. Let γ, δ be two expansion functions of $\operatorname{Id}(A)$ with $\gamma \leq \delta$ and $\sqrt{\delta(0)}$ a proper ideal of A. If I is a $\sqrt{\gamma(0)}$-ideal then I is a $\sqrt{\delta(0)}$-ideal.
Proof. Suppose that γ, δ are two expansion functions of $\operatorname{Id}(A)$ with $\gamma \leq \delta$ and $\sqrt{\delta(0)}$ a proper ideal of A and I is a $\sqrt{\gamma(0)}$-ideal. Take $a b \in I$ with $a \notin \sqrt{\delta(0)}$. Therefore, $a \notin \sqrt{\gamma(0)}$. Since I is a $\sqrt{\gamma(0)}-$ ideal, it follows that $b \in I$. We get I is $\sqrt{\delta(0)}$-ideal.
Corollary 5.11. Let δ be an expansion function of $\operatorname{Id}(A)$. Any n-ideal of A is a $\sqrt{\delta(0)}$-ideal.

Proof. Let I is an n-ideal. We have $\sqrt{0}=\sqrt{\delta_{0}(0)}$. According to Proposition 5.10, I is a $\sqrt{\delta(0)}$-ideal since $\sqrt{\delta_{0}(0)} \subseteq \sqrt{\delta(0)}$.
Proposition 5.12. Let δ be an expansion function of $\operatorname{Id}(A)$.
(1) If $Z(A) \subseteq \sqrt{\delta(0)}$, then any r-ideal of A is a $\sqrt{\delta(0)}$-ideal.
(2) If $J(A) \subseteq \sqrt{\delta(0)}$, then any J-ideal of A is a $\sqrt{\delta(0)}$-ideal.

Proof. (1) Suppose that I is an r-ideal of A. Take $a b \in I$ where $a \notin$ $\sqrt{\delta(0)}$-ideal. Since $Z(A) \subseteq \sqrt{\delta(0)}$, it follows that $a \notin Z(A)$. So, $A n n(a)=0$. Since I is an r-ideal, it follows that $b \in I$. Therefore, I is a $\sqrt{\delta(0)}$-ideal.
(2) It is similar (1).

Theorem 5.13. Let δ be an expansion function of $\operatorname{Id}(A)$. If $\left\{I_{i}\right\}_{i \in \Delta}$ is a nonempty set of $\sqrt{\delta(0)}$-ideals of A, then $\cap_{i \in \Delta} I_{i}$ is a $\sqrt{\delta(0)}$-ideal of A.

Proof. Assume that $a b \in \cap_{i \in \Delta} I_{i}$ and $a \notin \sqrt{\delta(0)}$. We get $a b \in I_{i}$ for every $i \in \Delta . b \in I_{i}$ is obtained for every $i \in \Delta$ since I_{i} is a $\sqrt{\delta(0)}$-ideal and $a \notin \sqrt{\delta(0)}$. Therefore, $b \in \cap_{i \in \Delta} I_{i}$.

The proof of the following results 5.14, 5.15 and 5.16 are easy and hence we omit the proof of them.

Theorem 5.14. Let I be a proper ideal of A and δ be an expansion function of $\operatorname{Id}(A)$. Then the followings are equivalent:
(1) I is a $\sqrt{\delta(0)}$-ideal of A.
(2) $I=(I: a)$ for every $a \notin \sqrt{\delta(0)}$.
(3) For ideals L and K of $A, L K \subseteq I$ with $L \cap(A \backslash \sqrt{\delta(0))} \neq \emptyset$, implies $K \subseteq I$.
(4) $(I: a) \subseteq \sqrt{\delta(0)}$, for every $a \notin I$.

Proposition 5.15. Let δ be an expansion function of $\operatorname{Id}(A)$. Then,
(1) $\sqrt{\delta(0)}$ is a $\sqrt{\delta(0)}$-ideal of A if and only if it is a prime ideal of A.
(2) For a prime ideal P of A, P is a $\sqrt{\delta(0)}$-ideal of A if and only if $P \subseteq \sqrt{\delta(0)}$.
Proposition 5.16. Let δ be an expansion function of $\operatorname{Id}(A)$ and S be a nonempty subset of A. If I is a $\sqrt{\delta(0)}$-ideal of A with $S \nsubseteq I$, then $(I: S)$ is a $\sqrt{\delta(0)}$-ideal of A.

Let A and B be commutative rings with $1 \neq 0$ and let δ, γ be two expansion functions of $\operatorname{Id}(A)$ and $I d(B)$, respectively. Then a ring homomorphism $f: A \rightarrow B$ is called a $\delta \gamma$-homomorphism if $\delta\left(f^{-1}(I)\right)=$ $f^{-1}(\gamma(I))$ for all ideals I of B.[3]
Theorem 5.17. Let $f: A \rightarrow B$ be a $\delta \gamma$-homomorphism, where δ and γ are expansion function of $\operatorname{Id}(A)$ and $\operatorname{Id}(B)$, respectively. Then the following statements hold:
(1) If f is monomorphism and J is a $\sqrt{\gamma(0)}$-ideal of B, then $f^{-1}(J)$ is a $\sqrt{\delta(0)}$-ideal of A.
(2) Let f be an epimorphism and I a proper ideal of A with $\operatorname{ker}(f) \subseteq$ I. If I is a $\sqrt{\delta(0)}$-ideal of A then $f(I)$ is a $\sqrt{\gamma(0)}$-ideal of B.
(3) Let f be an epimorphism and I a proper ideal of A with $\delta(\operatorname{ker}(f)) \subseteq$ $I \cap \delta(0)$. If $f(I)$ is a $\sqrt{\gamma(0)}$-ideal of B then I is a $\sqrt{\delta(0)}$-ideal.
Proof. (1) Let $a b \in f^{-1}(J)$ for some $a, b \in A$ and $a \notin \sqrt{\delta(0)}$. We have $f(a) \notin \sqrt{\gamma(0)}$. Then $f(a) f(b) \in J$ and $f(a) \notin \sqrt{\gamma(0)}$ which implies that $f(b) \in J$. Thus, $b \in f^{-1}(J)$. Therefore, $f^{-1}(J)$ is a $\sqrt{\delta(0)}$-ideal of A.
(2) Assume that I is a $\sqrt{\delta(0)}$-ideal of A. Let $b_{1} b_{2} \in f(I)$ for some b_{1}, b_{2} and $b_{1} \notin \sqrt{\gamma(0)}$. Since f is an epimorphism, there exist two elements $a_{1}, a_{2} \in A$ such that $b_{1}=f\left(a_{1}\right)$ and $b_{2}=f\left(a_{2}\right)$. Then $b_{1} b_{2}=$ $f\left(a_{1}\right) f\left(a_{2}\right)=f\left(a_{1} a_{2}\right) \in f(I)$. We obtain $a_{1} \notin \sqrt{\delta(0)}$ since f is a $\delta \gamma$ homomorphism and $b_{1} \notin \sqrt{\gamma(0)}$. $a_{1} a_{2} \in I$ is obtained since $\operatorname{ker}(f) \subseteq I$ and $f\left(a_{1} a_{2}\right) \in f(I)$. We get $a_{2} \in I$. Thus, $b_{2}=f\left(a_{2}\right) \in f(I)$. It implies that $f(I)$ is a $\sqrt{\gamma(0)}$-ideal of B.
(3) Assume that $f(I)$ is a $\sqrt{\gamma(0)}$-ideal. Let $a_{1} a_{2} \in I$ for some $a_{1}, a_{2} \in A$ and $a_{1} \notin \sqrt{\delta(0)}$. Since $\delta(\operatorname{ker}(f)) \subseteq \delta(0)$ and f is a $\delta \gamma$ homomorphism, $f\left(a_{1}\right) \notin \sqrt{\gamma(0)}$. So, $f\left(a_{1}\right) f\left(a_{2}\right) \in f(I)$ and $f\left(a_{1}\right) \notin$ $\sqrt{\gamma(0)}$. Thus, $f\left(a_{2}\right) \in f(I)$. Hence $a_{2} \in I$ and I is a $\sqrt{\delta(0)}$-ideal.

Definition 5.18. Suppose that S is a nonempty subset of a ring A with $A \backslash \sqrt{\delta(0)} \subseteq S$. Then S is called a $\sqrt{\delta(0)}$-multiplicatively closed subset of A if $a b \in S$ for all $a \in A \backslash \sqrt{\delta(0)}$ and all $b \in S$.

Proposition 5.19. Let δ be an expansion function of $I d(A)$ and I be a proper ideal of A. Then, I is a $\sqrt{\delta(0)}$-ideal of A if and only if $A \backslash I$ is a $\sqrt{\delta(0)}$-multiplicatively closed subset of A.

Proof. (\Rightarrow) Suppose that I is a $\sqrt{\delta(0)}$-ideal of A. Hence by Lemma 5.7, $I \subseteq \sqrt{\delta(0)}$. We get $A \backslash \sqrt{\delta(0)} \subseteq A \backslash I$. Let $a \in A \backslash \sqrt{\delta(0)}$ and $b \in A \backslash I$. Suppose to the contrary that $a b \notin A \backslash I$. Hence $a b \in I$ and $a \notin \sqrt{\delta(0)}$. Since I is a $\sqrt{\delta(0)}$-ideal, it follows that $b \in I$. Contradicting the fact that $b \in A \backslash I$.
(\Leftarrow) Suppose that I is an ideal and $A \backslash I$ is a $\sqrt{\delta(0)}$-multiplicatively closed subset of A. Take $a, b \in A$ such that $a b \in I$ and $a \notin \sqrt{\delta(0)}$. On the contrary let us assume that $b \notin I$. So, $b \in A \backslash I$. Since $A \backslash I$ is a $\sqrt{\delta(0)}$-multiplicatively closed subset of A, it follows that $a b \in A \backslash I$. We arrive at a contradiction.

Proposition 5.20. Let I be an ideal of A such that $I \cap S=\emptyset$ where S is a $\sqrt{\delta(0)}$-multiplicatively closed subset of A. Then there exists a $\sqrt{\delta(0)}$-ideal K containing I such that $K \cap S=\emptyset$.

Proof. Put $\Omega=\{Q \mid Q$ is an ideal of A with $Q \cap S=\emptyset$ and $I \subseteq Q\}$. Then Ω is a partially ordered by inclusion. We get $\Omega \neq \emptyset$, because $I \in \Omega$. By Zorn's lemma, Ω has a maximal element. Suppose that K is a maximal element of Ω. Now, we show that K is a $\sqrt{\delta(0)}$-ideal. Take $a, b \in A$ such that $a b \in K$ and $a \notin \sqrt{\delta(0)}$ and $b \notin K$. Therefore, $b \in(K: a)$ and $K \subsetneq(K: a)$. Since K is a maximal element of Ω, it follows that $(K: a) \notin \Omega$. Hence $(K: a) \cap S \neq \emptyset$, and so there exists an $s \in S$ such that $s \in(K: a)$. Therefore, as $\in K$. Since S is a $\sqrt{\delta(0)}$-multiplicatively closed subset of A, it follows that $a s \in S$. Then as $\in K \cap S$, it is a contradiction. Therefore, K is a $\sqrt{\delta(0)}$-ideal.

Theorem 5.21. If I is a maximal $\sqrt{\delta(0)}$-ideal of A, then I is a prime ideal.

Proof. Let $a b \in I$ where $a \notin I$. So, by Proposition 5.16, we have ($I: a)$ is a $\sqrt{\delta(0)}$-ideal. We have $I \subseteq(I: a)$ and I is a maximal $\sqrt{\delta(0)}$-ideal of A. Hence $I=(I: a)$, and $b \in I$. We conclude I is a prime ideal of A.

Theorem 5.22. Let δ be an expansion function of $\operatorname{Id}(A)$. Then, there exists a $\sqrt{\delta(0)}$-ideal of A if and only if $\sqrt{\delta(0)}$ contains a prime ideal of A.

Proof. (\Rightarrow) Let I be a $\sqrt{\delta(0)}$-ideal of A. Put

$$
\mathfrak{A}=\{L \mid L \text { is a } \sqrt{\delta(0)} \text {-ideal of } A\} .
$$

Since $I \in \mathfrak{A}$, it follows that \mathfrak{A} is a nonempty set. By Zorn's Lemma \mathfrak{A} has a maximal element L. By Theorem 5.21 and Lemma 5.7, L is a prime ideal and $L \subseteq \sqrt{\delta(0)}$.
(\Leftarrow) Let P be a prime ideal of A and $P \subseteq \sqrt{\delta(0)}$. It is clear that P is a $\sqrt{\delta(0)}$-ideal of A.

In the following results $5.23,5.24$ and 5.25 , we collect some trivial fact about $\sqrt{\delta(0) \text {-ideals, and so we omit the proof. }}$
Corollary 5.23. Let A be a ring. If $\delta(0)$ is a $\sqrt{\delta(0)}$-ideal, then $\sqrt{\delta(0)}$ is a prime ideal of A.

Theorem 5.24. Let I be a proper ideal of A such that $\delta(0) \subseteq I \subseteq$ $\sqrt{\delta(0)}$. The following statements are equivalent:
(1) I is a $\sqrt{\delta(0)}$-ideal.
(2) I is a primary ideal of A.

Proposition 5.25. Let A be a ring and K be an ideal of A with $K \cap(A \backslash \sqrt{\delta(0)}) \neq \emptyset$. Then the followings hold:
(1) If I_{1}, I_{2} are $\sqrt{\delta(0)}$-ideals of A with $I_{1} K=I_{2} K$, then $I_{1}=I_{2}$.
(2) If $I K$ is a $\sqrt{\delta(0)}$-ideal of A, then $I K=I$.

Proposition 5.26. Let A be a ring and δ be an expansion function of $\operatorname{Id}(A)$. If every ideal I of A is a $\sqrt{\delta(0)}$-ideal then $(A, \sqrt{\delta(0)})$ is a local ring.

Proof. Let m be a maximal ideal of $A . m$ is a $\sqrt{\delta(0)}$-ideal, so by Lemma 5.7, $m \subseteq \sqrt{\delta(0)}$. Hence $(A, \sqrt{\delta(0)})$ is a local ring.

Corollary 5.27. Let A be a ring and δ be an expansion function of $\operatorname{Id}(A)$. If every proper ideal of A is a product of $\sqrt{\delta(0)}$-ideals then $(A, \sqrt{\delta(0)})$ is a local ring.

Recall from that a ring A is called von Neumann regular if for every $a \in A$, there exists an element x of A such that $a=a^{2} x$. Also a ring A is said to be a Boolean ring if whenever $a=a^{2}$ for every $a \in A$. Notice that every Boolean ring is also a von Neumann regular [2].

Theorem 5.28. Let A be a ring and δ be an expansion function of Id (A). Then the followings hold:
(1) A is a von Neumann regular ring and 0 is a $\sqrt{\delta(0)}$-ideal, then A is a field.
(2) Suppose that A is Boolean ring. If 0 is a $\sqrt{\delta(0)}$-ideal, then A is a field.

Proof. (1) Let A be a von Neumann regular ring and 0 be a $\sqrt{\delta(0)}-$ ideal. Let $0 \neq a \in A$. Since A is von Neumann regular, $a=a^{2} x$ for some $x \in A$. We have $a(1-a x)=0$. If $a \notin \sqrt{\delta(0)}$, then $a x=1$ and a is an invertible element in A. If $a \in \sqrt{\delta(0)}$, then $1-a x \notin \sqrt{\delta(0)}$. Since $(1-a x) a=0$ and 0 is a $\sqrt{\delta(0)}$-ideal, $a=0$. Therefore, A is a field.
(2) If A is Boolean ring, then A is a von Neumann regular ring. By (1), A is a field.

Corollary 5.29. Let A be a ring and δ be an expansion function of $I d(A)$. Then the followings hold:
(1) A is a von Neumann regular ring and 0 is a $\sqrt{\delta(0)}$-ideal, then 0 is an n-ideal.
(2) Suppose that A is Boolean ring. If 0 is a $\sqrt{\delta(0)}$-ideal, then 0 is an n-ideal.

Proof. By Theorem 5.28 and [14][Theorem 2.15].
Corollary 5.30. Let A be a ring and δ be an expansion function of $I d(A)$. Then the followings hold:
(1) A is a von Neumann regular ring and I is a $\sqrt{\delta(0)}$-ideal, then I is a maximal ideal of A.
(2) Suppose that A is Boolean ring. If I is a $\sqrt{\delta(0)}$-ideal, then I is a maximal ideal of A.

Proof. (1) Let A be a von Neumann regular ring and I be a $\sqrt{\delta(0)}$ ideal of A. So, A / I is a von Neumann regular ring. Let $a+I \in A / I$. Therefore, there exists $x \in A$ such that $a=a^{2} x$. Hence $a(1-a x) \in I$. If $a \notin \sqrt{\delta(0)}$, then $(1-a x) \in I$. It implies that $1+I=a x+I$. If $a \in \sqrt{\delta(0)}$, then $(1-a x) \notin \sqrt{\delta(0)}$. So, $a \in I$. We have $a+I=I$. Therefore, A / I is a field. It follows that I is a maximal ideal of A.

Let $f: A \rightarrow B$ be a ring epimorphism and δ be an expansion function of $\operatorname{Id}(A)$. We consider $\bar{\delta}: \operatorname{Id}(B) \rightarrow \operatorname{Id}(B)$ where $\bar{\delta}(J)=f o \delta\left(f^{-1}(J)\right)$ for $J \in I d(B)$.

Proposition 5.31. Let $f: A \rightarrow B$ be a ring epimorphism and δ be an expansion function of $I d(A)$. If I is a $\sqrt{\delta(0)}$-ideal of A containing $\operatorname{ker}(f)$, then $f(I)$ is a $\sqrt{\bar{\delta}(0)}$-ideal of B
Proof. Let $b_{1} b_{2} \in f(I)$ and $b_{1} \notin \sqrt{\bar{\delta}(0)}$ for $b_{1}, b_{2} \in B$. So, there exist $a_{1}, a_{2} \in A$ such that $f\left(a_{1}\right)=b_{1}$ and $f\left(a_{2}\right)=b_{2}$. Since $b_{1} \notin \sqrt{\bar{\delta}(0)}$, it follows that $b_{1}^{m} \notin \bar{\delta}(0)$ for all $m \in \mathbb{N}$. Suppose to the contrary that $a_{1} \in$ $\sqrt{\delta(0)}$. It implies that there exists $n \in \mathbb{N}$ such that $a_{1}^{n} \in \delta(0)$. Since δ is an expansion function of $I d(A)$, it follows that $\delta(0) \subseteq \delta\left(f^{-1}(0)\right)$. So, $a_{1}^{n} \in \delta\left(f^{-1}(0)\right)$. Hence $f\left(a_{1}^{n}\right) \in f o \delta\left(f^{-1}(0)\right)$. Therefore, $b_{1}^{n} \in \bar{\delta}(0)$, we arrive at a contradiction. We have $a_{1} a_{2} \in I$ and $a_{1} \notin \sqrt{\delta(0)}$. Since I is a $\sqrt{\delta(0)}$-ideal, it follows that $a_{2} \in I$. So, $b_{2} \in f(I)$.

Let $f: A \rightarrow B$ be a ring monomorphism and δ be an expansion function of $\operatorname{Id}(B)$. We consider $\tilde{\delta}: \operatorname{Id}(A) \rightarrow \operatorname{Id}(A)$ where $\tilde{\delta}(I)=$ $f^{-1}(\delta(\langle f(I)\rangle))$ for $I \in I d(A)$.
Theorem 5.32. Let $f: A \rightarrow B$ be a ring monomorphism and δ be an expansion function of $\operatorname{Id}(B)$. If I is a $\sqrt{\delta(0)}$-ideal of B, then $f^{-1}(I)$ is a $\sqrt{\tilde{\delta}(0)}$-ideal of A.
Proof. Let $a_{1} a_{2} \in f^{-1}(I)$ and $a_{1} \notin \sqrt{\tilde{\delta}(0)}$ for $a_{1}, a_{2} \in A$. Then $f\left(a_{1} a_{2}\right)=f\left(a_{1}\right) f\left(a_{2}\right) \in I$. Since $a_{1} \notin \sqrt{\tilde{\delta}(0)}$ and f is a monomorphism, $f\left(a_{1}\right) \notin \sqrt{\delta(0)}$. Since I is a $\sqrt{\delta(0)}$-ideal of B, it follows that $f\left(a_{2}\right) \in I$, and so $a_{2} \in f^{-1}(I)$, as it is needed.
Proposition 5.33. Let A be a ring and $K \subseteq I$ be two ideals of A and δ be an expansion function of $I d(A)$. If I is a $\sqrt{\delta(0) \text {-ideal of } A}$ and $\bar{\delta}: I d(A / K) \rightarrow I d(A / K)$ where $\bar{\delta}(J / K)=\delta(J) / K$, then I / K is a $\sqrt{\bar{\delta}(0)}$-ideal of A / K.
Proof. Assume that I is a $\sqrt{\delta(0)}$-ideal of A with $K \subseteq I$. Let $\pi: A \rightarrow$ A / K be the natural homomorphism. Note that $\operatorname{ker}(\pi)=K \subseteq I$, and

Corollary 5.34. Let A be a ring and $K \subseteq I$ be two ideals of A and δ be an expansion function of $\operatorname{Id}(A / K)$. Suppose that $\tilde{\delta}: \operatorname{Id}(A) \rightarrow \operatorname{Id}(A)$ where $\tilde{\delta}(I)=\{a \in A \mid a+K \in \delta((I+K) / K)\}$ for $I \in I d(A)$. If I / K is

Proof. Let $a b \in I$ with $a \notin \sqrt{\tilde{\delta}(0)}$ for $a, b \in A$. Then we have $(a+$ $K)(b+K)=a b+K \in I / K$ and $a+K \notin \sqrt{\delta(0)}$. Since I / K is a $\sqrt{\delta(0)}-$ ideal of A / K, it follows that $b+K \in I / K$, and so $b \in I$. Consequently, I is a $\sqrt{\tilde{\delta}(0)}$-ideal of A.
Corollary 5.35. Let B be a ring and A be a subring of B. If I is a $\sqrt{\delta(0)}$-ideal of B, then $I \cap A$ is a $\sqrt{\tilde{\delta}(0)}$-ideal of A.

Proof. Suppose that A is a subring of B and I is a $\sqrt{\delta(0)}$-ideal of B. Consider the injection $i: A \rightarrow B$. And note that $\tilde{\delta}(I)=\delta(I B) \cap A$. Therefore, $\tilde{\delta}(0)=\delta(0) \cap A$. So, by Proposition 5.32(ii), $I \cap A$ is a $\sqrt{\tilde{\delta}(0)}$-ideal of A.
Proposition 5.36. Let A be a ring and S be a multiplicatively closed subset of A. Let δ be an expansion function of $\operatorname{Id}(A)$. Suppose that $\bar{\delta}: \operatorname{Id}\left(S^{-1} A\right) \rightarrow I d\left(S^{-1} A\right)$ such that $\bar{\delta}(I)=S^{-1} \delta\left(I^{c}\right)$.
If I is a $\sqrt{\delta(0)}$-ideal of A and $S \cap \sqrt{\delta(0)}=\emptyset$, then $S^{-1} I$ is a $\sqrt{\bar{\delta}(0)}$-ideal of $S^{-1} A$.
Proof. Let $\frac{a}{s} \frac{b}{t} \in S^{-1} I$ with $\frac{a}{s} \notin \sqrt{\bar{\delta}(0)}$, where $a, b \in A$ and $s, t \in S$. Then we have $u a b \in I$ for some $u \in S$. We have $\delta(0) \subseteq \delta\left(0^{c}\right)$. So, $S^{-1} \delta(0) \subseteq \sqrt{\bar{\delta}(0)}$. It is clear that $a \notin \sqrt{\delta(0)}$. Since I is a $\sqrt{\delta(0)}$-ideal of A, it follows that $u b \in I$, and so $\frac{b}{t}=\frac{u b}{u t} \in S^{-1} I$. Consequently, $S^{-1} I$ is a $\sqrt{\bar{\delta}(0)}$-ideal of $S^{-1} A$.
Proposition 5.37. Let A be a ring and S be a multiplicatively closed subset of A. Let δ be an expansion function of $I d\left(S^{-1} A\right)$. Suppose that $\tilde{\delta}: I d(A) \rightarrow I d(A)$ such that $\tilde{\delta}(I)=\delta\left(S^{-1} I\right)^{c}$.
If I is a $\sqrt{\delta(0)}$-ideal of $S^{-1} A$, then I^{c} is a $\sqrt{\tilde{\delta}(0)}$-ideal of A.
Proof. Let $a b \in I^{c}$ and $a \notin \sqrt{\tilde{\delta}(0)}$. Then we have $\frac{a}{1} \frac{b}{1} \in I$. Now we show that $\frac{a}{1} \notin \sqrt{\delta(0)}$. Suppose $\frac{a}{1} \in \sqrt{\delta(0)}$, so there exists a positive integer k such that $\left(\frac{a}{1}\right)^{k} \in \delta(0)$. Then we get $a^{k} \in \delta(0)^{c}=\tilde{\delta}(0)$. We conclude that $a \in \sqrt{\tilde{\delta}(0)}$, a contradiction. Thus, we have $\frac{a}{1} \notin \sqrt{\delta(0)}$. Since I is a $\sqrt{\delta(0)}$-ideal of $S^{-1} A$, it follows that $\frac{b}{1} \in I$, and so $b \in I^{c}$.

Theorem 5.38. Let A be a ring and δ be an expansion function of $\operatorname{Id}(A)$, the followings are equivalent:
(1) Every proper principal ideal is a $\sqrt{\delta(0)}$-ideal;
(2) Every proper ideal is a $\sqrt{\delta(0)}$-ideal;
(3) A has a unique maximal ideal which is $\sqrt{\delta(0)}$;
(4) $(A, \sqrt{\delta(0)})$ is a local ring.

Proof. (1) \Rightarrow (2) Let I be a proper ideal of A and $a b \in I$, where $a \notin \sqrt{\delta(0)} . b \in\langle a b\rangle \subseteq I$ is obtained because $a b \in\langle a b\rangle$ and $\langle a b\rangle$ is an $\sqrt{\delta(0)}$-ideal of A. Hence I is a $\sqrt{\delta(0)}$-ideal of A.
$(2) \Rightarrow(3)$ By Proposition 5.26.
$(3) \Rightarrow(4)$ It is clear.
$(4) \Rightarrow(1)$ Assume that I is a principal ideal of A. Suppose that $a b \in I$, where $a \notin \sqrt{\delta(0)}$. So, a is an invertible element of A. Therefore, $b=a^{-1} a b \in I$. We have I is a $\sqrt{\delta(0)}$-ideal.

Proposition 5.39. Let A be a ring and

$$
\mathfrak{S}=\{\sqrt{\delta(0)} \mid \text { There is an ideal } I \text { of } A \text { such that } I \text { is a } \sqrt{\delta(0)} \text {-ideal }\} .
$$

Then the followings hold:
(1) $\operatorname{Spec}(A) \subseteq \mathfrak{S}$.
(2) $\sqrt{0_{A}}$ is a prime ideal of A if and only if $\mathfrak{S}=\{\sqrt{J} \mid J$ is an ideal of $A\}$.
(3) If A is a von Neumann regular ring, then $\mathfrak{S}=\operatorname{Max}(A)=$ $\operatorname{Spec}(A)$.
(4) If A is an integral domain, then $\mathfrak{S}=\{\sqrt{J} \mid J$ is an ideal of $A\}$.
(5) If A is a valuation ring, then $\mathfrak{S}=\operatorname{Spec}(A)$.

Proof. (1) Let P be a prime ideal of A. Consider $\delta: \operatorname{Id}(A) \rightarrow \operatorname{Id}(A)$ such that $\delta(I)=P$ if $I \subseteq P$ and otherwise $\delta(I)=R$. So, $P=\sqrt{\delta(0)}$ and P is a $\sqrt{\delta(0)}$-ideal. Hence $P \in \mathfrak{S}$.
(2) Suppose that $\sqrt{0_{A}}$ is a prime ideal of A. Assume that J is an ideal of A and $\delta: \operatorname{Id}(A) \rightarrow \operatorname{Id}(A)$ such that $\delta(I)=J$ if $I \subseteq J$ and otherwise $\delta(I)=R$. Hence $\sqrt{J}=\sqrt{\delta(0)}$. We follow that $\sqrt{0_{A}} \subseteq \sqrt{\delta(0)}$. By Theorem 5.22, $\sqrt{J}=\sqrt{\delta(0)} \in \mathfrak{S}$.
Now, Assume that $\mathfrak{S}=\{\sqrt{J} \mid J$ is an ideal of $A\}$. We get $\sqrt{0_{A}} \in \mathfrak{S}$. By Theorem 5.22, there exists a prime ideal P of A such that $P \subseteq \sqrt{0_{A}}$. Hence $P=\sqrt{0_{A}}$ and $\sqrt{0_{A}}$ is a prime ideal of A.
(3) It is clear that $\operatorname{Max}(A) \subseteq \operatorname{Spec}(A) \subseteq \mathfrak{S}$. Let $\sqrt{\delta(0)} \in \mathfrak{S}$. So, there exists an ideal I of A such that I is a $\sqrt{\delta(0)}$-ideal. Therefore, by Lemma $5.7, I \subseteq \sqrt{\delta(0)}$. By Corollary $5.30, I$ is a maximal ideal. It implies that $\sqrt{\delta(0)}$ is a maximal ideal of A. Hence $\mathfrak{S}=\operatorname{Max}(A)=$ $\operatorname{Spec}(A)$.
(4) Let A be an integral domain. So, $\langle 0\rangle$ is a prime ideal of A and $\langle 0\rangle \subseteq \sqrt{\delta(0)}$. By $(i i)$ we have $\mathfrak{S}=\{\sqrt{J} \mid J$ is an ideal of $A\}$.
(5) Let A be a valuation ring. So, $\sqrt{\delta(0)}$ is a prime ideal for every expansion function δ of $\operatorname{Id}(A)$. Hence $\mathfrak{S} \subseteq \operatorname{Spec}(A)$. We get the result that $\mathfrak{S}=\operatorname{Spec}(A)$.

An ideal I of a ring A is called pseudo-irreducible if $x(1-x) \in I$ for $x \in A$, then $x \in I$ or $(1-x) \in I[9]$.

Proposition 5.40. Let I be a proper ideal of A and δ be an expansion function of $I d(A)$. If I is a $\sqrt{\delta(0)}$-ideal, then I is a pseudo-irreducible ideal of A.

Proof. Let I be a $\sqrt{\delta(0)}$-ideal and $x(1-x) \in I$ for $x \in A$. If $x \notin \sqrt{\delta(0)}$, then $(1-x) \in I$. If $x \in \sqrt{\delta(0)}$, then $(1-x) \notin \sqrt{\delta(0)}$. We obtain $x \in I$ since I is a $\sqrt{\delta(0)}$-ideal and $(1-x) \notin \sqrt{\delta(0)}$ We have I is a pseudo-irreducible ideal of A.

Lemma 5.41. Let A be a ring and m be a maximal ideal of A. If $\delta: \operatorname{Id}(A) \rightarrow I d(A)$ such that $m=\sqrt{\delta(0)}$, then m^{n} is a $\sqrt{\delta(0)}$-ideal of A, for every $n \in \mathbb{N}$.
Proof. Suppose that $a b \in m^{n}$ for $a, b \in A$ and $a \notin \sqrt{\delta(0)}$. Then $\langle a\rangle+m^{n}=A$. So, there exist $r \in A$ and $s \in m^{n}$ such that $r a+s=1$. It implies that $r a b+s b=b \in m^{n}$. Therefore, m^{n} is a $\sqrt{\delta(0)}$-ideal of A.

Proposition 5.42. Let A be a ring and I be a $\sqrt{\delta(0)}$-ideal of A. If Coht $I=0$, then I is primary.

Proof. By Proposition 5.40, I is a pseudo-irreducible ideal of A. By [9][Proposition 2.7].

Acknowledgments

References

1. D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, (1) 1 (2009), 3-56.
2. M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969.
3. A. Badawi and B. Fahid, On weakly 2-absorbing δ-primary ideals of commutative rings, Georgian Math. J., (4) 27 (2020), 503-516.
4. A. Badawi, U. Tekir, and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc., (4) 51 (2014), 1163-1173.
5. Z. Dongsheng, δ-primary ideals of commutative rings, Kyungpook Math. J., 41 (2001), 17-22.
6. J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc., 38 (1932), 85-88.
7. J. L. Dorroh, Concerning the direct product of algebras, Ann. Math., 36 (1935), 882-885.
8. K. A. Essan, A. Abdoulaye, D. Kamano and E.D. Akeke, σ-Sporadic prime ideals and superficial elements, J. Algebra Relat. Topics, (2) 5 (2017) 35-45.
9. S. Hedayat and E. Rostami, Decomposition of ideals into pseudo-irreducible ideals, Comm. Algebra, (4) 45 (2017), 1711-1718.
10. H. A. Khashan and A. B. Bani-Ata, J-Ideals of commutative rings, Int. Electron. J. Algebra, 29 (2021), 148-164.
11. R. Mohamadian, r-ideals in commutative rings, Turkish J. Math, 39(2015), 733-749.
12. M. Samiei and H. Fazaeli Moghimi, Weakly irreducible ideals, J. Algebra Relat. Topics, (2) 4 (2016), 9-17.
13. M. Tamekkante, E. M. Bouba, (2, n)-Ideals of commutative rings, J. Algebra Appl., (6) 18 (2019), 1-12.
14. U. Tekir, S. Koc and K. H. Oral, n-Ideals of Commutative Rings, Filomat, (10) 31 (2017), 2933-2941.

Somayeh Karimzadeh

Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O.Box 7718897111, Rafsanjan, Iran.

```
Email: karimzadeh@vru.ac.ir
```


Somayeh Hadjirezaei

Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O.Box 7718897111, Rafsanjan, Iran.
Email: s.hajirezaei@vru.ac.ir

[^0]: MSC(2010): Primary: 13A15; Secondary: 13A99.
 Keywords: n-ideal, $(2, n)$-ideal, J-ideal, $\sqrt{\delta(0)}$-ideal.
 Received: 6 June 2021, Accepted: 6 January 2022.
 $*$ Corresponding author .

