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GENERALIZATION OF n-IDEALS

S. KARIMZADEH ∗ AND S. HADJIREZAEI

Abstract. Let f : A→ B be a ring homomorphism and let J be
an ideal of B. We proved several results concerning n-ideals and
(2, n)-ideals of A ./f J . Then we recall a proper ideal I of A as√
δ(0)-ideal if ab ∈ I then b ∈ I or a ∈

√
δ(0) for every a, b ∈ A.

We investigate several properties of the
√
δ(0)-ideal with similar

n-ideals and J-ideals.

1. Introduction and Preliminaries

We assume throughout this paper that all rings are commutative
with 1 6= 0. Let A and B be commutative rings with unity, let J be
an ideal of B and let f : A → B be a ring homomorphism. In this
setting, we can consider the following subring of A × B: A ./f J :=
{(a, f(a)+j)|a ∈ A, j ∈ J} called the amalgamation of A with B along
J to f .

If I is an ideal of A with I 6= A, then I is called a proper ideal. For
a ring A, the Jacobson radical of A and the set of zero-divisors in A
are denoted by J(A) and Z(A), respectively.

In 2015, ”Rostam Mohamadian” defined and studied r-ideals in com-
mutative rings. A proper ideal I of a ring A is called an r-ideal if
whenever a, b ∈ A with ab ∈ I and Ann(a) = 0, then b ∈ I where
Ann(a) = {r ∈ A : ra = 0}. U. Tekir et al. introduced n-ideals in [14],
a proper ideal I of A is said to be an n-ideal if the condition ab ∈ I
with a /∈

√
0A implies b ∈ I for every a, b ∈ A. If I is an n-ideal,

then
√
I =
√

0A is a prime ideal, hence I is quasi-primary and weakly
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irreducible by [12]. A proper ideal I of a ring A is called a J-ideal if
whenever a, b ∈ A with ab ∈ I and a /∈ J(A), then b ∈ I[10]. We shall
use Id(A) to denote the set of all ideals of the ring A.

We prove in Theorem 2.5, I is an n-ideal of A and J ⊆
√

0B if and
only if I ./f J := {(a, f(a) + j) | a ∈ I, j ∈ J} is an n-ideal of A ./f J .

In Proposition 2.6, we determine when Q
f

:= {(a, f(a) + j)|a ∈ A, j ∈
J, f(a) + j ∈ Q} is an n-ideal of A ./f J . We also show that, If N is
an n-ideal of A ./f J and kerf *

√
0A, then there exists an ideal I of

A such that I is an n-ideal of A and N = I ./f J ( Theorem 2.10).
In Theorem 2.17, we obtain necessary and sufficient conditions for

every ideal I of A such that I ⊆
√

0A is an n-ideal of A.
Tamekkante and Bouba in [13] defined another class of ideals and

called it a (2, n)-ideal a proper ideal I of A is called (2, n)-ideal of A if
whenever a, b, c ∈ A and abc ∈ I, then ab ∈ I or ac ∈

√
0A or bc ∈

√
0A.

It is shown (in Proposition 3.2) I is a (2, n)-ideal of A and J ⊆
√

0B if
and only if I ./f J := {(a, f(a) + j) | a ∈ I, j ∈ J} is a (2, n)-ideal of
A ./f J .

Let M be an A-module. The trivial ring extension of A by M (or
the idealization of M over A) is the ring R = A(+)M = {(a,m)|a ∈
A,m ∈M} whose underlying group is A×M with multiplication given
by (a,m1)(c,m2) = (ac, am2 + cm1) (for example see [23]). In section
4, we study (2, n)-ideals, in the ring R = A(+)M .

In section 5, we give the notion of
√
δ(0)-ideals, and we investigate

many properties of
√
δ(0)-ideal with similar n-ideals and J-ideals.

A proper ideal I of A is said to be a
√
δ(0)-ideal if the condition

ab ∈ I with a /∈
√
δ(0) implies b ∈ I for every a, b ∈ A. Among

many results in this paper, it is shown (in Theorem 5.14) that a proper

ideal I of A is a
√
δ(0)-ideal of A if and only if I = (I : a) for every

a /∈
√
δ(0). In the Corollary 5.30, we show that if I is a

√
δ(0)-

ideal of von Neumann regular ring A, then I is a maximal ideal of A.
Furthermore, in Proposition 5.36, If I is a

√
δ(0)-ideal of A, S is a

multiplicatively closed subset of A and S ∩
√
δ(0) = ∅, then S−1I is a√

δ(0)-ideal of S−1A. In Theorem 5.38, we give necessary and sufficient

conditions for every ideal of A is a
√
δ(0)-ideal.

2. n-ideals

In this section, we demonstrate that I is an n-ideal of A and that
J ⊆
√

0B if and only if I ./f J is an n-ideal of A ./f J . We found out

when Q
f

is an n-ideal of A ./f J . We also show that if N is an n-ideal
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of A ./f J and kerf *
√

0A, then there exists an ideal I of A where I is
an n-ideal of A and N = I ./f J . We discover necessary and sufficient
conditions such that I ⊆

√
0A is an n-ideal of A for every ideal I of A.

Definition 2.1. [6, 7] Let A and B be two rings with unitary, J an
ideal of B, and f : A→ B a ring homomorphism. In this case, we can
consider the following subring of A× B: A ./f J := {(a, f(a) + j)|a ∈
A, j ∈ J} called the amalgamation of A and B along J with respect to
f .

We next wish to determine when I ./f J and Q
f

are n-ideals, but
to do so we need to find

√
0A./fJ of A ./f J . We will use the following

Proposition several times.

Proposition 2.2. Let f : A → B be a ring homomorphism, J be an
ideal of B.

√
0A./fJ = {(a, f(a) + j) | a ∈

√
0A, j ∈

√
0B}.

Proof. Let (a, f(a) + j) ∈
√

0A./fJ . So, there exists n ∈ N such that
(a, f(a) + j)n = (0, 0). Therefore, (an, (f(a) + j)n) = (0, 0). It implies
that a ∈

√
0A and f(a) + j ∈

√
0B. Hence j ∈

√
0B. We conclude that√

0A./fJ ⊆ {(a, f(a) + j) | a ∈
√

0A, j ∈
√

0B}.
Now assume that a ∈

√
0A and j ∈

√
0B. Hence f(a) + j ∈

√
0B.

Therefore, (a, f(a) + j) ∈
√

0A./fJ . �

Remark 2.3. Let f : A → B be a ring homomorphism and J be an
ideal of B. Then,

(1)
√

0f(A)+J ⊆
√

0B.

(2)
√

0A./fJ = (A ./f J) ∩ (
√

0A ×
√

0B).

Proposition 2.4. Let f : A → B be a ring homomorphism, J be an
ideal of B. If there exists an n-ideal of A ./f J , then J ⊆

√
0B or

ker(f) ⊆
√

0A.

Proof. According to [14, Theorem 2.12],
√

0A./fJ is prime because A ./f

J has n-ideal. Assume that J *
√

0B and a ∈ ker(f). So, there
exists j ∈ J −

√
0B. By Proposition 2.2, we get (0, j) /∈

√
0A./fJ . We

have (a, 0)(0, j) ∈
√

0A./fJ . It implies that (a, 0) ∈
√

0A./fJ . Hence
ker(f) ⊆

√
0A. �

We next determine when I ./f J is an n-ideal.

Theorem 2.5. Let f : A → B be a ring homomorphism, J be an
ideal of B. Then, I is an n-ideal of A and J ⊆

√
0B if and only if

I ./f J := {(a, f(a) + j) | a ∈ I, j ∈ J} is an n-ideal of A ./f J .

Proof. (⇒) Let (a, f(a)+j1)(b, f(b)+j2) ∈ I ./f J where (a, f(a)+j1) ∈
A ./f J \

√
0A./fJ and (b, f(b) + j2) ∈ A ./f J . Because J ⊆

√
0B and
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(a, f(a) + j1) /∈
√

0A./fJ , we obtain a /∈
√

0A according to Proposition
2.2. We obtain b ∈ I because ab ∈ I and I is an n-ideal of A. So,
(b, f(b) + j2) ∈ I ./f J . Consequently, I ./f J is an n-ideal of A ./f J .

(⇐) Assume that ab ∈ I with a /∈
√

0A for a, b ∈ A. Then we have
(a, f(a))(b, f(b)) ∈ I ./f J and (a, f(a)) /∈

√
0A./fJ . Since I ./f J is

an n-ideal of A ./f J , it follows that (b, f(b)) ∈ I ./f J , and so b ∈ I.
Consequently, I is an n-ideal of A.

Suppose that j ∈ J . Since I is a proper ideal of A, there exists
a ∈ A \ I. It implies that (0, j)(a, f(a)) ∈ I ./f J . Therefore, (0, j) ∈√

0A./fJ because I ./f J is an n-ideal and (a, f(a)) /∈ I ./f J . Hence,
by Proposition 2.2, j ∈

√
0B, and so J ⊆

√
0B. �

Proposition 2.6. Let f : A → B be a ring homomorphism, J be
an ideal of B and Q be an ideal of B. Then, Q ∩ (f(A) + J) is an
n-ideal of f(A) + J , f(A) ∩ J ⊆

√
0B and ker(f) ⊆

√
0A if and only

if Q
f

:= {(a, f(a) + j)|a ∈ A, j ∈ J, f(a) + j ∈ Q} is an n-ideal of
A ./f J .

Proof. (⇒) Let (a, f(a) + j1)(b, f(b) + j2) ∈ Q
f

and (a, f(a) + j1) /∈√
0A./fJ . Then we have (f(a) + j1)(f(b) + j2) ∈ Q ∩ (f(A) + J). Now

we show that f(a) + j1 /∈
√

0(f(A)+J). Suppose f(a) + j1 ∈
√

0(f(A)+J).
Then we get there exists n ∈ N such that (f(a)+j1)n = 0. Hence there
exist j ∈ J such that (f(a))n = j ∈ f(A) ∩ J . Since f(A) ∩ J ⊆

√
0B,

there exists k ∈ N such that (f(a))kn = 0. Because ker(f) ⊆
√

0A,
the result is a ∈

√
0A. It implies that (a, f(a) + j1) ∈

√
0A./fJ , a

contradiction. Thus, we have f(a)+j1 /∈
√

0(f(A)+J). Since Q∩(f(A)+
J) is an n-ideal of (f(A)+J), it follows that f(b)+j2 ∈ Q∩(f(A)+J).

We get the result that (b, f(b) + j2) ∈ Qf
.

(⇐) Let (f(a1)+j1)(f(a2)+j2) ∈ Q∩(f(A)+J) such that a1, a2 ∈ A
and j1, j2 ∈ J . If f(a1) + j1 /∈

√
0A+J , then (a1, f(a1) + j1) /∈

√
0A./fJ .

Since Q
f

is an n-ideal of A ./f J , it follows that (a2, f(a2 + j2)) ∈ Qf
.

Therefore, (f(a2) + j2) ∈ Q∩ (f(A) + J). We conclude Q∩ (f(A) + J)
is an n-ideal of f(A) + J .

We show that ker(f) ⊆
√

0A. Assume that a ∈ ker(f). Let (b, f(b)+

j) /∈ Qf
. We have (a, 0)((b, f(b) + j)) ∈ Qf

. Because Q
f

is an n-ideal,
the result is (a, 0) ∈

√
0A./fJ . Therefore, by Proposition 2.2, a ∈

√
0A.

It implies that ker(f) ⊆
√

0A.
We show that f(A) ∩ J ⊆

√
0B. Assume that f(a) = j ∈ J ∩ f(A).

Therefore, (a, f(a)−j) = (a, 0) ∈ A ./f J . Suppose that (b, f(b)+j) ∈
A ./f J \Qf

. Therefore, (a, 0)(b, f(b)+j) ∈ Qf
. Since Q

f
is an n-ideal,

it follows that (a, 0) ∈
√

0A./fJ . By Proposition 2.2, we have a ∈
√

0A.
Hence f(a) ∈

√
0B. It implies that f(A) ∩ J ⊆

√
0B. �
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Proposition 2.7. Let f : A → B be a ring homomorphism, J be an
ideal of B. Let I be an n-ideal of A ./f J . Then,

(1) If K = {f(a) + j | (a, f(a) + j) ∈ I} and K 6= f(A) + J , then
K is an n-ideal of f(A) + J .

(2) If L = {a | (a, f(a)) ∈ I} and L 6= A, then L is an n-ideal of A.

Proof. (1) Let (f(a)+j1)(f(b)+j2) ∈ K and f(a)+j1 /∈
√

0(f(A)+J). So,

(a, f(a) + j1)(b, f(b) + j2) ∈ I and (a, f(a) + j1) /∈
√

0A./fJ . Therefore,
(b, f(b) + j2) ∈ I. Hence (f(b) + j2) ∈ K. It implies that K is an
n-ideal of f(A) + J .

(2) Let a, b ∈ A such that ab ∈ L and a /∈
√

0A. So, (ab, f(ab)) ∈ I.
By Proposition 2.2, (a, f(a)) /∈

√
0A./fJ . Since I is an n-ideal, it follows

that (b, f(b)) ∈ I. Hence b ∈ L. �

Proposition 2.8. Let I be an ideal of A ./f J and J ⊆
√

0B and
kerf ⊆

√
0A. If K = {f(a) + j | (a, f(a) + j) ∈ I} is an n-ideal of

f(A) + J , then I is an n-ideal.

Proof. Let (a, f(a)+ j)(b, f(b)+ j
′
) ∈ I for (a, f(a)+ j), (b, f(b)+ j

′
) ∈

A ./f J . Hence (f(a) + j)(f(b) + j
′
) ∈ K. Since K is an n-ideal, it

follows that (f(a) + j) ∈
√

0f(A)+J or (f(b) + j
′
) ∈ K.

Case 1: Assume that f(a) + j ∈
√

0f(A)+J . By Remark 2.3,

f(a)+j ∈
√

0B. Because J ⊆
√

0B and kerf ⊆
√

0A, we obtain
a ∈
√

0A. Therefore, by Proposition 2.2, (a, f(a)+j) ∈
√

0A./fJ .
Case 2: Assume that (f(b) + j

′
) ∈ K. Since K = {f(a) + j |

(a, f(a) + j) ∈ I}, it follows that (b, f(b) + j
′
) ∈ I.

By case 1 and case 2, I is an n-ideal of A ./f J . �

We show that the converse Proposition 2.7 is not true in general.

Example 2.9. (1) Let f : Z → Z be an identity homomorphism
and J = 2Z. Let I = 0 ./f J be an ideal of A ./f J . L =
{a|(a, f(a)) ∈ I} = 〈0〉 is an n-ideal of Z. We have (0, 2)(1, 2) =
(0, 4) ∈ I , (0, 2) /∈

√
0A./fJ and (1, 2) /∈ I. So, I is not an n-

ideal.
(2) Assume that A = Z and B = Z/4Z. Let f : A → B be

a canonical homomorphism and J = 〈0̄〉. Let I = 4Z ./f J
and K = {f(a) + j | (a, f(a) + j) ∈ I}. K is an n-ideal of
f(A) + J = B because K = 〈0̄〉. We have (2, 2̄)(2, 2̄) = (4, 0̄) ∈
I, (2, 2̄) /∈

√
0A./fJ and (2, 2̄) /∈ I. So, I is not an n-ideal.

Theorem 2.10. Let f : A → B be a ring homomorphism, J be an
ideal of B and ker(f) *

√
0A. Then, N is an n-ideal of A ./f J if
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and only if there exists an n-ideal I of A such that N = I ./f J and
J ⊆
√

0B.

Proof. (⇒) Suppose that N is an n-ideal of A ./f J and ker(f) *
√

0A.
So, there exists a ∈ ker(f)\

√
0A. By Proposition 2.2, (a, 0) /∈

√
0A./fJ .

If j ∈ J , then (a, 0)(0, j) ∈ N . Therefore, (0, j) ∈ N , and so 0×J ⊆ N .
Set I = {a | (a, f(a)) ∈ N}. Since N 6= A ./f J and 0 × J ⊆ N , it

follows that I 6= A. By Proposition 2.7, I is an n-ideal of A. We have
N = I ./f J .

By Proposition 2.4, J ⊆
√

0B, since ker(f) *
√

0A.
(⇐) According to Theorem 2.5, I ./f J is an n-ideal of A ./f J , as

I is an n-ideal of A and J ⊆
√

0B. �

Theorem 2.11. Let f : A → B be a ring homomorphism and J be
an ideal of B. If N is an n-ideal of A ./f J , f(A) ∩ J = 0 and
kerf×0 ⊆ N , then there exists an ideal Q of f(A)+J such that Q is an
n-ideal of f(A)+J and N = {(a, f(a)+ j)|a ∈ A, j ∈ J, f(a)+ j ∈ Q}.

Proof. Consider Q = {f(a) + j|(a, f(a) + j) ∈ N}. Because N 6= A ./f

J , f(A) ∩ J = 0 and kerf × 0 ⊆ N , we obtain Q 6= f(A) + J . We
get Q is an n-ideal of f(A) + J , by Proposition 2.7. It is clear that
N = {(a, f(a) + j)|a ∈ A, j ∈ J, f(a) + j ∈ Q}. �

Corollary 2.12. Let f : A→ B be a ring homomorphism and J be an
ideal of B. If N is an n-ideal of A ./f J and 0 × J ⊆ N , then there
exists an ideal I of A such that N = I ./f J .

Proposition 2.13. Let A be a ring and
√

0A be a finitely generated
ideal of A. If every ideal I ⊆

√
0A is an n-ideal, then every ascending

chain of principal ideals {Axj}∞j=1 where Axj ⊆
√

0A stops.

Proof. Let Ax1 ( Ax2 ( Ax3 ( · · · ( Axi ( . . . be a chain of principal
ideals of A where Axi ⊆

√
0A for all i ∈ N. We conclude x1 = r2x2 =

r2r3x3 = · · · = r2 . . . rkxk = . . . for r1, r2, · · · ∈ A. Since Axi is an
n-ideal, it follows that ri ∈

√
0A. On the other hand, since

√
0A is a

finitely generated ideal of A, there exists n ∈ N such that (
√

0A)n = 〈0〉.
So, x1 = r2 . . . rnrn+1xn+1 = 0. It follows that xi = 0, for all i ∈ N,
which is a contradiction. Therefore, every ascending chain of principal
ideals {Axj}∞j=1 where Axj ⊆

√
0A stops. �

Definition 2.14. A prime ideal P of a ring A is called divided if
P ⊆ 〈x〉 for every x ∈ A− P .

Lemma 2.15. If every ideal I ⊆
√

0A of A is an n-ideal, then
√

0A is
a divided prime ideal.
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Proof. By [14, Theorem 2.12],
√

0A is a prime ideal of A. Assume
that r ∈ A. If (r

√
0A) =

√
0A, then

√
0A ⊆ 〈r〉. If (r

√
0A) $

√
0A,

then there exists x ∈
√

0A \ (r
√

0A). We get rx ∈ (r
√

0A). By our
assumption, r

√
0A is an n-ideal, therefore r ∈

√
0A. Hence for every

r ∈ A, we have r ∈
√

0A or
√

0A ⊆ 〈r〉. �

Proposition 2.16. If
√

0A is a divided prime ideal of A such that every
ascending chain of principal ideals {Ij}∞j=1 where Ij ⊆

√
0A stops, then

every ideal I ⊆
√

0A of A is an n-ideal.

Proof. Assume that
√

0A 6= 〈0〉.
Let I ⊆

√
0A be an ideal of A and rx ∈ I, for x ∈ A and r ∈ A \

√
0A.

Because
√

0A is a divided prime ideal of A and rx ∈
√

0A, we obtain
x ∈
√

0A and
√

0A ⊆ 〈r〉. So, there exists x1 ∈ A such that x = rx1.
x1 ∈

√
0A is obtained because

√
0A is a prime ideal and r /∈

√
0A. So,

we have x = rx1 = r2x2 = r3x3 = · · · = rnxn = . . . for some xi ∈
√

0A.
Then Ax1 ⊆ Ax2 ⊆ Ax3 ⊆ · · · ⊆ Axi ⊆ . . . . Since every ascending
chain of principal ideal stops, there exists n ∈ N such that Axn = Axi,
for every i ≥ n. So, there exists s ∈ A such that xn+1 = sxn. It follows
that xn = rsxn. We can conclude (1 − rs)x = 0 and x = srx. As
rx ∈ I, so x ∈ I. �

Theorem 2.17. Let A be a ring and
√

0A be a finitely generated ideal
of A. Then, every ideal I ⊆

√
0A is an n-ideal if and only if every

ascending chain of principal ideals {Axj}∞j=1 where Axj ⊆
√

0A stops,

and
√

0A is a divided prime ideal.

Proof. By Proposition 2.13, Lemma 2.15 and Proposition 2.16. �

Proposition 2.18. Suppose that I1, I2, . . . , In are primary ideals of A
such that

√
Ij’s are not comparable. Then, ∩nj=1Ij is an n-ideal, if and

only if Ij is an n-ideal for each j ∈ {1, 2, . . . , n}.

Proof. (⇒) Let ax ∈ Ik with a /∈
√

0 , for x ∈ A and 1 ≤ k ≤ n. Since√
Ij’s are not comparable, there exists r ∈ ∩nj=1

√
Ij −

√
Ik. So, there

exists t ∈ N such that rtax ∈ ∩nj=1Ij. It follows that rtx ∈ Ik. Thus,
x ∈ Ik, and so Ik is an n-ideal.

(⇐) [14, Proposition 2.4]. �

Theorem 2.19. Let A be a ring. Then, 〈0〉 is an n-ideal of A if
and only if ϕ : A → S−1A is either injective or ϕ = 0, for every
multiplicative closed subset S of A.

Proof. (⇒) Suppose that ϕ is not injective. Hence ker(ϕ) 6= 0. So,
there exists 0 6= r ∈ ker(ϕ). It implies that sr = 0 for some s ∈ S. As
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〈0〉 is an n-ideal and 0 6= r, we obtain s ∈ S ∩
√

0A. We get S−1A = 0
and ker(ϕ) = A. Therefore, ϕ = 0.

(⇐) Assume that rx ∈ 〈0〉 and r, x ∈ A. Set S = {rn : n ∈ N∪{0}}.
So, S is a multiplicative closed subset of A. If ker(ϕ) = 0, then as
ϕ(x) = x/1 = rx/r = 0, we get x = 0. Let ϕ = 0. So, ker(ϕ) = A.
Therefore, ϕ(1) = 0. It implies that there exists n ∈ N such that
rn = 0. Hence r ∈

√
0A. Therefore, 〈0〉 is an n-ideal of A. �

Corollary 2.20. Let A be a ring and I ⊆
√

0A. Then, I is an n-ideal
of A if and only if ϕ : A/I → S−1(A/I) is either injective or ϕ = 0,
for every multiplicative closed subset S of A/I.

3. (2, n)-ideals

In this section, we discuss (2, n)-ideals of A ./f J , and we determine

when I ./f J and Q
f

are (2, n)-ideals.

Definition 3.1. [13] A proper ideal I of A is called a (2, n)-ideal of
A if whenever a, b, c ∈ A and abc ∈ I, then ab ∈ I or ac ∈

√
0A or

bc ∈
√

0A.

Proposition 3.2. Let f : A → B be a ring homomorphism and J be
an ideal of B. Then, I is a (2, n)-ideal of A and J ⊆

√
0B if and only

if I ./f J := {(a, f(a) + j) | a ∈ I, j ∈ J} is a (2, n)-ideal of A ./f J .

Proof. (⇒) Let xi = (ai, f(ai) + ji) ∈ A ./f J for 1 ≤ i ≤ 3. Suppose
that x1x2x3 ∈ I ./f J where x1x3 ∈ A ./f J \

√
0A./fJ and x2x3 ∈

A ./f J \
√

0A./fJ . Since J ⊆
√

0B, it follows that a1a3 /∈
√

0A and
a2a3 /∈

√
0A. Since I is a (2, n)-ideal of A, it follows that a1a2 ∈ I, and

so x1x2 ∈ I ./f J . Consequently, I ./f J is a (2, n)-ideal of A ./f J .
(⇐) Let abc ∈ I with ac /∈

√
0A and bc /∈

√
0A for a, b, c ∈ A. Then

we have (a, f(a))(b, f(b))(c, f(c)) ∈ I ./f J and (a, f(a))(c, f(c)) /∈√
0A./fJ and (b, f(b))(c, f(c)) /∈

√
0A./fJ . Since I ./f J is a (2, n)-ideal

of A ./f J , it follows that (a, f(a))(b, f(b)) ∈ I ./f J , and so ab ∈ I.
Consequently, I is a (2, n)-ideal of A.

We show that J ⊆
√

0B. By [13, Theorem 2.4], I ./f J ⊆
√

0A./fJ .
Hence 0× J ⊆

√
0A./fJ . By Proposition 2.2, J ⊆

√
0B. �

Proposition 3.3. Let f : A → B be a ring homomorphism and J be
an ideal of B. Let Q be an ideal of B. Then, Q ∩ (f(A) + J) is a
(2, n)-ideal of f(A) + J and J ∩ f(A) ⊆

√
0B, ker(f) ⊆

√
0A if and

only if Q
f

:= {(a, f(a) + j)|a ∈ A, j ∈ J, f(a) + j ∈ Q} is a (2, n)-ideal
of A ./f J .
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Proof. (⇒) Let xi = (ai, f(ai) + ji) ∈ A ./f J and yi = f(ai) + ji

for 1 ≤ i ≤ 3. Suppose that x1x2x3 ∈ Q
f

and x1x3 /∈
√

0A./fJ and
x2x3 /∈

√
0A./fJ . Then we have y1y2y3 ∈ Q ∩ (f(A) + J).

Now, we show that y1y3 /∈
√

0(f(A)+J) and y2y3 /∈
√

0(f(A)+J). As-

sume that y1y3 ∈
√

0(f(A)+J). Then there exists n ∈ N such that

(y1y3)n = 0. Hence f(a1a3)n ∈ f(A) ∩ J . Since J ∩ f(A) ⊆
√

0B,
there exists k ∈ N such that (f(a1a3))nk = 0. Since ker(f) ⊆

√
0A,

it follows that a1a3 ∈
√

0A. It implies that x1x3 ∈
√

0A./fJ , a con-
tradiction. Thus, we have y1y3 /∈

√
0(f(A)+J) and y2y3 /∈

√
0(f(A)+J).

Since Q ∩ (f(A) + J) is a (2, n)-ideal of (f(A) + J), it follows that

y1y2 ∈ Q ∩ (f(A) + J). We get the result that x1x2 ∈ Q
f
.

(⇐) Let (f(a) + j1)(f(b) + j2)(f(c) + j3) ∈ Q ∩ (f(A) + J) such
that a, b, c ∈ A and j1, j2, j3 ∈ J . If (f(a) + j1)(f(b) + j2) /∈

√
0f(A)+J

and (f(b) + j2)(f(c) + j3) /∈
√

0f(A)+J , then (a, f(a) + j1)(c, f(c) +

j3) /∈
√

0A./fJ and (b, f(b) + j2)(c, f(c) + j3) /∈
√

0A./fJ . Since Q
f

is a

(2, n)-ideal of A ./f J , it follows that (a, f(a + j1)(b, f(b) + j2) ∈ Qf
.

Therefore, (f(a) + j1)(f(b) + j2) ∈ Q ∩ (f(A) + J). We conclude
Q ∩ (f(A) + J) is a (2, n)-ideal of f(A) + J .

Now, we show that ker(f) ⊆
√

0A. Assume that a ∈ ker(f). There-

fore, (1, 1)(1, 1)(a, 0) ∈ Q
f
. We have (1, 1) /∈ Q

f
, and so (a, 0) ∈√

0A./fJ . By Proposition 2.2, a ∈
√

0A. Hence ker(f) ⊆
√

0A.
Now, we show that J ∩ f(A) ⊆

√
0B. Let f(a) ∈ J ∩ f(A). So,

(a, 0) ∈ Qf
. Hence (1, 1)(1, 1)(a, 0) ∈ Qf

. As Q
f

is a (2, n)-ideal and

(1, 1) /∈ Qf
, we obtain (a, 0) ∈

√
0A./fJ . By Proposition 2.2, a ∈

√
0A.

Hence f(a) ∈
√

0B. Therefore, J ∩ f(A) ⊆
√

0B.
�

Proposition 3.4. Let f : A → B be a ring homomorphism and J be
an ideal of B. Let I be a (2, n)-ideal of A ./f J . Then,

(1) If K = {f(a) + j | (a, f(a) + j) ∈ I} and K 6= f(A) + J , then
K is a (2, n)-ideal of f(A) + J .

(2) If L = {a | (a, f(a)) ∈ I} and L 6= A, then L is a (2, n)-ideal of
A.

Proof. (1) Let (f(a) + j1)(f(b) + j2)(f(c) + j3) ∈ K and (f(a) +
j1)(f(c)+ j3) /∈

√
0(f(A)+J) and (f(b)+ j2)(f(c)+ j3) /∈

√
0(f(A)+J). So,

(a, f(a) + j1)(b, f(b) + j2)(c, f(c) + j3) ∈ I and (a, f(a) + j1)(c, f(c) +
j3) /∈

√
0A./fJ and (b, f(b) + j2)(c, f(c) + j3) /∈

√
0A./fJ . Therefore,

(a, f(a) + j1)(b, f(b) + j2) ∈ I. Hence (f(a) + j1)(f(b) + j2) ∈ K. It
implies that K is a (2, n)-ideal of f(A) + J .
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(2) Let a, b, c ∈ A such that abc ∈ L and ac /∈
√

0A and bc /∈
√

0A. So,
(abc, f(abc)) ∈ I and (a, f(a))(c, f(c)) /∈

√
0A./fJ and (b, f(b))(c, f(c)) /∈√

0A./fJ . Since I is a (2, n)-ideal, it follows that (a, f(a))(b, f(b)) ∈ I.
Hence ab ∈ L. �

Corollary 3.5. If A has a (2, n)-ideal, then
√

0A is a 2-absorbing ideal.

Proof. By [13, Theorem 2.4] we have
√
I =

√
0A. By [4, Theorem

2.2],
√
I is a 2-absorbing ideal. It implies that

√
0A is a 2-absorbing

ideal. �

Lemma 3.6. Let A be a ring and
√

0A be a prime ideal. If I ⊆
√

0A
is an ideal of A, then I is a (2, n)-ideal.

Proposition 3.7. Suppose that I1, I2, . . . , In are 2-absorbing primary
ideals of A such that

√
Ij’s are not comparable and

√
0A is a prime

ideal. Then, ∩nj=1Ij is a (2, n)-ideal, if and only if Ij is a (2, n)-ideal for
each j ∈ {1, 2, . . . , n}.

Proof. (⇒) Let abc ∈ Ik with ac /∈
√

0A and bc /∈
√

0A , for a, b, c ∈ A
and 1 ≤ k ≤ n. Since

√
Ij’s are not comparable, there exists r ∈

∩nj=1,j 6=k
√
Ij \
√
Ik. So, there exists t ∈ N such that rtabc ∈ ∩nj=1Ij.

We get ab ∈ Ik or rtac ∈
√

0A or rtbc ∈
√

0A. Since r /∈
√
Ik, it follows

that rt /∈
√

0A. It implies that ac ∈
√

0A or bc ∈
√

0A. Therefore, Ik is
a (2, n)-ideal.
⇐ [13, Proposition 2.8]. �

4. (2,n)-ideals in trivial ring extensions

This section will go over the (2, n)-ideals in ring A(+)M in detail,
such as I is a (2, n)-ideal if and only if I(+)M is also a (2, n)-ideal.

Definition 4.1. [1] Assume the commutative ring A and the A-module
M . The trivial ring extension of A by M (or the idealization of M
over A) is the ring A(+)M whose underlying group is A × M with
multiplication given by (a,m)(b, n) = (ab, an+ bm).

Note 4.2. The nil radical ofA(+)M is characterized as follows:
√

0A(+)M =√
0A(+)M . Notice that (r,m) /∈

√
0A(+)M if and only if r /∈

√
0A [1,

Theorem 3.2].

Proposition 4.3. Let A be a commutative ring, I be a proper ideal
of A, M be an A-module, and R = A(+)M . Then, I is a (2, n)-ideal
of A if and only if I(+)M is a (2, n)-ideal of R.
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Proof. (⇒) Let xi = (ri,mi) ∈ R for 1 ≤ i ≤ 3. Suppose that x1x2x3 ∈
I(+)M with x1x3 /∈

√
0A(+)M and x2x3 /∈

√
0A(+)M . Then, we have

r1r2r3 ∈ I and r1r3 /∈
√

0A and r2r3 /∈
√

0A. Since I is a (2, n)-ideal
of A, it follows that r1r2 ∈ I, and so x1x2 ∈ I(+)M . Consequently,
I(+)M is a (2, n)-ideal of R.

(⇐) Let abc ∈ I with ac /∈
√

0A and bc /∈
√

0A. So, (a, 0)(b, 0)(c, 0) ∈
I(+)M and (a, 0)(c, 0), (b, 0)(c, 0) /∈

√
0A(+)M . Since I(+)M is a (2, n)-

ideal of R, it follows that (a, 0)(b, 0) ∈ I(+)M . Hence ab ∈ I and I is
a (2, n)-ideal of A. �

Proposition 4.4. Let M be an A-module, R = A(+)M . Let I be a
proper ideal of A and N be a submodule of M such that IM ⊆ N .
Then:

(1) If I(+)N is a (2, n)-ideal of R, then I is a (2, n)-ideal of A.
(2) If I is a (2, n)-ideal of A, N is an n-submodule of M and

Nil(M) ⊆
√

0A, then I(+)N is a (2, n)-ideal of A(+)M .
(3) Let N be a

√
0A-primary submodule. If I is a (2, n)-ideal of A,

then I(+)N is a (2, n)-ideal of A(+)M .
(4) If N is a

√
0A-prime submodule, then

√
0A(+)N is a (2, n)-ideal.

Proof. (1) Assume that abc ∈ I with ac /∈
√

0A and bc /∈
√

0A. Then
(a, 0)(b, 0)(c, 0) ∈ I(+)N and (a, 0)(c, 0), (b, 0)(c, 0) /∈

√
0R. Therefore,

(a, 0)(b, 0) ∈ I(+)N . We get ab ∈ I.
(2) Suppose that xi = (ai,mi) ∈ R, 1 ≤ i ≤ 3 and x1x2x3 ∈ I(+)N

with x1x3, x2x3 /∈
√

0A(+)M . We have a1a2a3 ∈ I and a1a3, a2a3 /∈
√

0A.
Since I is a (2, n)-ideal, it follows that a1a2 ∈ I. By our assumption,
IM ⊆ N and x1x2x3 ∈ I(+)N , we get a3(a1m2 + a2m1) ∈ N . Since
a1a3, a2a3 /∈

√
0A, it follows that a3 /∈

√
0A. So, a1m2 + a2m1 ∈ N

because N is an n-submodule, a3(a1m2 + a2m1) ∈ N and a3 /∈
√

0A.
Therefore, x1x2 ∈ I(+)N and I(+)N is a (2, n)-ideal.

(3) Assume that xi = (ai,mi) ∈ R, 1 ≤ i ≤ 3 and x1x2x3 ∈ I(+)N
with x1x3, x2x3 /∈

√
0A(+)M . So, a1a2a3 ∈ I and a1a3, a2a3 /∈

√
0A.

Hence a1a2 ∈ I, because I is a (2, n)-ideal. We can conclude a1m2 +
a2m1 ∈ N . Then x1x2 ∈ I(+)N and I(+)N is a (2, n)-ideal.

(4) Since
√

0A is a prime ideal,
√

0A is a (2, n)-ideal. It is clear that
N is an n-submodule and

√
0AM ⊂ N and Nil(M) ⊆

√
0A. Therefore,

by (2) we have
√

0A(+)N is a (2, n)-ideal. �

In the next example, we show that the converse of parts (3) and (4)
of Proposition 4.4 is not true in general.

Example 4.5. Let A = Z6, M = Z6 and R = A(+)M . Assume that
(r1, x1)(r2, x2)(r3, x3) ∈ I(+)N for (r1, x1), (r2, x2), (r3, x3) ∈ R. We
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get r1r2r3 ∈ 0̄. Since 0̄ is a (2, n)-ideal, it follows that r1r2 ∈ 0̄ or

r2r3 ∈
√

0̄ or r1r3 ∈
√

0̄.

Case 1: If r2r3 ∈
√

0̄ or r1r3 ∈
√

0̄, then (r2, x2) ∈
√

0A(+)M or

(r3, x3) ∈
√

0A(+)M .

Case 2: Assume that r1r2 ∈ 0̄ and r2r3 /∈
√

0̄ and r1r3 /∈
√

0̄.
We get r1 6= 0̄ and r2 6= 0̄. Without loose generality assume

that r1 ∈ 〈2̄〉, r2 ∈ 〈3̄〉, r1 /∈ 〈3̄〉 and r2 /∈ 〈2̄〉. As r2r3 /∈
√

0̄

and r1r3 /∈
√

0̄, we obtain r3 /∈ 〈3̄〉 and r3 /∈ 〈3̄〉. We have
r3(r1x2 + r2x1) = 0. (r1x2 + r2x1) = 0 is obtained because
r3 /∈ 〈2̄〉 and r3 /∈ 〈3̄〉.

Therefore, I(+)N is a (2, n)-ideal. N is not a primary submodule and
N is not an n-submodule.

Proposition 4.6. Let M be an A-module, N be a submodule of M ,
and
√

0A be a prime ideal. If R = A(+)M and I ⊆
√

0A, then I(+)N
is a (2, n)-ideal of R.

Proof. Since
√

0A is a prime ideal, it follows that
√

0A(+)M is a prime
ideal. By Lemma 3.6, I(+)N is a (2, n)-ideal. �

5.
√
δ(0)-ideal

In this section, we give some properties of
√
δ(0)-ideal. We show that

a proper ideal I of A is a
√
δ(0)-ideal of A if and only if I = (I : a)

for every a /∈
√
δ(0). We demonstrate that if I is a

√
δ(0)-ideal of the

von Neumann regular ring A, then I is A’s maximal ideal.

Definition 5.1. [5] Let Id(A) be the set of all ideals of R and δ :
Id(A) → Id(A) be a function of ideals of A. δ is called an expansion
function of Id(A) if it satisfies the following two conditions:

(1) I ⊆ δ(I).
(2) If I ⊆ J , then δ(I) ⊆ δ(J) for any ideals I, J of A.

Example 5.2. [5]

(1) The identity function δ0, where δ0(I) = I for every ideal I of
R, is an expansion of ideals.

(2) For each ideal I define δ1(I) =
√
I. Then δ1 is an expansion of

ideals.

For other examples, see [8].

Definition 5.3. [5] Given an expansion δ of ideals, an ideal I of A is
called δ-primary if ab ∈ I and a /∈ δ(I) imply b ∈ I for all a, b ∈ A.
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Definition 5.4. Suppose that δ is an expansion function of Id(A) and

δ(0) is a proper ideal of A. A proper ideal I of A is called a
√
δ(0)-ideal

if whenever a, b ∈ A with ab ∈ I and a /∈
√
δ(0), then b ∈ I.

Example 5.5. Let A be a commutative ring. Define the following ex-
pansion functions δα : Id(A) → Id(A) and the corresponding

√
δα(0)-

ideal:

δ0 δ0(I) = I n-ideal

δ1 δ1(I) =
√
I n-ideal

δ2 δ2(I) = ∩I⊆m,m∈max(A)m J-ideal

We recall from [2] that A is a local ring if A has exactly one maximal
ideal.

Example 5.6. (1) Note that a
√
δ(0)-ideal is not necessarily an

n-ideal. Assume that δ : Id(Z) → Id(Z) where δ(nZ) = 3Z if

3 | n and δ(nZ) = Z if 3 - n. we have 3Z =
√
δ(0). Let ab ∈ 9Z

and a /∈
√
δ(0). So, 3 - a. Hence 9 | b and b ∈ 9Z. We get 9Z

is a
√
δ(0)-ideal of Z. But 3× 3 ∈ 9Z and 3 /∈

√
0 and 3 /∈ 9Z.

Therefore, 9Z is not an n-ideal.
(2) Let (A,m) be a local ring with exactly two minimal prime ideals

P1, P2. Put δ : Id(A) → Id(A) where δ(I) = m for I 6= A and

δ(A) = A. P1 ∩ P2 is a
√
δ(0)-ideal and P1 ∩ P2 is not primary

ideal.

Lemma 5.7. Let I be a proper ideal of A and δ be an expansion func-
tion of Id(A).

(1) If I is a
√
δ(0)-ideal of A, then I ⊆

√
δ(0).

(2) If I is a
√
δ(0)-ideal of A, then

√
I is a

√
δ(0)-ideal.

(3) If I is a
√
δ(0)-ideal of A, then I is a δ1oδ-primary.

Proof. (1) It is clear.

(2) Let ab ∈
√
I with a /∈

√
δ(0) for a, b ∈ A. Then there exists n ∈ N

such that anbn ∈ I. Since I is a
√
δ(0)-ideal, it follows that bn ∈ I,

and so b ∈
√
I. �

Example 5.8. Consider the ring A = Z8[x] and note that
√

0A =
{0̄, 2̄, 4̄, 6̄}[x]. Since {0̄, 2̄, 4̄, 6̄} is a prime ideal of Z8, it follows that√

0A is a prime ideal of A. We have
√
δ0(0) =

√
0A. Therefore,

√
δ0(0)

is a prime ideal. Put I = {0̄, 4̄}〈x〉. It is clear that I ⊆
√
δ0(0). So,√

I =
√
δ0(0). It implies that

√
I is a

√
δ0(0)-ideal. But x4̄ ∈ I and

x /∈
√
δ0(0), 4̄ /∈ I, so I is not an

√
δ0(0)-ideal.
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Definition 5.9. Given two expansion functions γ, δ : Id(A) → Id(A),
we define γ ≤ δ if γ(J) ⊆ δ(J) for all J ∈ Id(A).

Proposition 5.10. Let γ, δ be two expansion functions of Id(A) with

γ ≤ δ and
√
δ(0) a proper ideal of A. If I is a

√
γ(0)-ideal then I is a√

δ(0)-ideal.

Proof. Suppose that γ, δ are two expansion functions of Id(A) with

γ ≤ δ and
√
δ(0) a proper ideal of A and I is a

√
γ(0)-ideal. Take

ab ∈ I with a /∈
√
δ(0). Therefore, a /∈

√
γ(0). Since I is a

√
γ(0)-

ideal, it follows that b ∈ I. We get I is
√
δ(0)-ideal. �

Corollary 5.11. Let δ be an expansion function of Id(A). Any n-ideal

of A is a
√
δ(0)-ideal.

Proof. Let I is an n-ideal. We have
√

0 =
√
δ0(0). According to

Proposition 5.10, I is a
√
δ(0)-ideal since

√
δ0(0) ⊆

√
δ(0). �

Proposition 5.12. Let δ be an expansion function of Id(A).

(1) If Z(A) ⊆
√
δ(0), then any r-ideal of A is a

√
δ(0)-ideal.

(2) If J(A) ⊆
√
δ(0), then any J-ideal of A is a

√
δ(0)-ideal.

Proof. (1) Suppose that I is an r-ideal of A. Take ab ∈ I where a /∈√
δ(0)-ideal. Since Z(A) ⊆

√
δ(0), it follows that a /∈ Z(A). So,

Ann(a) = 0. Since I is an r-ideal, it follows that b ∈ I. Therefore, I is

a
√
δ(0)-ideal.

(2) It is similar (1). �

Theorem 5.13. Let δ be an expansion function of Id(A). If {Ii}i∈∆ is

a nonempty set of
√
δ(0)-ideals of A, then ∩i∈∆Ii is a

√
δ(0)-ideal of

A.

Proof. Assume that ab ∈ ∩i∈∆Ii and a /∈
√
δ(0). We get ab ∈ Ii for

every i ∈ ∆. b ∈ Ii is obtained for every i ∈ ∆ since Ii is a
√
δ(0)-ideal

and a /∈
√
δ(0). Therefore, b ∈ ∩i∈∆Ii. �

The proof of the following results 5.14, 5.15 and 5.16 are easy and
hence we omit the proof of them.

Theorem 5.14. Let I be a proper ideal of A and δ be an expansion
function of Id(A). Then the followings are equivalent:

(1) I is a
√
δ(0)-ideal of A.

(2) I = (I : a) for every a /∈
√
δ(0).

(3) For ideals L and K of A, LK ⊆ I with L ∩ (A \
√
δ(0)) 6= ∅,

implies K ⊆ I.
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(4) (I : a) ⊆
√
δ(0), for every a /∈ I.

Proposition 5.15. Let δ be an expansion function of Id(A). Then,

(1)
√
δ(0) is a

√
δ(0)-ideal of A if and only if it is a prime ideal of

A.
(2) For a prime ideal P of A, P is a

√
δ(0)-ideal of A if and only if

P ⊆
√
δ(0).

Proposition 5.16. Let δ be an expansion function of Id(A) and S be

a nonempty subset of A. If I is a
√
δ(0)-ideal of A with S * I, then

(I : S) is a
√
δ(0)-ideal of A.

Let A and B be commutative rings with 1 6= 0 and let δ, γ be
two expansion functions of Id(A) and Id(B), respectively. Then a ring
homomorphism f : A→ B is called a δγ-homomorphism if δ(f−1(I)) =
f−1(γ(I)) for all ideals I of B.[3]

Theorem 5.17. Let f : A → B be a δγ-homomorphism, where δ and
γ are expansion function of Id(A) and Id(B), respectively. Then the
following statements hold:

(1) If f is monomorphism and J is a
√
γ(0)-ideal of B, then f−1(J)

is a
√
δ(0)-ideal of A.

(2) Let f be an epimorphism and I a proper ideal of A with ker(f) ⊆
I. If I is a

√
δ(0)-ideal of A then f(I) is a

√
γ(0)-ideal of B.

(3) Let f be an epimorphism and I a proper ideal of A with δ(ker(f)) ⊆
I ∩ δ(0). If f(I) is a

√
γ(0)-ideal of B then I is a

√
δ(0)-ideal.

Proof. (1) Let ab ∈ f−1(J) for some a, b ∈ A and a /∈
√
δ(0). We have

f(a) /∈
√
γ(0). Then f(a)f(b) ∈ J and f(a) /∈

√
γ(0) which implies

that f(b) ∈ J . Thus, b ∈ f−1(J). Therefore, f−1(J) is a
√
δ(0)-ideal

of A.
(2) Assume that I is a

√
δ(0)-ideal of A. Let b1b2 ∈ f(I) for some

b1, b2 and b1 /∈
√
γ(0). Since f is an epimorphism, there exist two

elements a1, a2 ∈ A such that b1 = f(a1) and b2 = f(a2). Then b1b2 =

f(a1)f(a2) = f(a1a2) ∈ f(I). We obtain a1 /∈
√
δ(0) since f is a δγ-

homomorphism and b1 /∈
√
γ(0). a1a2 ∈ I is obtained since ker(f) ⊆ I

and f(a1a2) ∈ f(I). We get a2 ∈ I. Thus, b2 = f(a2) ∈ f(I). It

implies that f(I) is a
√
γ(0)-ideal of B.

(3) Assume that f(I) is a
√
γ(0)-ideal. Let a1a2 ∈ I for some

a1, a2 ∈ A and a1 /∈
√
δ(0). Since δ(ker(f)) ⊆ δ(0) and f is a δγ-

homomorphism, f(a1) /∈
√
γ(0). So, f(a1)f(a2) ∈ f(I) and f(a1) /∈√

γ(0). Thus, f(a2) ∈ f(I). Hence a2 ∈ I and I is a
√
δ(0)-ideal. �
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Definition 5.18. Suppose that S is a nonempty subset of a ring A
with A \

√
δ(0) ⊆ S. Then S is called a

√
δ(0)-multiplicatively closed

subset of A if ab ∈ S for all a ∈ A \
√
δ(0) and all b ∈ S.

Proposition 5.19. Let δ be an expansion function of Id(A) and I be

a proper ideal of A. Then, I is a
√
δ(0)-ideal of A if and only if A \ I

is a
√
δ(0)-multiplicatively closed subset of A.

Proof. (⇒) Suppose that I is a
√
δ(0)-ideal of A. Hence by Lemma 5.7,

I ⊆
√
δ(0). We get A\

√
δ(0) ⊆ A\I. Let a ∈ A\

√
δ(0) and b ∈ A\I.

Suppose to the contrary that ab /∈ A \ I. Hence ab ∈ I and a /∈
√
δ(0).

Since I is a
√
δ(0)-ideal, it follows that b ∈ I. Contradicting the fact

that b ∈ A \ I.

(⇐) Suppose that I is an ideal and A \ I is a
√
δ(0)-multiplicatively

closed subset of A. Take a, b ∈ A such that ab ∈ I and a /∈
√
δ(0). On

the contrary let us assume that b /∈ I. So, b ∈ A \ I. Since A \ I is a√
δ(0)-multiplicatively closed subset of A, it follows that ab ∈ A \ I.

We arrive at a contradiction. �

Proposition 5.20. Let I be an ideal of A such that I ∩ S = ∅ where
S is a

√
δ(0)-multiplicatively closed subset of A. Then there exists a√

δ(0)-ideal K containing I such that K ∩ S = ∅.

Proof. Put Ω = {Q|Q is an ideal of A with Q ∩ S = ∅ and I ⊆ Q}.
Then Ω is a partially ordered by inclusion. We get Ω 6= ∅, because
I ∈ Ω. By Zorn’s lemma, Ω has a maximal element. Suppose that K
is a maximal element of Ω. Now, we show that K is a

√
δ(0)-ideal.

Take a, b ∈ A such that ab ∈ K and a /∈
√
δ(0) and b /∈ K. Therefore,

b ∈ (K : a) and K ( (K : a). Since K is a maximal element of Ω,
it follows that (K : a) /∈ Ω. Hence(K : a) ∩ S 6= ∅, and so there
exists an s ∈ S such that s ∈ (K : a). Therefore, as ∈ K. Since S is a√
δ(0)-multiplicatively closed subset of A, it follows that as ∈ S. Then

as ∈ K ∩ S, it is a contradiction. Therefore, K is a
√
δ(0)-ideal. �

Theorem 5.21. If I is a maximal
√
δ(0)-ideal of A, then I is a prime

ideal.

Proof. Let ab ∈ I where a /∈ I. So, by Proposition 5.16, we have (I : a)

is a
√
δ(0)-ideal. We have I ⊆ (I : a) and I is a maximal

√
δ(0)-ideal

of A. Hence I = (I : a), and b ∈ I. We conclude I is a prime ideal of
A. �
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Theorem 5.22. Let δ be an expansion function of Id(A). Then, there

exists a
√
δ(0)-ideal of A if and only if

√
δ(0) contains a prime ideal

of A.

Proof. (⇒) Let I be a
√
δ(0)-ideal of A. Put

A = {L|L is a
√
δ(0)-ideal of A }.

Since I ∈ A, it follows that A is a nonempty set. By Zorn’s Lemma
A has a maximal element L. By Theorem 5.21 and Lemma 5.7, L is a
prime ideal and L ⊆

√
δ(0).

(⇐) Let P be a prime ideal of A and P ⊆
√
δ(0). It is clear that P

is a
√
δ(0)-ideal of A. �

In the following results 5.23, 5.24 and 5.25, we collect some trivial
fact about

√
δ(0)-ideals, and so we omit the proof.

Corollary 5.23. Let A be a ring. If δ(0) is a
√
δ(0)-ideal, then

√
δ(0)

is a prime ideal of A.

Theorem 5.24. Let I be a proper ideal of A such that δ(0) ⊆ I ⊆√
δ(0). The following statements are equivalent:

(1) I is a
√
δ(0)-ideal.

(2) I is a primary ideal of A.

Proposition 5.25. Let A be a ring and K be an ideal of A with
K ∩ (A \

√
δ(0)) 6= ∅. Then the followings hold:

(1) If I1, I2 are
√
δ(0)-ideals of A with I1K = I2K, then I1 = I2.

(2) If IK is a
√
δ(0)-ideal of A, then IK = I.

Proposition 5.26. Let A be a ring and δ be an expansion function of
Id(A). If every ideal I of A is a

√
δ(0)-ideal then (A,

√
δ(0)) is a local

ring.

Proof. Let m be a maximal ideal of A. m is a
√
δ(0)-ideal, so by

Lemma 5.7, m ⊆
√
δ(0). Hence (A,

√
δ(0)) is a local ring. �

Corollary 5.27. Let A be a ring and δ be an expansion function of
Id(A). If every proper ideal of A is a product of

√
δ(0)-ideals then

(A,
√
δ(0)) is a local ring.

Recall from that a ring A is called von Neumann regular if for every
a ∈ A, there exists an element x of A such that a = a2x. Also a ring A
is said to be a Boolean ring if whenever a = a2 for every a ∈ A. Notice
that every Boolean ring is also a von Neumann regular [2].
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Theorem 5.28. Let A be a ring and δ be an expansion function of
Id(A). Then the followings hold:

(1) A is a von Neumann regular ring and 0 is a
√
δ(0)-ideal, then

A is a field.
(2) Suppose that A is Boolean ring. If 0 is a

√
δ(0)-ideal, then A

is a field.

Proof. (1) Let A be a von Neumann regular ring and 0 be a
√
δ(0)-

ideal. Let 0 6= a ∈ A. Since A is von Neumann regular, a = a2x for
some x ∈ A. We have a(1 − ax) = 0. If a /∈

√
δ(0), then ax = 1 and

a is an invertible element in A. If a ∈
√
δ(0), then 1 − ax /∈

√
δ(0).

Since (1 − ax)a = 0 and 0 is a
√
δ(0)-ideal, a = 0. Therefore, A is a

field.
(2) If A is Boolean ring, then A is a von Neumann regular ring. By

(1), A is a field. �

Corollary 5.29. Let A be a ring and δ be an expansion function of
Id(A). Then the followings hold:

(1) A is a von Neumann regular ring and 0 is a
√
δ(0)-ideal, then

0 is an n-ideal.
(2) Suppose that A is Boolean ring. If 0 is a

√
δ(0)-ideal, then 0 is

an n-ideal.

Proof. By Theorem 5.28 and [14][Theorem 2.15]. �

Corollary 5.30. Let A be a ring and δ be an expansion function of
Id(A). Then the followings hold:

(1) A is a von Neumann regular ring and I is a
√
δ(0)-ideal, then

I is a maximal ideal of A.
(2) Suppose that A is Boolean ring. If I is a

√
δ(0)-ideal, then I is

a maximal ideal of A.

Proof. (1) Let A be a von Neumann regular ring and I be a
√
δ(0)-

ideal of A. So, A/I is a von Neumann regular ring. Let a + I ∈ A/I.
Therefore, there exists x ∈ A such that a = a2x. Hence a(1− ax) ∈ I.

If a /∈
√
δ(0), then (1 − ax) ∈ I. It implies that 1 + I = ax + I. If

a ∈
√
δ(0), then (1 − ax) /∈

√
δ(0). So, a ∈ I. We have a + I = I.

Therefore, A/I is a field. It follows that I is a maximal ideal of A. �

Let f : A→ B be a ring epimorphism and δ be an expansion function
of Id(A). We consider δ : Id(B) → Id(B) where δ(J) = foδ(f−1(J))
for J ∈ Id(B).
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Proposition 5.31. Let f : A → B be a ring epimorphism and δ be
an expansion function of Id(A). If I is a

√
δ(0)-ideal of A containing

ker(f), then f(I) is a
√
δ(0)-ideal of B

Proof. Let b1b2 ∈ f(I) and b1 /∈
√
δ(0) for b1, b2 ∈ B. So, there exist

a1, a2 ∈ A such that f(a1) = b1 and f(a2) = b2. Since b1 /∈
√
δ(0), it

follows that bm1 /∈ δ(0) for all m ∈ N. Suppose to the contrary that a1 ∈√
δ(0). It implies that there exists n ∈ N such that an1 ∈ δ(0). Since δ

is an expansion function of Id(A), it follows that δ(0) ⊆ δ(f−1(0)). So,
an1 ∈ δ(f−1(0)). Hence f(an1 ) ∈ foδ(f−1(0)). Therefore, bn1 ∈ δ(0), we

arrive at a contradiction. We have a1a2 ∈ I and a1 /∈
√
δ(0). Since I

is a
√
δ(0)-ideal, it follows that a2 ∈ I. So, b2 ∈ f(I). �

Let f : A → B be a ring monomorphism and δ be an expansion
function of Id(B). We consider δ̃ : Id(A) → Id(A) where δ̃(I) =
f−1(δ(〈f(I)〉)) for I ∈ Id(A).

Theorem 5.32. Let f : A→ B be a ring monomorphism and δ be an
expansion function of Id(B). If I is a

√
δ(0)-ideal of B, then f−1(I)

is a
√
δ̃(0)-ideal of A.

Proof. Let a1a2 ∈ f−1(I) and a1 /∈
√
δ̃(0) for a1, a2 ∈ A. Then

f(a1a2) = f(a1)f(a2) ∈ I. Since a1 /∈
√
δ̃(0) and f is a monomor-

phism, f(a1) /∈
√
δ(0). Since I is a

√
δ(0)-ideal of B, it follows that

f(a2) ∈ I, and so a2 ∈ f−1(I), as it is needed. �

Proposition 5.33. Let A be a ring and K ⊆ I be two ideals of A
and δ be an expansion function of Id(A). If I is a

√
δ(0)-ideal of A

and δ : Id(A/K) → Id(A/K) where δ(J/K) = δ(J)/K, then I/K is a√
δ(0)-ideal of A/K.

Proof. Assume that I is a
√
δ(0)-ideal of A with K ⊆ I. Let π : A→

A/K be the natural homomorphism. Note that ker(π) = K ⊆ I, and

so by Proposition 5.31, I/K is a
√
δ(0)-ideal of A/K.

�

Corollary 5.34. Let A be a ring and K ⊆ I be two ideals of A and δ
be an expansion function of Id(A/K). Suppose that δ̃ : Id(A)→ Id(A)

where δ̃(I) = {a ∈ A|a+K ∈ δ((I +K)/K)} for I ∈ Id(A). If I/K is

a
√
δ(0)-ideal of A/K, then I is a

√
δ̃(0)-ideal of A.
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Proof. Let ab ∈ I with a /∈
√
δ̃(0) for a, b ∈ A. Then we have (a +

K)(b+K) = ab+K ∈ I/K and a+K /∈
√
δ(0). Since I/K is a

√
δ(0)-

ideal of A/K, it follows that b+K ∈ I/K, and so b ∈ I. Consequently,

I is a
√
δ̃(0)-ideal of A. �

Corollary 5.35. Let B be a ring and A be a subring of B. If I is a√
δ(0)-ideal of B, then I ∩ A is a

√
δ̃(0)-ideal of A.

Proof. Suppose that A is a subring of B and I is a
√
δ(0)-ideal of B.

Consider the injection i : A → B. And note that δ̃(I) = δ(IB) ∩ A.

Therefore, δ̃(0) = δ(0) ∩ A. So, by Proposition 5.32(ii), I ∩ A is a√
δ̃(0)-ideal of A. �

Proposition 5.36. Let A be a ring and S be a multiplicatively closed
subset of A. Let δ be an expansion function of Id(A). Suppose that
δ : Id(S−1A)→ Id(S−1A) such that δ(I) = S−1δ(Ic).

If I is a
√
δ(0)-ideal of A and S∩

√
δ(0) = ∅, then S−1I is a

√
δ(0)-ideal

of S−1A.

Proof. Let a
s
b
t
∈ S−1I with a

s
/∈
√
δ(0), where a, b ∈ A and s, t ∈ S.

Then we have uab ∈ I for some u ∈ S. We have δ(0) ⊆ δ(0c). So,

S−1δ(0) ⊆
√
δ(0). It is clear that a /∈

√
δ(0). Since I is a

√
δ(0)-ideal

of A, it follows that ub ∈ I, and so b
t

= ub
ut
∈ S−1I. Consequently, S−1I

is a
√
δ(0)-ideal of S−1A. �

Proposition 5.37. Let A be a ring and S be a multiplicatively closed
subset of A. Let δ be an expansion function of Id(S−1A). Suppose that

δ̃ : Id(A)→ Id(A) such that δ̃(I) = δ(S−1I)c.

If I is a
√
δ(0)-ideal of S−1A, then Ic is a

√
δ̃(0)-ideal of A.

Proof. Let ab ∈ Ic and a /∈
√
δ̃(0). Then we have a

1
b
1
∈ I. Now we show

that a
1
/∈
√
δ(0). Suppose a

1
∈
√
δ(0), so there exists a positive integer

k such that (a
1
)k ∈ δ(0). Then we get ak ∈ δ(0)c = δ̃(0). We conclude

that a ∈
√
δ̃(0), a contradiction. Thus, we have a

1
/∈
√
δ(0). Since I is

a
√
δ(0)-ideal of S−1A, it follows that b

1
∈ I, and so b ∈ Ic. �

Theorem 5.38. Let A be a ring and δ be an expansion function of
Id(A), the followings are equivalent:
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(1) Every proper principal ideal is a
√
δ(0)-ideal;

(2) Every proper ideal is a
√
δ(0)-ideal;

(3) A has a unique maximal ideal which is
√
δ(0);

(4) (A,
√
δ(0)) is a local ring.

Proof. (1) ⇒ (2) Let I be a proper ideal of A and ab ∈ I, where

a /∈
√
δ(0). b ∈ 〈ab〉 ⊆ I is obtained because ab ∈ 〈ab〉 and 〈ab〉 is an√

δ(0)-ideal of A. Hence I is a
√
δ(0)-ideal of A.

(2)⇒ (3) By Proposition 5.26.
(3)⇒ (4) It is clear.
(4) ⇒ (1) Assume that I is a principal ideal of A. Suppose that

ab ∈ I, where a /∈
√
δ(0). So, a is an invertible element of A. Therefore,

b = a−1ab ∈ I. We have I is a
√
δ(0)-ideal. �

Proposition 5.39. Let A be a ring and

S = {
√
δ(0)| There is an ideal I of A such that I is a

√
δ(0)-ideal}.

Then the followings hold:

(1) Spec(A) ⊆ S.

(2)
√

0A is a prime ideal ofA if and only if S = {
√
J |J is an ideal of A}.

(3) If A is a von Neumann regular ring, then S = Max(A) =
Spec(A).

(4) If A is an integral domain, then S = {
√
J |J is an ideal of A}.

(5) If A is a valuation ring, then S = Spec(A).

Proof. (1) Let P be a prime ideal of A. Consider δ : Id(A) → Id(A)

such that δ(I) = P if I ⊆ P and otherwise δ(I) = R. So, P =
√
δ(0)

and P is a
√
δ(0)-ideal. Hence P ∈ S.

(2) Suppose that
√

0A is a prime ideal of A. Assume that J is an ideal
of A and δ : Id(A)→ Id(A) such that δ(I) = J if I ⊆ J and otherwise

δ(I) = R. Hence
√
J =

√
δ(0). We follow that

√
0A ⊆

√
δ(0). By

Theorem 5.22,
√
J =

√
δ(0) ∈ S.

Now, Assume that S = {
√
J |J is an ideal of A}. We get

√
0A ∈ S.

By Theorem 5.22, there exists a prime ideal P of A such that P ⊆
√

0A.
Hence P =

√
0A and

√
0A is a prime ideal of A.

(3) It is clear that Max(A) ⊆ Spec(A) ⊆ S. Let
√
δ(0) ∈ S. So,

there exists an ideal I of A such that I is a
√
δ(0)-ideal. Therefore,

by Lemma 5.7, I ⊆
√
δ(0). By Corollary 5.30, I is a maximal ideal.

It implies that
√
δ(0) is a maximal ideal of A. Hence S = Max(A) =

Spec(A).



32 KARIMZADEH AND HADJIREZAEI

(4) Let A be an integral domain. So, 〈0〉 is a prime ideal of A and

〈0〉 ⊆
√
δ(0). By (ii) we have S = {

√
J |J is an ideal of A}.

(5) Let A be a valuation ring. So,
√
δ(0) is a prime ideal for every

expansion function δ of Id(A). Hence S ⊆ Spec(A). We get the result
that S = Spec(A). �

An ideal I of a ring A is called pseudo-irreducible if x(1− x) ∈ I for
x ∈ A, then x ∈ I or (1− x) ∈ I [9].

Proposition 5.40. Let I be a proper ideal of A and δ be an expansion
function of Id(A). If I is a

√
δ(0)-ideal, then I is a pseudo-irreducible

ideal of A.

Proof. Let I be a
√
δ(0)-ideal and x(1−x) ∈ I for x ∈ A. If x /∈

√
δ(0),

then (1 − x) ∈ I. If x ∈
√
δ(0), then (1 − x) /∈

√
δ(0). We obtain

x ∈ I since I is a
√
δ(0)-ideal and (1 − x) /∈

√
δ(0) We have I is a

pseudo-irreducible ideal of A. �

Lemma 5.41. Let A be a ring and m be a maximal ideal of A. If
δ : Id(A) → Id(A) such that m =

√
δ(0), then mn is a

√
δ(0)-ideal of

A, for every n ∈ N.

Proof. Suppose that ab ∈ mn for a, b ∈ A and a /∈
√
δ(0). Then

〈a〉+mn = A. So, there exist r ∈ A and s ∈ mn such that ra+ s = 1.

It implies that rab + sb = b ∈ mn. Therefore, mn is a
√
δ(0)-ideal of

A. �

Proposition 5.42. Let A be a ring and I be a
√
δ(0)-ideal of A. If

CohtI = 0, then I is primary.

Proof. By Proposition 5.40, I is a pseudo-irreducible ideal of A. By
[9][Proposition 2.7]. �
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