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GENERALIZATION OF n-IDEALS
S. KARIMZADEH * AND S. HADJIREZAEI

ABSTRACT. Let f: A — B be a ring homomorphism and let J be
an ideal of B. We proved several results concerning n-ideals and
(2,n)-ideals of A >/ J. Then we recall a proper ideal I of A as
v/6(0)-ideal if ab € I then b € I or a € 1/6(0) for every a,b € A.

We investigate several properties of the /0(0)-ideal with similar
n-ideals and J-ideals.

1. INTRODUCTION AND PRELIMINARIES

We assume throughout this paper that all rings are commutative
with 1 # 0. Let A and B be commutative rings with unity, let J be
an ideal of B and let f : A — B be a ring homomorphism. In this
setting, we can consider the following subring of A x B: A/ J :=
{(a, f(a)+j)|a € A, j € J} called the amalgamation of A with B along
J to f.

If I is an ideal of A with I # A, then [ is called a proper ideal. For
a ring A, the Jacobson radical of A and the set of zero-divisors in A
are denoted by J(A) and Z(A), respectively.

In 2015, "Rostam Mohamadian” defined and studied r-ideals in com-
mutative rings. A proper ideal I of a ring A is called an r-ideal if
whenever a,b € A with ab € I and Ann(a) = 0, then b € I where
Ann(a) = {r € A:ra=0}. U. Tekir et al. introduced n-ideals in [11],
a proper ideal I of A is said to be an n-ideal if the condition ab € I
with a ¢ /04 implies b € I for every a,b € A. If I is an n-ideal,
then /I = /0, is a prime ideal, hence I is quasi-primary and weakly
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irreducible by [12]. A proper ideal I of a ring A is called a J-ideal if
whenever a,b € A with ab € I and a ¢ J(A), then b € I[10]. We shall
use Id(A) to denote the set of all ideals of the ring A.

We prove in Theorem 2.5, I is an n-ideal of A and J C /0p if and
only if I >/ J :={(a, f(a)+j) |a € I,j € J} is an n-ideal of A >/ J.
In Proposition 2.6, we determine when @f ={(a, f(a)+j)la€ A, je
J, f(a) +j € Q} is an n-ideal of A >/ J. We also show that, If N is
an n-ideal of A >/ J and kerf ¢ /04, then there exists an ideal I of
A such that I is an n-ideal of A and N = I </ J ( Theorem 2.10).

In Theorem 2.17, we obtain necessary and sufficient conditions for
every ideal I of A such that I C /0,4 is an n-ideal of A.

Tamekkante and Bouba in [13] defined another class of ideals and
called it a (2,n)-ideal a proper ideal I of A is called (2, n)-ideal of A if
whenever a,b,c € A and abe € I, then ab € I or ac € /04 or be € 1/04.
It is shown (in Proposition 3.2) I is a (2, n)-ideal of A and J C /0p if
and only if I >/ J := {(a, f(a) +j) | a € I,j € J} is a (2,n)-ideal of
Al J.

Let M be an A-module. The trivial ring extension of A by M (or
the idealization of M over A) is the ring R = A(+)M = {(a,m)|a €
A,m € M} whose underlying group is A x M with multiplication given
by (a,my)(c, ma) = (ac,ams + cmy) (for example see [23]). In section
4, we study (2,n)-ideals, in the ring R = A(+)M.

In section 5, we give the notion of 1/J§(0)-ideals, and we investigate
many properties of /d(0)-ideal with similar n-ideals and J-ideals.

A proper ideal I of A is said to be a 1/d(0)-ideal if the condition
ab € I with a ¢ /6(0) implies b € I for every a,b € A. Among
many results in this paper, it is shown (in Theorem 5.14) that a proper
ideal I of A is a 1/0(0)-ideal of A if and only if I = (I : a) for every
a ¢ +/6(0). In the Corollary 5.30, we show that if I is a 1/0(0)-
ideal of von Neumann regular ring A, then [ is a maximal ideal of A.
Furthermore, in Proposition 5.36, If I is a 1/d(0)-ideal of A, S is a
multiplicatively closed subset of A and SN /0(0) =0, then S7'I is a

\/0(0)-ideal of S~'A. In Theorem 5.38, we give necessary and sufficient

conditions for every ideal of A is a 1/J(0)-ideal.

2. n-IDEALS

In this section, we demonstrate that I is an n-ideal of A and that
J C V0 g if and only if I </ J is an n-ideal of A </ J. We found out

when @f is an n-ideal of A >/ J. We also show that if N is an n-ideal
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of A</ J and kerf € /04, then there exists an ideal I of A where [ is
an n-ideal of A and N = I >/ J. We discover necessary and sufficient
conditions such that I C /04 is an n-ideal of A for every ideal I of A.

Definition 2.1. [0, 7] Let A and B be two rings with unitary, J an
ideal of B, and f : A — B a ring homomorphism. In this case, we can
consider the following subring of A x B: A/ J := {(a, f(a) + j)|a €
A,j € J} called the amalgamation of A and B along J with respect to

f.

We next wish to determine when I </ J and @f are n-ideals, but
to do so we need to find /0 40r; of A</ J. We will use the following

Proposition several times.

Proposition 2.2. Let f : A — B be a ring homomorphism, J be an
ideal of B. \/0uprs = {(a, f(a) + ) | a € V04,5 € O5}.
Proof. Let (a, f(a) + j) € /Oasrs- So, there exists n € N such that
(a, f(a) + 7)™ = (0,0). Therefore, (a™, (f(a) + j)™) = (0,0). It implies
that a € /04 and f(a) +j € v/0p. Hence j € v/0g. We conclude that
V0 s € {(a, f(a) +J) | a € V04,5 € VO5}.

Now assume that a € /04 and j € /0. Hence f(a) +j € /05p.
Therefore, (a, f(a) + j) € /0 s0ar - O

Remark 2.3. Let f : A — B be a ring homomorphism and J be an
ideal of B. Then,

(1) /Os)+s € V08

(2) VOasars = (Ax! J) N (/04 x V035).
Proposition 2.4. Let f : A — B be a ring homomorphism, J be an
ideal of B. If there exists an n-ideal of A >/ J, then J C 1/0p or

ker(f) € V0a.

Proof. According to [, Theorem 2.12], \/0 40r s is prime because A >/
J has n-ideal. Assume that J ¢ /0p and a € ker(f). So, there
exists j € J — /0p. By Proposition 2.2, we get (0,7) ¢ v/04rs. We
have (a,0)(0,7) € v/0aury. It implies that (a,0) € +/04.r;. Hence
ker(f) € v/04. O

We next determine when I >/ J is an n-ideal.

Theorem 2.5. Let f : A — B be a ring homomorphism, J be an
ideal of B. Then, I is an n-ideal of A and J C /0 if and only if
I/ J:={(a,fa)+j)|a€cl,je J} is an n-ideal of A</ J.

Proof. (=) Let (a, f(a)+7j1)(b, f(b)+j2) € I >/ J where (a, f(a)+71) €
A<l J\ /0 ary and (b, f(b) + jo) € A</ J. Because J C /0p and
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(a, f(a) + j1) & v/0asary, we obtain a ¢ /04 according to Proposition
2.2. We obtain b € I because ab € I and [ is an n-ideal of A. So,
(b, f(b) + jo) € I >/ J. Consequently, I >/ J is an n-ideal of A</ J.

(<) Assume that ab € I with a ¢ /04 for a,b € A. Then we have
(a, f(a))(b, f(b)) € I >/ J and (a, f(a)) ¢ /Oawry. Since I >/ J is
an n-ideal of A </ J, it follows that (b, f(b)) € I >/ J, and so b € I.
Consequently, I is an n-ideal of A.

Suppose that 7 € J. Since [ is a proper ideal of A, there exists
a € A\ I. Tt implies that (0,7)(a, f(a)) € I </ J. Therefore, (0,5) €
V0 40ary because I >/ J is an n-ideal and (a, f(a)) ¢ I </ J. Hence,
by Proposition 2.2, j € 1/0p, and so J C /03p. O

Proposition 2.6. Let f : A — B be a ring homomorphism, J be
an ideal of B and @ be an ideal of B. Then, Q@ N (f(A) + J) is an
n-ideal of f(A)+ J, f(A)NJ C /0p and ker(f) C /04 if and only
if @f = {(a, f(a) + j)la € A,j € J, f(a)+j € Q} is an n-ideal of
Al J.

Proof. (=) Let (a, f(a) + ja) (b, f(b) + jo) € Q' and (a, f(a) + ) ¢
V0 4er 7. Then We have (f(a) +j1)(f(b) +72) € QN (f(A) + J) Now
we show that f(a)+ j1 € \/O(s(a)+.0)- Suppose f(a)+ j1 € \/O¢r(a)+)-
Then we get there exists n € N such that (f(a)+71)" = 0. Hence there
exist j € J such that (f(a))" =j € f(A) N J. Since f(A)NJ C /0g,
there exists k¥ € N such that (f(a))* = 0. Because ker(f) C /04,
the result is a € /04. It implies that (a f( )+ j1) € \/OAme,
contradiction. Thus, we have f(a)+71 ¢ /0(r(a)+.s). Since QN (f(A)+
J) is an n-ideal of (f(A)+J) it follows that f( )—i—jz e QN(f(A)+J).
We get the result that (b, f(b) + j2) € @f.

(<) Let (f(a1)+71)(f(az)+j2) € QN(f(A)+J) such that a;,a2 € A
and ji,j2 € J. If f(a1) + j1 € /Oays, then (a1, f(a1) 4+ j1) & vOapars-
Since @f is an n-ideal of A </ J, it follows that (as, f(as + j2)) € @f.
Therefore, (f(az)+j2) € QN (f(A)+ J). We conclude Q@ N (f(A) + J)
is an n-ideal of f(A) + J.

We show that ker(f) C +/04. Assume that a € ker(f). Let (b, f(b)+
J) & Q’. We have (a,0)((b, f(b) + 7)) € Q. Because Q@ is an n-ideal,
the result is (a,0) € v/05er;. Therefore, by Proposition 2.2, a € 1/04.
It implies that ker(f) C 1/04.

We show that f(A)NJ C /0p. Assume that f(a) = j € JN f(A).
Therefore, (a fla)—3) = (a,0) € A</ J. Suppose that (b f(b)+j) €

Al J\Q . Therefore, (a,0)(b, f(b)+7) € Q’. Since @’ is an n-ideal,
it follows that (a,0) € 1/04.s ;. By Proposition 2.2, we have a € 1/04.

Hence f(a) € /0p. It implies that f(A)NJ C /0p. O



GENERALIZATION OF n-IDEALS 15

Proposition 2.7. Let f : A — B be a ring homomorphism, J be an
ideal of B. Let I be an n-ideal of A >/ J. Then,
(1) If K={f(a)+j|(a,f(a)+j)€l}and K # f(A)+ J, then
K is an n-ideal of f(A) + J.
(2) f L=A{a| (a,f(a)) € I} and L # A, then L is an n-ideal of A.

Proof. (1) Let (F(a)-+30)(f(B)+72) € K and f(a)-+j1 ¢ /T So
(a, F(@) + 1) (b, J(5) + o) € T and (a, (@) + 1) € VOamary- Therefore,
(b, f(b) 4+ j2) € I. Hence (f(b) + j2) € K. It implies that K is an
n-ideal of f(A) + J.

(2) Let a,b € A such that ab € L and a ¢ /04. So, (ab, f(ab)) € I.
By Proposition 2.2, (a, f(a)) ¢ /00 s. Since I is an n-ideal, it follows
that (b, f(b)) € I. Hence b € L. O

Proposition 2.8. Let I be an ideal of A </ J and J C /05 and
kerf C \04. If K ={f(a)+7j| (a,f(a)+j) € I} is an n-ideal of
f(A) + J, then I is an n-ideal.

Proof. Let (a, f(a)+j)(b, f(b)+j") € I for (a, f(a)+ ), (b, f(b) +3) €
A</ J. Hence (f(a) + 5)(f(b) +4') € K. Since K is an n-ideal, it
follows that (f(a) + j) € \/Osa)+s or (f(b) +j) € K.
Case 1: Assume that f(a) +j € /0. By Remark 2.3,
f(a)+7 € v/0p. Because J C \/0p and kerf C /04, we obtain
a € v/04. Therefore, by Proposition 2.2, (a, f(a)+7) € v/0 s ;-
Case 2: Assume that (f(b) +j') € K. Since K = {f(a) +j |
(a, f(a) + j) € I}, it follows that (b, f(b) +7) € 1.

By case 1 and case 2, I is an n-ideal of A </ J. 0
We show that the converse Proposition 2.7 is not true in general.

Example 2.9. (1) Let f : Z — 7Z be an identity homomorphism
and J = 2Z. Let I = 0 </ J be an ideal of A >/ J. L =
{a|(a, f(a)) € I} = (0) is an n-ideal of Z. We have (0,2)(1,2) =
(0,4) € T, (0,2) ¢ \/000r; and (1,2) ¢ I. So, I is not an n-
ideal.
(2) Assume that A = Z and B = Z/4Z. Let f : A — B be
a canonical homomorphism and J = (0). Let I = 4Z >/ J
and K = {f(a) +j | (a, f(a)+j) € I}. K is an n-ideal of
f(A) +J = B because K = (0). We have (2,2)(2,2) = (4,0) €
I, (2,2) ¢ /0y and (2,2) & I. So, I is not an n-ideal.

Theorem 2.10. Let f : A — B be a ring homomorphism, J be an
ideal of B and ker(f) € \/0a. Then, N is an n-ideal of A >/ J if



16 KARIMZADEH AND HADJIREZAEI

and only if there exists an n-ideal I of A such that N = I >/ J and

J CV0p.

Proof. (=) Suppose that N is an n-ideal of A </ .J and ker(f) € 1/04.
So, there exists a € ker(f)\1/04. By Proposition 2.2, (a,0) & /0 g0r ;-
If j € J, then (a,0)(0,5) € N. Therefore, (0, j) € N, and so0x.J C N.

Set I ={a| (a, f(a)) € N}. SinceN;éANfJandeJgN, it
follows that I ## A. By Proposition 2.7, I is an n-ideal of A. We have
N =1/ J.

By Proposition 2.4, J C 1/0p, since ker(f) € v/0a4.

(<) According to Theorem 2.5, I >/ J is an n-ideal of A </ J, as
I is an n-ideal of A and J C /0p. O

Theorem 2.11. Let f : A — B be a ring homomorphism and J be
an ideal of B. If N is an n-ideal of A >/ J, f(A)NJ = 0 and
ker f x0 C N, then there exists an ideal Q) of f(A)+J such that Q is an
n-ideal of f(A)+J and N = {(a, f(a)+j)la € A,j € J, f(a)+] € Q}.

Proof. Consider Q = {f(a) +j|(a, f(a)+j) € N}. Because N # A </
J, f(A)NJ =0 and kerf x 0 C N, we obtain @ # f(A) + J. We
get @) is an n-ideal of f(A) + J, by Proposition 2.7. It is clear that

N ={(a, f(a) +j)la € A,j € J, fla) +j € Q}. O

Corollary 2.12. Let f : A — B be a ring homomorphism and J be an
ideal of B. If N is an n-ideal of A</ J and 0 x J C N, then there
exists an ideal I of A such that N = I </ J.

Proposition 2.13. Let A be a ring and /04 be a finitely generated
ideal of A. If every ideal I C /04 is an n-ideal, then every ascending
chain of principal ideals {Az;}52, where Ax; C /04 stops.

Proof. Let Axy C Axy C Azg C --- C Az; C ... be a chain of principal
ideals of A where Ax; C /04 for all i € N. We conclude z; = roxs =
Tors®s = +++ = T9...TpXE = ... for ri,re,--- € A. Since Az; is an
n-ideal, it follows that 7; € v/04. On the other hand, since /04 is a
finitely generated ideal of A, there exists n € N such that (1/04)" = (0).
So, 1 = ry.. . TpTrpi1Tne1 = 0. It follows that x; = 0, for all ¢+ € N,
which is a contradiction. Therefore, every ascending chain of principal

ideals {Aw;}32, where Az; C /04 stops. O

Definition 2.14. A prime ideal P of a ring A is called divided if
P C (x) for every t € A — P.

Lemma 2.15. If every ideal I C /04 of A is an n-ideal, then /04 is

a divided prime ideal.
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Proof. By [14, Theorem 2.12], /04 is a prime ideal of A. Assume
that r € A. If (r\/04) = /04, then /04 C (). If (r\/04) & V04,
then there exists © € /04 \ (rv/04). We get rz € (ry/04). By our
assumption, 7v/04 is an n-ideal, therefore r € 1/04. Hence for every

r € A, we have r € /04 or /04 C (r). O

Proposition 2.16. If /04 is a divided prime ideal of A such that every
ascending chain of principal ideals {I;}32, where I; C /04 stops, then
every ideal I C /04 of A is an n-ideal.

Proof. Assume that /04 # (0).

Let I C /04 be an ideal of A and rz € I, forz € Aand r € A\ /04.
Because /04 is a divided prime ideal of A and rz € /04, we obtain
r € /04 and /04 C (r). So, there exists x; € A such that x = rz;.
x1 € /04 is obtained because /04 is a prime ideal and r ¢ /04. So,
we have x = roy = r?zy = r3z3 = - - =r"x, = ... for some x; € v/04.
Then Axy C Azy C Axg C --- C Ax; C .... Since every ascending
chain of principal ideal stops, there exists n € N such that Az, = Ax;,
for every ¢ > n. So, there exists s € A such that z,,, = sz,. It follows
that z,, = rsz,. We can conclude (1 —rs)z = 0 and =z = srz. As
re€l,sox €l ]

Theorem 2.17. Let A be a ring and /04 be a finitely generated ideal
of A. Then, every ideal I C /04 is an n-ideal if and only if every
ascending chain of principal ideals {Ax;}32, where Az; C V04 stops,
and /04 is a divided prime ideal.

Proof. By Proposition 2.13, Lemma 2.15 and Proposition 2.16. 0

Proposition 2.18. Suppose that Iy, Iy, ..., I, are primary ideals of A
such that \/TJ 's are not comparable. Then, N7_, I; is an n-ideal, if and
only if [; is an n-ideal for each j € {1,2,...,n}.

Proof. (=) Let ax € I}, with a ¢ V0 , for € A and 1 < k < n. Since
\/Tj’s are not comparable, there exists r € ﬂ}lzl\/]_j — /I;,. So, there
exists t € N such that rfax € NJ_ I;. It follows that 'z € Ij. Thus,
x € I, and so [ is an n-ideal.

(<) [14, Proposition 2.4]. O

Theorem 2.19. Let A be a ring. Then, (0) is an n-ideal of A if
and only if ¢ : A — ST1A is either injective or ¢ = 0, for every
multiplicative closed subset S of A.

Proof. (=) Suppose that ¢ is not injective. Hence ker(yp) # 0. So,
there exists 0 # r € ker(y). It implies that sr = 0 for some s € S. As
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(0) is an n-ideal and 0 # 7, we obtain s € SN /04. We get S71A =0
and ker(p) = A. Therefore, ¢ = 0.

(<) Assume that rz € (0) and r,z € A. Set S = {r" : n € NU{0}}.
So, S is a multiplicative closed subset of A. If ker(p) = 0, then as
o(x) =z/1 =rz/r =0, we get x = 0. Let ¢ = 0. So, ker(yp) = A.
Therefore, p(1) = 0. It implies that there exists n € N such that
7" = 0. Hence r € \/04. Therefore, (0) is an n-ideal of A. O

Corollary 2.20. Let A be a ring and I C /04. Then, I is an n-ideal
of A if and only if ¢ : AJT — S™Y(A/I) is either injective or ¢ = 0,
for every multiplicative closed subset S of A/I.

3. (2,n)-IDEALS

In this section, we discuss (2, n)-ideals of A</ J, and we determine
when I </ J and @f are (2,n)-ideals.

Definition 3.1. [13] A proper ideal I of A is called a (2,n)-ideal of
A if whenever a,b,c € A and abc € I, then ab € I or ac € /04 or

be € \/OA.

Proposition 3.2. Let f : A — B be a ring homomorphism and J be
an ideal of B. Then, [ is a (2,n)-ideal of A and J C /0p if and only
if I</ J:={(a,f(a)+j)|a€l,je J}isa (2,n)ideal of A/ J.

Proof. (=) Let x; = (as, f(a;) + ji) € A</ J for 1 <i < 3. Suppose
that z z0w3 € I </ J where z123 € A </ J \ /Oanery and x925 €
A <! J\ \/Oaarys. Since J C /0p, it follows that ayas ¢ /04 and
asaz ¢ \/04. Since I is a (2,n)-ideal of A, it follows that ajas € I, and
so x11 € I/ J. Consequently, I </ J is a (2,n)-ideal of A </ J.

(<) Let abc € I with ac ¢ /04 and bc ¢ /04 for a,b,c € A. Then
we have (a, f(a))(b, /(B))(c: £(c)) € I o< J and (a, f(a))(c: /() ¢
V0asery and (b, £(b))(c, f(c)) & /Ouasars. Since I >/ J is a (2,n)-ideal
of A/ J, it follows that (a, f(a))(b, f(b)) € I >/ J, and so ab € I.
Consequently, [ is a (2,n)-ideal of A.

We show that J C +/0p. By [13, Theorem 2.4], I >/ J C /0 s,
Hence 0 x J C /0 4.0r,;. By Proposition 2.2, J C 1/0p. O

Proposition 3.3. Let f : A — B be a ring homomorphism and J be
an ideal of B. Let @ be an ideal of B. Then, Q@ N (f(A) + J) is a
(2,n)-ideal of f(A)+ J and J N f(A) C \/0p, ker(f) C /04 if and
only if @' := {(a, f(a) + j)la € A,j € J, f(a) +j € Q} is a (2, n)-ideal
of Al J.
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Proof. (=) Let z; = (a;, f(a;) +7;) € A</ J and y; = f(a;) + 4
for 1 <7 < 3. Suppose that z1z025 € @f and z123 ¢ /04 and
1223 & /0 5ar ;7. Then we have y110y3 € Q N (f(A) + J).

Now, we show that y1ys € /0(ra)+s) and yays € /O¢rayr). As-
sume that y1y3 € /O(pa)+s). Then there exists n € N such that
(y1y3)™ = 0. Hence f(ajaz)® € f(A) N J. Since J N f(A) C /0p,
there exists k € N such that (f(aja3))™ = 0. Since ker(f) C /04,
it follows that ajas € /04. It implies that 23 € /04y, a con-
tradiction. Thus, we have y,ys ¢ \/m and yoy3 ¢ \/m.
Since @ N (f(A) + J) is a (2,n)-ideal of (f(A) + J), it follows that
y1y2 € QN (f(A) 4+ J). We get the result that z29 € @f.

(<) Let (fa) + j0)(f(b) + j2)(f(c) + js) € @ N (f(A) + J) such
that a,b,c € A and ji, jo, js € J. If (f(a) + 71)(f(b) + j2) & /Opay+s
and (f(b) + j2)(f(c) + Js) & \/Op)4s, then (a, f(a) + j1)(c, f(c) +

j3) & Oy and (b, f(0) + j2)(c, £(c) + j3) & \/Oaery. Since Q@ is a
(2,n)-ideal of A >/ J, it follows that (a, f(a + j1)(b, f(b) + jo) € @f.
Therefore, (f(a) + j1)(f(b) + j2) € @ N (f(A) + J). We conclude
QN (f(A)+J)isa (2,n)-ideal of f(A)+ J

Now, we show that ker(f) C /04. Assume that a € ker(f). There-
fore, (1,1)(1,1)(a,0) € @f. We have (1,1) ¢ @f, and so (a,0) €
V0 40er - By Proposition 2.2, a € 1/04. Hence ker(f) C +/0a.

Now, we show that J N f(A) C /0p. Let f(a) € JN f(A). So,
(a,0) € @f. Hence (1,1)(1,1)(a,0) € @f. As @f is a (2,n)-ideal and

(1,1) ¢ @f, we obtain (a,0) € /0 ;. By Proposition 2.2, a € 1/04.
Hence f(a) € v/0p. Therefore, J N f(A) C \/0p.
U

Proposition 3.4. Let f : A — B be a ring homomorphism and J be
an ideal of B. Let I be a (2,n)-ideal of A</ J. Then,

(1) If K = {f(a) +j | (a, f(a) +j) € I} and K # f(A) + J, then
K is a (2,n)-ideal of f(A) + J
(2) If L={a| (a,f(a)) € I} and L # A, then L is a (2,n)-ideal of

(f(@) + 3)(f(0) + 52)(f(c) + js) € K and (f(a) +

(f(b)+372)(f(c)+73) & \/Oca)+0)- So,
)( 3) € [ and (a f()+]1)( fe)+
b) + jo)(c, f(c) + js) & VOaars - Therefore,
( , f(a) +71)(b, f(b) +j2) € I. Hence (f(a) + j1)(f(b) +j2) € K. Tt
implies that K is a (2,n)-ideal of f(A) + J.
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(2) Let a,b, ¢ € Asuch that abc € L and ac ¢ /04 and be ¢ 1/04. So

(abe, f(abe)) € T and (a, f(a))(c, J(¢) & VOmary and (b, f(B)(c. f(c)) ¢
V0507 7- Since [ is a (2,n)-ideal, it follows that (a, f(a))(b, f(b)) € I.
Hence ab € L. O

Corollary 3.5. If A has a (2,n)-ideal, then /04 is a 2-absorbing ideal.

Proof. By [13, Theorem 2.4] we have v/I = /04. By [/, Theorem
2.2], VT is a 2-absorbing ideal. It implies that /0, is a 2-absorbing
ideal. 0J

Lemma 3.6. Let A be a ring and /04 be a prime ideal. If I C /04
is an ideal of A, then I is a (2,n)-ideal.

Proposition 3.7. Suppose that I, I, ..., I, are 2-absorbing primary
ideals of A such that \/]_j’s are not comparable and /0,4 is a prime
ideal. Then, N%_, [; is a (2, n)-ideal, if and only if I; is a (2, n)-ideal for
each j € {1,2,...,n}.

Proof. (=) Let abc € I}, with ac ¢ /04 and bc ¢ /04 , for a,b,c € A
and 1 < k < n. Since \/I_j’s are not comparable, there exists r €
ﬂ?ﬂ,#k\/l_j\ V.. So, there exists ¢ € N such that rfabc € NGy 1.
We get ab € I, or rfac € /04 or r'be € /04. Since r ¢ /I, it follows
that r* ¢ \/04. It implies that ac € v/04 or bc € \/04. Therefore, I, is
a (2,n)-ideal.

< [13, Proposition 2.8]. O

4. (2,N)-IDEALS IN TRIVIAL RING EXTENSIONS

This section will go over the (2,n)-ideals in ring A(4)M in detail,
such as [ is a (2,n)-ideal if and only if I(+)M is also a (2,n)-ideal.

Definition 4.1. [I] Assume the commutative ring A and the A-module
M. The trivial ring extension of A by M (or the idealization of M
over A) is the ring A(+)M whose underlying group is A x M with
multiplication given by (a,m)(b,n) = (ab, an + bm).

Note 4.2. The nil radical of A(+)M is characterized as follows: /041 ) =

V04(+)M. Notice that (r,m) & /0ac)n if and only if r ¢ /04 [1,
Theorem 3.2|.

Proposition 4.3. Let A be a commutative ring, I be a proper ideal
of A, M be an A-module, and R = A(+)M. Then, [ is a (2,n)-ideal
of A if and only if I(+)M is a (2,n)-ideal of R.



GENERALIZATION OF n-IDEALS 21

Proof. (=) Let x; = (r;,m;) € R for 1 <14 < 3. Suppose that z1x23 €
I(+)M with z123 ¢ /Oacym and zox3 ¢ /0s1ym. Then, we have
rirors € I and ri73 € /04 and ror3 ¢ 1/04. Since I is a (2,n)-ideal
of A, it follows that ryry € I, and so xyz9 € I(+)M. Consequently,
I(+)M is a (2,n)-ideal of R.

(<) Let abe € I with ac ¢ /04 and bc € \/04. So, (a,0)(b,0)(c,0) €
I(+)M and (a,0)(c,0), (b,0)(c,0) & \/0asyn- Since I(+)M is a (2,n)-
ideal of R, it follows that (a,0)(b,0) € I(+)M. Hence ab € I and [ is
a (2,n)-ideal of A. O

Proposition 4.4. Let M be an A-module, R = A(+)M. Let I be a
proper ideal of A and N be a submodule of M such that IM C N.
Then:

(1) If I(+)N is a (2,n)-ideal of R, then I is a (2,n)-ideal of A.

(2) If I is a (2,n)-ideal of A, N is an n-submodule of M and
Nil(M) C /04, then I(+)N is a (2,n)-ideal of A(+)M.

(3) Let N be a 1/04-primary submodule. If [ is a (2,n)-ideal of A,
then I(+)N is a (2,n)-ideal of A(+)M.

(4) If N is a /0 4-prime submodule, then /0 4(+)N is a (2, n)-ideal.

Proof. (1) Assume that abc € I with ac ¢ /04 and bc ¢ \/04. Then
(a,0)(b,0)(c,0) € I(+)N and (a,0)(c,0), (b,0)(c,0) ¢ \/Or. Therefore,
(a,0)(b,0) € I(+)N. We get ab € I.

(2) Suppose that z; = (a;,m;) € R, 1 <i <3 and z1x023 € I(+)N
with 123, 2223 ¢ /0. We have arasas € I and a1a3, asas ¢ +/0.4.
Since [ is a (2,n)-ideal, it follows that ajas € I. By our assumption,
IM C N and zyz923 € I(+)N, we get ag(ayms + agmy) € N. Since
aras, asaz & /04, it follows that a3 ¢ /04. So, ayms + asm; € N
because N is an n-submodule, az(ayms + agmy) € N and az ¢ /0.
Therefore, 129 € I(+)N and I(+)N is a (2,n)-ideal.

(3) Assume that x; = (a;,m;) € R, 1 <i < 3 and zy29z3 € I(+)N
with @123, 2905 ¢ \/Oa)m. S0, arazas € I and ajaz,asaz ¢ +/0a.
Hence ajas € I, because I is a (2,n)-ideal. We can conclude a;msg +
asmy € N. Then zyx9 € I(+)N and I(+)N is a (2, n)-ideal.

(4) Since /04 is a prime ideal, /04 is a (2,n)-ideal. It is clear that
N is an n-submodule and v/04M C N and Nil(M) C 1/04. Therefore,
by (2) we have v/04(+)N is a (2,n)-ideal. O

In the next example, we show that the converse of parts (3) and (4)
of Proposition 4.4 is not true in general.

Example 4.5. Let A = Zg, M = Zg and R = A(+)M. Assume that
(r1,21)(re, x2)(r3, 23) € I(+)N for (r,z1), (r2, 22), (r3,x3) € R. We
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get rirors € 0. Since 0 is a (2,n)-ideal, it follows that ryry € 0 or
Trors € \/6 or rrsy € \/6
Case 1: If rory € V0 or 115 € V0, then (rg, 22) € v/0a(n or
(T‘g,ll?g) < \/OA(—&-)M-
Case 2: Assume that 77 € 0 and rory ¢ V0 and ryr5 ¢ V0.
We get r; # 0 and 5 # 0. Without loose generality assume
that r; € (2), rp € 3), 11 ¢ (3) and 15 & (2). As ryrs ¢ VO
and rir5 ¢ V0, we obtain r3 ¢ (3) and r3 ¢ (3). We have
r3(rixe + rowy) = 0. (rixe + rexq) = 0 is obtained because
r3 ¢ (2) and r3 ¢ (3).

Therefore, I(+)N is a (2,n)-ideal. N is not a primary submodule and
N is not an n-submodule.

Proposition 4.6. Let M be an A-module, N be a submodule of M,
and /04 be a prime ideal. If R = A(+)M and I C /04, then I(+)N
is a (2,n)-ideal of R.

Proof. Since /04 is a prime ideal, it follows that /044 is a prime
ideal. By Lemma 3.6, I(+)N is a (2, n)-ideal. O

5. 4/6(0)-IDEAL
In this section, we give some properties of 1/0(0)-ideal. We show that
a proper ideal I of A is a /d(0)-ideal of A if and only if I = (I : a)

for every a ¢ 1/0(0). We demonstrate that if I is a /d(0)-ideal of the
von Neumann regular ring A, then [ is A’s maximal ideal.

Definition 5.1. [5] Let Id(A) be the set of all ideals of R and ¢ :
Id(A) — Id(A) be a function of ideals of A. § is called an expansion
function of Id(A) if it satisfies the following two conditions:

(1) I Co().

(2) If I C J, then §(1) C §(J) for any ideals I, J of A.

Example 5.2. [7]

(1) The identity function g, where d¢(I) = I for every ideal I of
R, is an expansion of ideals.

(2) For each ideal I define 0;(I) = v/I. Then 4, is an expansion of
ideals.

For other examples, see [3].

Definition 5.3. [5] Given an expansion ¢ of ideals, an ideal I of A is
called d-primary if ab € I and a ¢ 6(I) imply b € [ for all a,b € A.
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Definition 5.4. Suppose that ¢ is an expansion function of /d(A) and
5(0) is a proper ideal of A. A proper ideal I of A is called a 1/6(0)-ideal
if whenever a,b € A with ab € I and a ¢ 1/5(0), then b € I.

Example 5.5. Let A be a commutative ring. Define the following ex-
pansion functions d, : Id(A) — Id(A) and the corresponding 1/d,(0)-

ideal:

do do(l)=1 n-ideal
01 (1) =1 n-ideal
52 62(1) = mIQn’L,n’LEmowc(A)Tn J-ideal

We recall from [2] that A is a local ring if A has exactly one maximal
ideal.

Example 5.6. (1) Note that a 1/0(0)-ideal is not necessarily an
n-ideal. Assume that ¢ : Id(Z) — 1d(Z) where §(nZ) = 3Z if
3 | nand §(nZ) = 7Z if 31 n. we have 3Z = /0(0). Let ab € 9Z
and a ¢ 1/3(0). So, 31a. Hence 9| b and b € 9Z. We get 9Z

is a \/6(0)-ideal of Z. But 3 x 3 € 9Z and 3 ¢ /0 and 3 ¢ 9Z.
Therefore, 9Z is not an n-ideal.

(2) Let (A, m) be alocal ring with exactly two minimal prime ideals
Py, P,. Put §: Id(A) — Id(A) where §(I) = m for I # A and
0(A)=A. PPN Pyis a+/0(0)-ideal and P, N P, is not primary
ideal.

Lemma 5.7. Let I be a proper ideal of A and é be an expansion func-
tion of 1d(A).

(1) If I is a \/5(0)-ideal of A, then I C /5(0).

(2) If I is a \/5(0)-ideal of A, then VT is a \/5(0)-ideal.

(3) If I is a \/6(0)-ideal of A, then I is a §100-primary.
Proof. (1) It is clear.
(2) Let ab € V/T with a ¢ 1/5(0) for a,b € A. Then there exists n € N
such that a"b" € I. Since [ is a \/m-ideal, it follows that " € I,
and so b € V1. O
Example 5.8. Consider the ring A = Zg[z] and note that /0, =
{0,2,4,6}[x]. Since {0,2,4,6} is a prime ideal of Zg, it follows that
V04 is a prime ideal of A. We have 1/0(0) = v/04. Therefore, /0(0)
is a prime ideal. Put I = {0,4}(x). It is clear that I C 4/d(0). So,
VI = /6(0). Tt implies that /T is a /0y(0)-ideal. But 24 € I and
x ¢ 1/00(0), 4 ¢ I, s0Iisnot an 1/dy(0)-ideal.
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Definition 5.9. Given two expansion functions v, ¢ : Id(A) — Id(A),
we define v < § if y(J) C 6(J) for all J € Id(A).

Proposition 5.10. Let 7,0 be two expansion functions of Id(A) with

v < § and /d(0) a proper ideal of A. If I is a y/7(0)-ideal then I is a
5(0)-ideal.

Proof. Suppose that 7,0 are two expansion functions of Id(A) with
v < 6 and /0(0) a proper ideal of A and I is a y/7(0)-ideal. Take

ab € I with a ¢ /6(0). Therefore, a ¢ \/7(0). Since I is a /7(0)-
ideal, it follows that b € I. We get I is 1/6(0)-ideal. O

Corollary 5.11. Let § be an expansion function of Id(A). Any n-ideal
of A is a \/0(0)-ideal.

Proof. Let I is an n-ideal. We have v/0 = 1/0(0). According to
Proposition 5.10, I is a 1/0(0)-ideal since 1/do(0) C 1/6(0). O
Proposition 5.12. Let § be an expansion function of Id(A).
(1) If Z(A) C 1/d(0), then any r-ideal of A is a 1/d(0)-ideal.
(2) If J(A) C 1/5(0), then any J-ideal of A is a /5(0)-ideal.
Proof. (1) Suppose that [ is an r-ideal of A. Take ab € I where a ¢
d(0)-ideal. Since Z(A) C 4/4(0), it follows that a ¢ Z(A). So,
Ann(a) = 0. Since I is an r-ideal, it follows that b € I. Therefore, I is
a 1/0(0)-ideal.
(2) Tt is similar (1). O

Theorem 5.13. Let § be an expansion function of Id(A). If {I;}ien is
a nonempty set of 1/5(0)-ideals of A, then Nieal; is a \/0(0)-ideal of
A.

Proof. Assume that ab € Nieal; and a ¢ /0(0). We get ab € I; for

every i € A. b € 1 is obtained for every i € A since I; is a 1/d(0)-ideal
and a ¢ 1/3(0). Therefore, b € Nieal;. O

The proof of the following results 5.14, 5.15 and 5.16 are easy and
hence we omit the proof of them.

Theorem 5.14. Let I be a proper ideal of A and 6 be an expansion
function of Id(A). Then the followings are equivalent:

(1) I is a /6(0)-ideal of A.

(2) I =(I:a) for every a ¢ \/5(0).
(3) For ideals L and K of A, LK C I with LN (A\ \/0(0)) # 0,
implies K C 1.
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(4) (I :a) € +/6(0), for every a ¢ I.
Proposition 5.15. Let § be an expansion function of Id(A). Then,
(1) \/6(0) is a \/0(0)-ideal of A if and only if it is a prime ideal of
A

(2) For a prime ideal P of A, P is a 1/0(0)-ideal of A if and only if
P C \/06(0).

Proposition 5.16. Let ¢ be an expansion function of Id(A) and S be
a nonempty subset of A. If I is a \/d(0)-ideal of A with S € I, then
(I:5)is a+/d(0)-ideal of A.

Let A and B be commutative rings with 1 # 0 and let §, v be
two expansion functions of Id(A) and Id(B), respectively. Then a ring
homomorphism f : A — B is called a §y-homomorphism if §(f~1(I)) =
F7Hy(D)) for all ideals I of B.[3]

Theorem 5.17. Let f : A — B be a 6y-homomorphism, where § and
v are expansion function of Id(A) and Id(B), respectively. Then the
following statements hold:
(1) If f is monomorphism and J is a \/(0)-ideal of B, then f~*(J)
is a 1/0(0)-ideal of A.
(2) Let f be an epimorphism and I a proper ideal of A with ker(f) C
I. If I is a \/0(0)-ideal of A then f(I) is a \/7(0)-ideal of B.
(3) Let f be an epimorphism and I a proper ideal of A with §(ker(f))
INé0). If f(I) is a v/v(0)-ideal of B then I is a 1/d(0)-ideal.

Proof. (1) Let ab € f~1(J) for some a,b € A and a ¢ /5(0). We have
f(a) ¢ /v(0). Then f(a)f(b) € J and f(a) ¢ /7(0) which implies
that f(b) € J. Thus, b € f~!(J). Therefore, f~(J) is a 1/d(0)-ideal
of A.

(2) Assume that I is a 1/d(0)-ideal of A. Let b1by € f(I) for some
bi,by and by ¢ /(0). Since f is an epimorphism, there exist two
elements a;,ay € A such that by = f(a;) and by = f(ag). Then biby =
flar)f(az) = f(araz) € f(I). We obtain a; ¢ 1/9(0) since f is a dv-
homomorphism and b; ¢ 1/7(0). ajay € I is obtained since ker(f) C I
and f(ajaz) € f(I). We get ay € I. Thus, by = f(az) € f(I). It
implies that f(I) is a 1/(0)-ideal of B.

(3) Assume that f(I) is a /7v(0)-ideal. Let ajay € I for some
aj,as € A and a; ¢ /6(0). Since §(ker(f)) € 6(0) and f is a d7-
homomorphism, f(a1) ¢ +/7(0). So, f(a1)f(az2) € f(I) and f(a1) ¢
V/7(0). Thus, f(az) € f(I). Hence ay € I and [ is a 1/d(0)-ideal. O

-
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Definition 5.18. Suppose that S is a nonempty subset of a ring A
with A\ 1/6(0) € S. Then S is called a 1/0(0)-multiplicatively closed

subset of A if abe S foralla e A\ /6(0) and all b € S.

Proposition 5.19. Let § be an expansion function of /d(A) and I be
a proper ideal of A. Then, I is a 1/0(0)-ideal of A if and only if A\
is a 4/d(0)-multiplicatively closed subset of A.

Proof. (=) Suppose that I is a 1/d(0)-ideal of A. Hence by Lemma 5.7,
I C\/6(0). Weget A\1/d(0) C A\I. Let a € A\/6(0) and b € A\I.
Suppose to the contrary that ab ¢ A\ I. Hence ab € I and a ¢ 1/6(0).
Since [ is a 1/d(0)-ideal, it follows that b € I. Contradicting the fact
that be A\ 1.

(<) Suppose that I is an ideal and A\ [ is a 1/d(0)-multiplicatively
closed subset of A. Take a,b € A such that ab € I and a ¢ /5§(0). On
the contrary let us assume that b ¢ I. So, b€ A\ I. Since A\ [ is a
\/6(0)-multiplicatively closed subset of A, it follows that ab € A\ I.
We arrive at a contradiction. 0

Proposition 5.20. Let I be an ideal of A such that I NS = () where
S is a 1/0(0)-multiplicatively closed subset of A. Then there exists a
5(0)-ideal K containing I such that K N.S = .

Proof. Put = {Q|Q is an ideal of A with Q NS = @ and I C Q}.
Then  is a partially ordered by inclusion. We get Q # (), because
I € Q). By Zorn’s lemma, {2 has a maximal element. Suppose that K
is a maximal element of 2. Now, we show that K is a 1/0(0)-ideal.
Take a,b € A such that ab € K and a ¢ 1/d(0) and b ¢ K. Therefore,
be (K :a)and K C (K : a). Since K is a maximal element of €,
it follows that (K : a) ¢ . Hence(K : a) NS # (), and so there
exists an s € S such that s € (K : a). Therefore, as € K. Since S is a
\/6(0)-multiplicatively closed subset of A, it follows that as € S. Then
as € KNS, it is a contradiction. Therefore, K is a \/d(0)-ideal. O

Theorem 5.21. If I is a mazimal \/6(0)-ideal of A, then I is a prime
ideal.

Proof. Let ab € I where a ¢ I. So, by Proposition 5.16, we have (I : a)
is a \/0(0)-ideal. We have I C (I : a) and [ is a maximal 4/d(0)-ideal
of A. Hence I = (I : a), and b € I. We conclude [ is a prime ideal of
A. O
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Theorem 5.22. Let § be an expansion function of I1d(A). Then, there
exists a +/0(0)-ideal of A if and only if \/d(0) contains a prime ideal
of A

Proof. (=) Let I be a 1/0(0)-ideal of A. Put
A = {L|L is a 1/(0)-ideal of A }.

Since I € 2, it follows that 2 is a nonempty set. By Zorn’s Lemma
2l has a maximal element L. By Theorem 5.21 and Lemma 5.7, L is a

prime ideal and L C 1/6(0).
(<) Let P be a prime ideal of A and P C /6(0). It is clear that P
is a 1/d(0)-ideal of A. O

In the following results 5.23, 5.24 and 5.25, we collect some trivial

fact about /d(0)-ideals, and so we omit the proof.

Corollary 5.23. Let A be a ring. If §(0) is a \/0(0)-ideal, then 1/0(0)
1s a prime ideal of A.

Theorem 5.24. Let I be a proper ideal of A such that 6(0) C I C
\/6(0). The following statements are equivalent:

(1) I is a /6(0)-ideal.

(2) I is a primary ideal of A.

Proposition 5.25. Let A be a ring and K be an ideal of A with
KN (A\/0(0)) # 0. Then the followings hold:
(1) If Iy, Iy are \/6(0)-ideals of A with Iy K = I, K, then [} = I5.
(2) If IK is a /0(0)-ideal of A, then K = I.

Proposition 5.26. Let A be a ring and ¢ be an expansion function of
Id(A). If every ideal I of A is a 4/0(0)-ideal then (A, /6(0)) is a local

ring.

Proof. Let m be a maximal ideal of A. m is a /d(0)-ideal, so by
Lemma 5.7, m C /6(0). Hence (A, /6(0)) is a local ring. O

Corollary 5.27. Let A be a ring and 0 be an expansion function of
Id(A). If every proper ideal of A is a product of \/d(0)-ideals then

(A,1/6(0)) is a local ring.

Recall from that a ring A is called von Neumann regular if for every
a € A, there exists an element 2 of A such that a = a?z. Also a ring A
is said to be a Boolean ring if whenever a = a? for every a € A. Notice
that every Boolean ring is also a von Neumann regular [2].
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Theorem 5.28. Let A be a ring and 0 be an expansion function of
Id(A). Then the followings hold:

(1) A is a von Neumann reqular ring and 0 is a /0(0)-ideal, then
A is a field.

(2) Suppose that A is Boolean ring. If 0 is a /6(0)-ideal, then A
is a field.

Proof. (1) Let A be a von Neumann regular ring and 0 be a 4/d(0)-
ideal. Let 0 # a € A. Since A is von Neumann regular, a = a*z for
some x € A. We have a(1 —azx) = 0. If a ¢ 1/6(0), then ax = 1 and
a is an invertible element in A. If a € \/0(0), then 1 — azx ¢ /(0).
Since (1 —az)a = 0 and 0 is a \/0(0)-ideal, @ = 0. Therefore, A is a
field.

(2) If A is Boolean ring, then A is a von Neumann regular ring. By
(1), Ais a field. O

Corollary 5.29. Let A be a ring and 6 be an expansion function of
Id(A). Then the followings hold:

(1) A is a von Neumann reqular ring and 0 is a \/(0)-ideal, then
0 is an n-ideal.

(2) Suppose that A is Boolean ring. If 0 is a \/6(0)-ideal, then 0 is
an n-ideal.

Proof. By Theorem 5.28 and [141][Theorem 2.15]. O

Corollary 5.30. Let A be a ring and 0 be an expansion function of
Id(A). Then the followings hold:

(1) A is a von Neumann reqular ring and I is a \/0(0)-ideal, then
I is a maximal ideal of A.

(2) Suppose that A is Boolean ring. If I is a \/6(0)-ideal, then I is
a maximal ideal of A.

Proof. (1) Let A be a von Neumann regular ring and I be a /d(0)-
ideal of A. So, A/I is a von Neumann regular ring. Let a + 1 € A/I.
Therefore, there exists x € A such that a = a*z. Hence a(1 — ax) € I.
If a ¢ 1/6(0), then (1 —ax) € I. It implies that 1 + I = ax + 1. If

a € 1/6(0), then (1 — ax) ¢ /6(0). So, a € I. We have a + I = I.
Therefore, A/I is a field. It follows that I is a maximal ideal of A. [

Let f : A — B be aring epimorphism and ¢ be an expansion function
of Id(A). We consider 0 : Id(B) — Id(B) where 6(J) = fod(f~1(J))
for J € Id(B).
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Proposition 5.31. Let f : A — B be a ring epimorphism and ¢ be
an expansion function of Id(A). If I is a 1/d(0)-ideal of A containing

ker(f), then f(I) is a 1/6(0)-ideal of B
Proof. Let biby € f(I) and by ¢ 1/6(0) for by,by € B. So, there exist

ay,ay € A such that f(a;) = by and f(ay) = by. Since by ¢ 1/5(0), it
follows that b7 ¢ §(0) for all m € N. Suppose to the contrary that a; €
v/6(0). It implies that there exists n € N such that a} € §(0). Since §
is an expansion function of Id(A), it follows that §(0) C §(f~1(0)). So,
a? € 6(f7(0)). Hence f(a?) € fos(f~(0)). Therefore, b7 € 6(0), we
arrive at a contradiction. We have ajas € I and a; ¢ 1/6(0). Since
is a 1/d(0)-ideal, it follows that ay € I. So, by € f(I). O

Let f : A — B be a ring monomorphism and § be an expansion
function of Id(B). We consider 0 : [d(A) — Id(A) where §(I) =

FHO(I)))) for 1 € Td(A).

Theorem 5.32. Let f: A — B be a ring monomorphism and 0 be an
expansion function of Id(B). If I is a 1/0(0)-ideal of B, then f~'(I)

is a 1/6(0)-ideal of A.

Proof. Let ajay € f~'(I) and a; ¢ 1/6(0) for a;,a, € A. Then

flaras) = f(ay)f(az) € I. Since a; ¢ 1/6(0) and f is a monomor-
phism, f(a1) ¢ 1/d(0). Since I is a 1/d(0)-ideal of B, it follows that
f(az) € I, and so ay € f~(I), as it is needed. O
Proposition 5.33. Let A be a ring and K C [ be two ideals of A
and 0 be an expansion function of Id(A). If I is a 1/0(0)-ideal of A
and ¢ : [d(A/K) — Id(A/K) where 6(J/K) = §(J)/K, then I/K is a
\/0(0)-ideal of A/K.

Proof. Assume that I is a 1/d(0)-ideal of A with K C I. Let 7: A —
A/K be the natural homomorphism. Note that ker(m) = K C I, and

so by Proposition 5.31, I/K is a 1/0(0)-ideal of A/K.

]
Corollary 5.34. Let A be a ring and K C I be two ideals of A and o
be an expansion function of Id(A/K). Suppose that ¢ : Id(A) — Id(A)
where §(I) ={a € Ala+ K € 6((I+ K)/K)} for I € Id(A). If I/K is

a \/9(0)-ideal of AJ/K, then I is a \/0(0)-ideal of A.
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Proof. Let ab € I with a ¢ 1/0(0) for a,b € A. Then we have (a +

K)b+K)=ab+K € I/K and a+ K ¢ /6(0). Since I/K is a 1/d(0)-
ideal of A/K, it follows that b+ K € I /K, and so b € I. Consequently,

I'is a 1/d(0)-ideal of A. O
Corollary 5.35. Let B be a ring and A be a subring of B. If I is a

5(0)-ideal of B, then I N A is a 1/(0)-ideal of A.
Proof. Suppose that A is a subring of B and [ is a 1/d(0)-ideal of B.

Consider the injection ¢ : A — B. And note that 5(I) = 6(IB) N A.
Therefore, §(0) = 6(0) N A. So, by Proposition 5.32(i7), I N A is a

1/ 6(0)-ideal of A. O

Proposition 5.36. Let A be a ring and S be a multiplicatively closed
subset of A. Let ¢ be an expansion function of Id(A). Suppose that
§: Id(S7'A) — Id(S~'A) such that §(I) = S~16(I¢).

If I is a /6(0)-ideal of A and SN+/6(0) = (), then S~'1 is a /5(0)-ideal
of ST1A.

Proof. Let %% € S7'I with ¢ ¢ \/%, where a,b € A and s,t € S.
Then we have uab € I for some u € S. We have §(0) C §(0°). So,
S=15(0) C /8(0). Tt is clear that a & 1/5(0). Since I is a /3(0)-ideal
of A, it follows that ub € I, and so 2 = 2 € S~']. Consequently, S~'I

is a 1/6(0)-ideal of S~TA. O

Proposition 5.37. Let A be a ring and .S be a multiplicatively closed
subset of A. Let 0 be an expansion function of Id(S~1A). Suppose that
 : Id(A) — Id(A) such that §(1) = §(S~)°.

If I is a \/0(0)-ideal of S7'A, then I¢is a 1/8(0)-ideal of A.

Proof. Let ab € I¢ and a ¢ 1/6(0). Then we have 4% ¢ 1. Now we show

that ¢ ¢ 1/6(0). Suppose § € 1/d(0), so there exists a positive integer
k such that (%)k € 6(0). Then we get a* € §(0)¢ = §(0). We conclude

that a € 1/0(0), a contradiction. Thus, we have ¢ ¢ /6(0). Since I is
a 1/6(0)-ideal of S~'A4, it follows that 2 € I, and so b € I°. O

Theorem 5.38. Let A be a ring and 0 be an expansion function of
Id(A), the followings are equivalent:
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(1) Ewvery proper principal ideal is a \/0(0)-ideal;

(2) Every proper ideal is a 1/6(0)-ideal;

(3) A has a unique mazimal ideal which is \/6(0);
(

(A,+/6(0)) is a local ring.

Proof. (1) = (2) Let I be a proper ideal of A and ab € I, where
a ¢ +/6(0). b€ (ab) C I is obtained because ab € (ab) and (ab) is an

5(0)-ideal of A. Hence I is a y/d(0)-ideal of A.

(2) = (3) By Proposition 5.26.

(3) = (4) Tt is clear.

(4) = (1) Assume that [ is a principal ideal of A. Suppose that
ab € I, wherea ¢ /6(0). So, ais an invertible element of A. Therefore,
b=a"tab e I. We have I is a 1/(0)-ideal. O

3
4

— — —

Proposition 5.39. Let A be a ring and

S = {1/d(0)| There is an ideal I of A such that I is a 1/d(0)-ideal}.

Then the followings hold:
(1) Spec(A) C 6.
(2) /04 is a prime ideal of A if and only if & = {v/.J|J is an ideal of A}.
(3) If A is a von Neumann regular ring, then & = Max(A) =
Spec(A).
(4) If A is an integral domain, then & = {v/J|.J is an ideal of A}.
(5) If A is a valuation ring, then & = Spec(A).

Proof. (1) Let P be a prime ideal of A. Consider ¢ : Id(A) — Id(A)
such that §(I) = P if I C P and otherwise 6(I) = R. So, P = /6(0)
and P is a 1/d(0)-ideal. Hence P € &.

(2) Suppose that /04 is a prime ideal of A. Assume that .J is an ideal
of Aand § : Id(A) — Id(A) such that 6(1) = J if I C J and otherwise
§(I) = R. Hence v/J = /6(0). We follow that /04 C 1/6(0). By
Theorem 5.22, v.J = \/5(0) € &.

Now, Assume that & = {v/J|J is an ideal of A}. We get /0, € .
By Theorem 5.22, there exists a prime ideal P of A such that P C 1/04.
Hence P = /04 and /04 is a prime ideal of A.

(3) It is clear that Max(A) C Spec(4) C &. Let /6(0) € &. So,
there exists an ideal I of A such that I is a 1/0(0)-ideal. Therefore,
by Lemma 5.7, I C 1/6(0). By Corollary 5.30, I is a maximal ideal.

It implies that /0(0) is a maximal ideal of A. Hence & = Max(A) =
Spec(A).
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(4) Let A be an integral domain. So, (0) is a prime ideal of A and
(0) € \/6(0). By (ii) we have & = {+/J|J is an ideal of A}.

(5) Let A be a valuation ring. So, 1/6(0) is a prime ideal for every
expansion function § of Id(A). Hence & C Spec(A). We get the result
that & = Spec(A). O

An ideal I of a ring A is called pseudo-irreducible if z(1 — x) € I for
re€A thenzelor (l—a)elll.

Proposition 5.40. Let I be a proper ideal of A and § be an expansion
function of Id(A). If I is a \/6(0)-ideal, then I is a pseudo-irreducible
ideal of A.

Proof. Let I be a 1/d(0)-ideal and z(1—xz) € I forz € A. If & ¢ /6(0),
then (1 —z) € I. If v € 1/6(0), then (1 —x) ¢ 1/(0). We obtain
x € I since [ is a 1/0(0)-ideal and (1 — z) ¢ /6(0) We have [ is a
pseudo-irreducible ideal of A. O

Lemma 5.41. Let A be a ring and m be a mazimal ideal of A. If
§ 2 Id(A) — Id(A) such that m = /(0), then m™ is a /0(0)-ideal of
A, for every n € N.

Proof. Suppose that ab € m™ for a,b € A and a ¢ /6(0). Then
(a) +m™ = A. So, there exist r € A and s € m" such that ra + s = 1.
It implies that rab+ sb = b € m™. Therefore, m” is a 1/9(0)-ideal of
A. O

Proposition 5.42. Let A be a ring and I be a /d(0)-ideal of A. If
CohtlI = 0, then [ is primary.

Proof. By Proposition 5.40, I is a pseudo-irreducible ideal of A. By
[9][Proposition 2.7]. O

Acknowledgments

REFERENCES

1. D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra,
(1) 1 (2009), 3-56.

2. M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra,
Addison-Wesley, Reading, MA, 1969.

3. A. Badawi and B. Fahid, On weakly 2-absorbing §-primary ideals of commutative
rings, Georgian Math. J., (4) 27 (2020), 503-516.

4. A. Badawi, U. Tekir, and E. Yetkin, On 2-absorbing primary ideals in commu-
tative rings, Bull. Korean Math. Soc., (4) 51 (2014), 1163-1173.

5. Z. Dongsheng, §-primary ideals of commutative rings, Kyungpook Math. J., 41
(2001), 17-22.



GENERALIZATION OF n-IDEALS 33

6. J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc., 38
(1932), 85-88.

7. J. L. Dorroh, Concerning the direct product of algebras, Ann. Math., 36 (1935),
882-885.

8. K. A. Essan, A. Abdoulaye, D. Kamano and E.D. Akeke, o-Sporadic prime ideals
and superficial elements, J. Algebra Relat. Topics, (2) 5 (2017) 35-45.

9. S. Hedayat and E. Rostami, Decomposition of ideals into pseudo-irreducible
ideals, Comm. Algebra, (4) 45 (2017), 1711-1718.

10. H. A. Khashan and A. B. Bani-Ata, J-Ideals of commutative rings, Int. Elec-
tron. J. Algebra, 29 (2021), 148-164.

11. R. Mohamadian, r-ideals in commutative rings, Turkish J. Math, 39(2015),
733-749.

12. M. Samiei and H. Fazaeli Moghimi, Weakly irreducible ideals, J. Algebra Relat.
Topics, (2) 4 (2016), 9-17.

13. M. Tamekkante, E. M. Bouba, (2, n)-Ideals of commutative rings, J. Algebra
Appl., (6) 18 (2019), 1-12.

14. U. Tekir, S. Koc and K. H. Oral, n-Ideals of Commutative Rings, Filomat, (10)
31 (2017), 2933-2941.

Somayeh Karimzadeh
Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O.Box 7718897111,
Rafsanjan, Iran.
Email: karimzadeh@vru.ac.ir

Somayeh Hadjirezaei
Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O.Box 7718897111,
Rafsanjan, Iran.
Email: s.hajirezaei@vru.ac.ir



	1. Introduction and Preliminaries
	2. n-ideals
	3. (2,n)-ideals
	4.  (2,n)-ideals in trivial ring extensions 
	5.  (0)-ideal
	References

