@article {
author = {Ghroda, N.},
title = {Left I-quotients of band of right cancellative monoids},
journal = {Journal of Algebra and Related Topics},
volume = {5},
number = {1},
pages = {11-25},
year = {2017},
publisher = {University of Guilan},
issn = {2345-3931},
eissn = {2382-9877},
doi = {10.22124/jart.2017.2402},
abstract = {Let $Q$ be an inverse semigroup. A subsemigroup $S$ of $Q$ is a left I-order in $Q$ and $Q$ is a semigroup of left I-quotients of $S$ if every element $q\in Q$ can be written as $q=a^{-1}b$ for some $a,b\in S$. If we insist on $a$ and $b$ being $\er$-related in $Q$, then we say that $S$ is straight in $Q$. We characterize semigroups which are left I-quotients of left regular bands of right cancellative monoids with certain conditions.},
keywords = {I-orders,I-quotients,right cancellative monoid,inverse hull},
url = {https://jart.guilan.ac.ir/article_2402.html},
eprint = {https://jart.guilan.ac.ir/article_2402_6a9e9726321356602bbe3cb751ec727a.pdf}
}