@article {
author = {Louzari, M. and Ben Yakoub, L.},
title = {On $(\sigma,\delta)$-skew McCoy modules},
journal = {Journal of Algebra and Related Topics},
volume = {8},
number = {2},
pages = {23-37},
year = {2020},
publisher = {University of Guilan},
issn = {2345-3931},
eissn = {2382-9877},
doi = {10.22124/jart.2020.11937.1132},
abstract = {Let $(\sigma,\delta)$ be a quasi derivation of a ring $R$ and $M_R$ a right $R$-module. In this paper, we introduce the notion of $(\sigma,\delta)$-skew McCoy modules which extends the notion of McCoy modules and $\sigma$-skew McCoy modules. This concept can be regarded also as a generalization of $(\sigma,\delta)$-skew Armendariz modules. We study some connections between reduced modules, semicommutative modules, $(\sigma,\delta)$-compatible modules and $(\sigma,\delta)$-skew McCoy modules. Furthermore, we will give some results showing that the property of being an $(\sigma,\delta)$-skew McCoy module transfers well from a module $M_R$ to its skew triangular matrix extensions and vice versa.},
keywords = {McCoy module,skew McCoy module,semicommutative module,Armendariz module,reduced module},
url = {https://jart.guilan.ac.ir/article_4340.html},
eprint = {https://jart.guilan.ac.ir/article_4340_0d667fe68d704915ddc269242b0613f5.pdf}
}