TY - JOUR
ID - 3329
TI - Basis of a multicyclic code as an Ideal in F[X_1,...,X_s]/
JO - Journal of Algebra and Related Topics
JA - JART
LA - en
SN - 2345-3931
AU - Andriamifidisoa, R.
AU - Lalasoa, R. M.
AU - Rabeherimanana, T. J.
AD - Department of Mathematics and Computer Science, University of Antananarivo, Antananarivo, Madagascar
AD - Department of
Mathematics, University
of Antananarivo, Antananarivo, Madagascar
Y1 - 2018
PY - 2018
VL - 6
IS - 2
SP - 63
EP - 78
KW - quotient-ring
KW - ideal
KW - ideal basis
KW - multicyclic code
KW - polynomial division algorithm (by many divisors)
DO - 10.22124/jart.2018.10977.1110
N2 - First, we apply the method presented by Zahra Sepasdar in the two-dimensional case to construct a basis of a three dimensional cyclic code. We then generalize this construction to a general $s$-dimensional cyclic code.
UR - https://jart.guilan.ac.ir/article_3329.html
L1 - https://jart.guilan.ac.ir/article_3329_8d8f5e7ba61fd23caa4b4d6f970ceb64.pdf
ER -