University of GuilanJournal of Algebra and Related Topics2345-39312220141201Weakly prime ternary subsemimodules of ternary semimodules637267ENJ. N. ChaudhariN. M. UniversityH. P. BendaleN. M. UniversityJournal Article20140822In this paper we introduce the concept of weakly prime ternary subsemimodules of a ternary semimodule over a ternary semiring and obtain some characterizations of weakly prime ternary subsemimodules. We prove that if $N$ is a weakly prime subtractive ternary subsemimodule of a ternary $R$-semimodule $M$, then either $N$ is a prime ternary subsemimodule or $(N : M)(N : M)N = 0$. If $N$ is a $Q$-ternary subsemimodule ofÂ a ternary $R$-semimodule $M$, then a relation between weakly prime ternary subsemimodules of $M$ containing $N$ and weakly prime ternary subsemimodules of the quotient ternary $R$-semimodule $M/N_{(Q)}$ is obtained.https://jart.guilan.ac.ir/article_67_8ea62efaf0db5bbf026e477cc1e16995.pdf