A NOTE ON MAXIMAL NON-PRIME IDEALS

S. VISWESWARAN* AND ANIRUDHDHA PARMAR

ABSTRACT. The rings considered in this article are commutative with identity $1 \neq 0$. We say that a proper ideal I of a ring R is a maximal non-prime ideal if I is not a prime ideal of R but any proper ideal A of R with $I \subseteq A$ and $I \neq A$ is a prime ideal. That is, among all the proper ideals of R, I is maximal with respect to the property of being not a prime ideal. The concept of maximal non-maximal ideal and maximal non-primary ideal of a ring can be similarly defined. The aim of this article is to characterize ideals I of a ring R such that I is a maximal non-prime (respectively, a maximal non-maximal, a maximal non-primary) ideal of R.

1. INTRODUCTION

The rings considered in this article are nonzero commutative with identity. If R is a subring of a ring T with identity 1, then we assume that $1 \in R$. If a set A is a subset of a set B and $A \neq B$, we denote it symbolically using the notation $A \subset B$. Let P be a property of rings. Let R be a subring of a ring T. Recall from [4] that R is a maximal non-P, if R does not have P, whereas each subring S of T with $R \subset S$ has property P. The concept of maximal non-Noetherian subring of a ring T was investigated in [3]. There are other interesting research articles which appeared in the literature focussing on maximal non-P subring of a ring T (see for example, [2, 4]). Let R be a non-zero commutative ring with identity. A proper ideal I of a ring R is said to be a maximal non-prime ideal of R if the following conditions hold: (i) I is not a

MSC(2010): Primary 13A15; Secondary 13C05.
Keywords: Maximal non-prime ideal, maximal non-maximal ideal, maximal non-primary ideal, maximal non-irreducible ideal.
Received: 12 June 2015, Accepted: 15 July 2015.
*Corresponding author.
prime ideal of R and (ii) If A is any proper ideal of R such that A contains I properly, then A is a prime ideal of R. Similarly, we can define the concept of a maximal non-maximal (respectively, a maximal non-primary) ideal of R. Motivated by the above mentioned works on maximal non-P subrings, in this article, we focus our attempt on characterizing maximal non-prime (respectively, maximal non-maximal, maximal non-primary) ideals of a ring R. Let I be a proper radical ideal of a ring R. It is proved in Proposition 3.2 that I is a maximal non-primary ideal of R if and only if I is a maximal non-prime ideal of R if and only if $I = M_1 \cap M_2$ for some distinct maximal ideals M_1, M_2 of R. Let I be a proper ideal of R such that $I \neq \sqrt{I}$. It is shown in Proposition 4.1 that I is a maximal non-prime ideal of R if and only if I is a maximal non-maximal ideal of R if and only if $\sqrt{I} = M$ is a maximal ideal of R with $M^2 \subseteq I$, and $M = Rx + I$ for any $x \in M \setminus I$. Moreover, it is proved in Proposition 4.2 that I is a maximal non-primary ideal of R if and only if $\sqrt{I} = P$ is a prime ideal of R such that R/I is a quasilocal one-dimensional ring and P/I is a minimal ideal of R/I.

By a quasilocal ring we mean a ring which admits only one maximal ideal. A Noetherian quasilocal ring is referred to as a local ring. By dimension of a ring R, we mean its Krull dimension and we use the abbreviation $\text{dim} R$ to denote the dimension of a ring R. We denote the nilradical of a ring R by $\text{nil}(R)$. A ring R is said to be reduced if $\text{nil}(R) = (0)$.

2. Some preliminary results

As mentioned in the introduction the rings considered in this article are commutative with identity $1 \neq 0$. We begin with the following lemma.

Lemma 2.1. Let R be a ring. If P_1, P_2 are incomparable prime ideals of R under inclusion, then $P_1 \cap P_2$ is not a primary ideal of R.

Proof. Let $I = P_1 \cap P_2$. Since P_1 and P_2 are incomparable under inclusion, there exist $a \in P_1 \setminus P_2$ and $b \in P_2 \setminus P_1$. Note that $ab \in I$. By the choice of a, b, it is clear that $a \notin I$ and no power of $b \in I$. This proves that $I = P_1 \cap P_2$ is not a primary ideal of R. \hfill \Box

Lemma 2.2. Let R be a reduced ring which is not an integral domain. If every nonzero proper ideal of R is primary, then R has exactly two prime ideals and both of them are maximal ideals of R.
Proof. Since R is reduced but not an integral domain, it follows that R has at least two minimal prime ideals. Let P_1, P_2 be distinct minimal prime ideals of R. Now we obtain from Lemma 2.1 and the hypothesis that $P_1 \cap P_2 = (0)$. We prove that P_1, P_2 are maximal ideals of R. Let M be a maximal ideal of R such that $P_1 \subseteq M$. We claim that $M = P_1$. Suppose that $P_1 \not= M$. Then $M \not\subseteq P_1 \cup P_2$. Let $a \in M \setminus (P_1 \cup P_2)$ and $b \in P_2 \setminus P_1$. As $ab \notin P_1$, it follows that $ab \not= 0$. Hence R_{ab} is a primary ideal of R. Note that $R_{ab} \subseteq P_2$. Hence it follows from the choice of a that no power of $a \in R_{ab}$. Therefore, $b \in R_{ab}$. This implies that $b = rab$ for some $r \in R$ and so $b(1-ra) = 0$. As $b \notin P_1$, it follows that $1-ra \in P_1 \subset M$. From $a \in M$, we obtain that $1 = 1-ra + ra \in M$. This is a contradiction. Therefore, $P_1 = M$ is a maximal ideal of R. Similarly, it follows that P_2 is a maximal ideal of R. From $P_1 \cap P_2 = (0)$, we get that R has exactly two prime ideals which are P_1 and P_2 and moreover, both are maximal ideals of R.\hfill\□

Lemma 2.3. Let R be a ring such that every nonzero proper ideal of R is primary. Then $\text{dim} R \leq 1$. Moreover, if R is not a reduced ring, then R is necessarily quasilocal.

Proof. Suppose that $\text{dim} R > 1$. Then there exists a chain of prime ideals $P_1 \subset P_2 \subset P_3$ of R. Let $a \in P_2 \setminus P_1$ and $b \in P_3 \setminus P_2$. Since $ab \notin P_1$, it is clear that $ab \not= 0$ and hence $R_{ab} \not= (0)$. Observe that $R_{ab} \subseteq P_2$. By hypothesis, R_{ab} is a primary ideal of R. From the choice of the element b, it is clear that no power of b can belong to R_{ab}. Hence $a \in R_{ab}$. This implies that $a = rab$ for some $r \in R$ and so $a(1-rb) = 0$. Since $a \notin P_1$, it follows that $1-rb \in P_1 \subseteq P_3$. From $b \in P_3$, we obtain that $1 = 1-rb + rb \in P_3$. This is a contradiction. Therefore, $\text{dim} R \leq 1$.

We next prove the moreover assertion. Suppose that R is not quasilocal. Then there exist at least two distinct maximal ideals M_1, M_2 of R. As we are assuming that R is not a reduced ring, it follows that $M_1 \cap M_2 \not= (0)$. Hence by hypothesis, $M_1 \cap M_2$ is a primary ideal of R. This contradicts Lemma 2.1. Therefore, R is necessarily quasilocal.\hfill\□

Lemma 2.4. Let R be a ring which is not reduced. Suppose that (0) is not a primary ideal of R. If every nonzero proper ideal of R is primary, then $\text{nil}(R)$ is a minimal prime ideal of R. Indeed, $\text{nil}(R)$ is a minimal ideal of R.

Proof. We know from Lemma 2.3 that R is necessarily quasilocal. Let M be the unique maximal ideal of R. Since R is not reduced, $\text{nil}(R) \not= (0)$. Hence $\text{nil}(R)$ is a primary ideal of R and so it follows from [1,
Proposition 4.1] that \(\sqrt{\text{nil}(R)} = \text{nil}(R) \) is a prime ideal of \(R \). Since \(\text{nil}(R) \subseteq P \) for any prime ideal of \(R \), it follows that \(\text{nil}(R) \) is a minimal prime ideal of \(R \). As \((0) \) is not a primary ideal of \(R \), it follows from [1, Proposition 4.2] that \(\sqrt{(0)} \) is not a maximal ideal of \(R \). Thus \(\text{nil}(R) \subseteq M. \) We prove that for any nonzero \(a \in \text{nil}(R), \text{nil}(R) = Ra \).

First we verify that for any \(b \in \text{nil}(R) \setminus (0) \) and for any \(m \in M \setminus \text{nil}(R), \) \(bm = 0. \) Suppose that \(bm \neq 0. \) By hypothesis, \(Rbm \) is a primary ideal of \(R. \) In fact \(Rbm \) is a \(\text{nil}(R) \)-primary ideal of \(R. \) Since no power of \(m \in \text{nil}(R), \) we obtain that \(b \in Rbm. \) This implies that \(b = rbm \) for some \(r \in R. \) Thus \(b(1 - rm) = 0. \) As \(1 - rm \) is a unit in \(R, \) it follows that \(b = 0. \) This is a contradiction. Hence for any nonzero \(b \in \text{nil}(R) \) and \(m \in M \setminus \text{nil}(R), \) \(bm = 0. \) Let \(x \in \text{nil}(R). \) We assert that \(x \in Ra. \) This is clear if \(x = 0. \) If \(x \neq 0, \) then \(xm = 0 \in Ra. \) Now \(Ra \) is a \(\text{nil}(R) \)-primary ideal of \(R \) and no power of \(m \in \text{nil}(R). \) Hence it follows that \(x \in Ra. \) This proves that for any nonzero \(a \in \text{nil}(R), \) \(\text{nil}(R) = Ra. \) This shows that \(\text{nil}(R) \) is a minimal ideal of \(R. \)

Lemma 2.5. Let \(R \) be a quasilocal ring with \(M \) as its unique maximal ideal. Suppose that \(R \) is not reduced and \(\text{nil}(R) \) is a prime ideal of \(R \) with \(\text{nil}(R) \neq M. \) If \(\text{nil}(R) \) is a minimal ideal of \(R, \) then \((0) \) is not a primary ideal of \(R. \)

Proof. Let \(a \in \text{nil}(R), a \neq 0. \) Let \(b \in M \setminus \text{nil}(R). \) Since \(\text{nil}(R) \) is a simple \(R \)-module, it follows that \(M(\text{nil}(R)) = (0) \) and so \(ab = 0. \) Now \(a \neq 0 \) and as \(b \notin \text{nil}(R), \) it follows that \(b^n \neq 0 \) for all \(n \geq 1. \) This proves that \((0) \) is not a primary ideal of \(R. \)

Lemma 2.6. Let \(R \) be a ring which is not reduced. If every nonzero proper ideal of \(R \) is a prime ideal of \(R, \) then \(R \) is quasilocal with \(\text{nil}(R) \) as its unique maximal ideal and \(\text{nil}(R)^2 = (0). \) Moreover, for any \(x \in \text{nil}(R) \setminus \{0\}, \) \(\text{nil}(R) = Rx. \)

Proof. Since any prime ideal is primary, it follows from Lemma 2.3 that \(R \) is necessarily quasilocal. Let \(M \) be the unique maximal ideal of \(R. \) We prove that \(M = \text{nil}(R). \) Let \(m \in M. \) We assert that \(m^2 = 0. \) Suppose that \(m^2 \neq 0. \) Then \(Rm^2 \) is a prime ideal of \(R. \) Therefore, \(m \in Rm^2. \) This implies that \(m = rm^2 \) for some \(r \in R \) and so \(m(1 - rm) = 0. \) From \(1 - rm \) is a unit in \(R, \) it follows that \(m = 0. \) This is a contradiction. Thus for any \(m \in M, \) \(m^2 = 0 \) and so \(M = \text{nil}(R). \) Hence \(M \) is the only prime ideal of \(R. \) Let \(a, b \in M. \) We show that \(ab = 0. \) This is clear if either \(a = 0 \) or \(b = 0. \) Suppose that \(a \neq 0 \) and \(b \neq 0. \) Then \(Ra, Rb \) are prime ideals of \(R. \) Therefore, \(Ra = Rb = M. \) This implies that \(a = ub \) for some unit \(u \in R. \) It follows from \(b^2 = 0 \) that \(ab = 0. \) This proves that \(M^2 = (\text{nil}(R))^2 = (0). \)
We next prove the moreover part. Let \(x \in \text{nil}(R) \setminus \{0\} \). Then \(Rx \) is a prime ideal of \(R \). From the fact that \(\text{nil}(R) \) is the only prime ideal of \(R \), it follows that \(\text{nil}(R) = Rx \). \(\square \)

3. Radical non-maximal prime ideals

The aim of this section is to determine proper radical ideals \(I \) of a ring \(R \) such that \(I \) is a maximal non-prime ideal. We start with the following lemma.

Lemma 3.1. Let \(D \) be an integral domain which is not a field. Then it admits nonzero proper ideals which are not prime ideals.

Proof. Let \(d \in D \) be a nonzero nonunit. Then for any \(n \geq 2 \), \(Dd^n \) is a proper nonzero ideal of \(D \) which is not a prime ideal of \(D \). \(\square \)

Proposition 3.2. Let \(R \) be a ring and \(I \) be a proper radical ideal of \(R \). Then the following statements are equivalent:

(i) \(I \) is a maximal non-primary ideal of \(R \).
(ii) \(I = M_1 \cap M_2 \) for some distinct maximal ideals \(M_1, M_2 \) of \(R \).
(iii) \(I \) is a maximal non-maximal ideal of \(R \).
(iv) \(I \) is a maximal non-prime ideal of \(R \).

Proof.
(i) \(\Rightarrow \) (ii) Note that \(R/I \) is a reduced ring and as \(I \) is not primary, it follows that \(I \) is not a prime ideal of \(R \) and so \(R/I \) is not an integral domain. Since \(I \) is a maximal non-primary ideal of \(R \), it follows that every nonzero proper ideal of \(R/I \) is primary. Hence we obtain from Lemma 2.2 that there exist distinct maximal ideals \(M_1, M_2 \) of \(R \) such that \(I = M_1 \cap M_2 \).

(ii) \(\Rightarrow \) (iii) We know from Lemma 2.1 that \(I = M_1 \cap M_2 \) is not a primary ideal and hence it is not a maximal ideal of \(R \). Let \(A \) be any proper ideal of \(R \) such that \(M_1 \cap M_2 \subset A \). Then either \(A \not\subset M_1 \) or \(A \not\subset M_2 \). Without loss of generality we may assume that \(A \not\subset M_1 \). Then \(A + M_1 = R \). Hence \(1 = a + x \) for some \(a \in A \) and \(x \in M_1 \).

Now for any \(y \in M_2, y = ay + xy \in A + M_1M_2 = A \). This proves that \(M_2 \subset A \) and so \(A = M_2 \). Thus the only proper ideals \(A \) of \(R \) which contain \(I \) properly are \(M_1 \) and \(M_2 \) and both are maximal ideals of \(R \). Therefore, we obtain that \(I \) is a maximal non-maximal ideal of \(R \).

(iii) \(\Rightarrow \) (iv) Let \(A \) be a proper ideal of \(R \) with \(I \subset A \). Then by (iii) \(A \) is a maximal ideal of \(R \). Hence \(A \) is a prime ideal of \(R \). We claim that \(I \) is not a prime ideal of \(R \). Suppose that \(I \) is a prime ideal of \(R \). Since \(R/I \) is not a field, it follows from Lemma 3.1 that \(R/I \) admits nonzero proper ideals which are not maximal ideals. This contradicts (iii). Therefore, \(I \) is not a prime ideal of \(R \). This shows that \(I \) is a maximal non-prime ideal of \(R \).
(iv) ⇒ (i) Let A be any proper ideal of R with $I \subseteq A$. Then by (iv) A is a prime ideal and hence is a primary ideal of R. Since I is a radical ideal of R and is not a prime ideal of R, we get that I is not a primary ideal of R. This proves that I is a maximal non-primary ideal of R. □

4. Non-radical maximal non-prime ideals

The aim of this section is to determine ideals I of a ring R such that $I \neq \sqrt{I}$ and I is a maximal non-prime ideal of R.

Proposition 4.1. Let I be a proper ideal of a ring R such that $I \neq \sqrt{I}$. Then the following statements are equivalent:

(i) I is a maximal non-prime ideal of R.

(ii) \sqrt{I} is a maximal ideal of R, $(\sqrt{I})^2 \subseteq I$, and $\sqrt{I} = Rx + I$ for any $x \in \sqrt{I} \setminus I$.

(iii) I is a maximal non-maximal ideal of R.

Proof. (i) ⇒ (ii) Note that R/I is a non-reduced ring in which any non-zero proper ideal is a prime ideal. Hence we obtain from Lemma 2.6 that R/I is a quasilocal ring with \sqrt{I}/I as its unique maximal ideal, $(\sqrt{I}/I)^2 = I/I$, and moreover, $\sqrt{I}/I = R/I(x + I)$ for any $x \in \sqrt{I} \setminus I$. Therefore, \sqrt{I} is a maximal ideal of R, $(\sqrt{I})^2 \subseteq I$, and $\sqrt{I} = Rx + I$ for any $x \in \sqrt{I} \setminus I$.

(ii) ⇒ (iii) Since $I \subseteq \sqrt{I}$, it follows that I is not a maximal ideal of R. Let A be any proper ideal of R such that $I \subseteq A$. From $(\sqrt{I})^2 \subseteq I \subseteq A$, it follows that $\sqrt{I} \subseteq \sqrt{A}$. Since \sqrt{I} is a maximal ideal of R, we obtain $\sqrt{I} = \sqrt{A}$. Let $a \in A \setminus I$. Then $a \in \sqrt{I}$. Hence $\sqrt{I} = Ra + I \subseteq A$ and so $A = \sqrt{I}$ is a maximal ideal of R. This proves that I is a maximal non-maximal ideal of R.

(iii) ⇒ (i) As $I \subseteq \sqrt{I}$, it follows that I is not a prime ideal of R. Let A be any proper ideal of R with $I \subseteq A$. Then A is a maximal ideal and hence is a prime ideal of R. This shows that I is a maximal non-prime ideal of R. □

We next proceed to characterize proper ideals I of a ring R such that $I \neq \sqrt{I}$ and I is a maximal non-primary ideal of R.

Proposition 4.2. Let I be a proper ideal of a ring R such that $I \neq \sqrt{I}$. Then the following statements are equivalent:

(i) I is a maximal non-primary ideal of R.

(ii) \sqrt{I} is a prime ideal of R, R/I is quasilocal, $\dim(R/I) = 1$, and \sqrt{I}/I is a simple R/I-module.
Proof. (i) \Rightarrow (ii) As $I \neq \sqrt{I}$ and I is a maximal non-primary ideal of R, it follows that I is not a primary ideal of R, whereas \sqrt{I} is a primary ideal of R. Hence $\sqrt{\sqrt{I}} = \sqrt{I}$ is a prime ideal of R. Let us denote \sqrt{I} by P. Note that R/I is not a reduced ring, the zero-ideal of R/I is not primary but each proper nonzero ideal of R/I is primary. Hence we obtain from Lemma 2.3 that R/I is quasilocal, $\dim(R/I) \leq 1$, and moreover, it follows from Lemma 2.4 that P/I is a minimal ideal of R/I (that is, P/I is a simple R/I-module). Let M/I denote the unique maximal ideal of R/I. Since I is not a primary ideal of R, it follows from [1, Proposition 4.2] that \sqrt{I} is not a maximal ideal of R. Therefore, $P/I \subset M/I$ and so $\dim(R/I) = 1$.

(ii) \Rightarrow (i) Note that the ring R/I satisfies the hypotheses of Lemma 2.5. Hence it follows from Lemma 2.5 that the zero-ideal of R/I is not a primary ideal. Hence I is not a primary ideal of R. Let A be any proper ideal of R such that $I \subset A$. We consider two cases:

Case(1) $A \subseteq \sqrt{I}$

In this case A/I is a nonzero ideal of R/I and $A/I \subseteq \sqrt{I}/I$. As \sqrt{I}/I is a minimal ideal of R/I, we obtain that $A/I = \sqrt{I}/I$ and so $A = \sqrt{I}$ is a prime ideal of R. Hence A is a primary ideal of R.

Case(2) $A \nsubseteq \sqrt{I}$

Let us denote the unique maximal ideal of R/I by M/I. Note that M is the only prime ideal of R containing A. Hence it follows that $\sqrt{A} = M$. Since M is a maximal ideal of R, we obtain from [1, Proposition 4.2] that A is a primary ideal of R.

This proves that I is a maximal non-primary ideal of R. \square

Recall from [1, p.52] that a proper ideal I of a ring R is said to be decomposable if I admits a primary decomposition (that is, I can be expressed as the intersection of a finite number of primary ideals of R). The following proposition characterizes decomposable ideals I of a ring R such that $I \neq \sqrt{I}$ and I is a maximal non-primary ideal.

Proposition 4.3. Let I be a proper ideal of a ring R such that $I \neq \sqrt{I}$ and I is decomposable. The following statements are equivalent:

(i) I is a maximal non-primary ideal of R.

(ii) \sqrt{I} is a prime ideal of R, $(R/I,M/I)$ is quasilocal, $\dim(R/I) = 1$, $I = \sqrt{I} \cap q$, where q is a M-primary ideal of R, $q \neq M$, and \sqrt{I}/I is a simple R/I-module.

Proof. (i) \Rightarrow (ii) It follows from (i) \Rightarrow (ii) of Proposition 4.2 that \sqrt{I} is a prime ideal of R, R/I is quasilocal, $\dim(R/I) = 1$, and \sqrt{I}/I is a simple R/I-module. Let M/I denote the unique maximal ideal of R/I.

We are assuming that I is decomposable. Let $I = q_1 \cap \cdots \cap q_n$ be an irredundant primary decomposition of I in R with q_i is a P_i-primary ideal of R for each $i \in \{1, \ldots, n\}$. Since I is not a primary ideal of R, it follows that $n \geq 2$. Note that $\sqrt{I} = \bigcap_{i=1}^{n} P_i$. As \sqrt{I} is a prime ideal of R, it follows that $\sqrt{I} = P_i$ for some $i \in \{1, 2, \ldots, n\}$. Without loss of generality we may assume that $\sqrt{I} = P_1$. Since $P_i \neq P_j$ for all distinct $i, j \in \{1, 2, \ldots, n\}$, it follows that $P_1 \subseteq P_j$ for all $j \in \{2, \ldots, n\}$. As P_1/I and I/M are the only prime ideals of R/I, it follows that $n = 2$ and $P_2 = M$. Note that $I \subseteq P_1 \cap q_2$. We assert that $I = P_1 \cap q_2$. Since $q_1 \not\subseteq q_2$, it follows that $P_1 \not\subseteq q_2$. Let $x \in P_1 \setminus q_2$ and let $y \in q_2 \setminus P_1$. Observe that $xy \in P_1 \cap q_2$ but no power of y belongs to $P_1 \cap q_2$ and $x \not\in P_1 \cap q_2$. Hence $P_1 \cap q_2$ is not a primary ideal of R. As we are assuming that I is a maximal non-primary ideal of R, it follows that $I = P_1 \cap q_2$. Since $I \neq \sqrt{I}$, it follows that $q_2 \neq M$.

(ii) \Rightarrow (i) This follows immediately from (ii) \Rightarrow (i) of Proposition 4.2.

Example 4.4. Let $R = K[[X, Y]]$ be the power series ring in two variables X, Y over a field K. It is well-known that R is a local ring with $M = RX + RY$ as its unique maximal ideal. Let $I = RX^2 + RXY$. Observe that $I = RX \cap M^2$. Note that $\sqrt{I} = RX$ is a prime ideal of R, $M^2 \neq M$ is a M-primary ideal of R, $dim(R/I) = 1$, and RX/I is a simple R/I-module. Hence it follows from (ii) \Rightarrow (i) of Proposition 4.3 that I is a maximal non-primary ideal of R.

5. Maximal non-irreducible ideals

Recall that an ideal I of a ring R is irreducible, if I is not the intersection of any ideals I_1, I_2 of R with $I \subset I_i$ for each $i \in \{1, 2\}$. The aim of this section is to determine proper ideals I of a ring R such that I is a maximal non-irreducible ideal of R. We first characterize proper radical ideals I of R such that I is a maximal non-irreducible ideal of R.

Proposition 5.1. Let I be a proper radical ideal of a ring R. Then the following statements are equivalent:

(i) I is a maximal non-irreducible ideal of R.

(ii) $I = M_1 \cap M_2$ for some distinct maximal ideals M_1, M_2 of R.

Proof. (i) \Rightarrow (ii) Since I is a proper radical ideal of R, it follows from [1, Proposition 1.14] that I is the intersection of all the prime ideals P of R such that $P \supseteq I$. Let C be the collection of all prime ideals P of R such that P is minimal over I. Observe that we obtain from [5, Theorem 10] that I is the intersection of all members of C. Since I is not irreducible
and any prime ideal is irreducible, we get that C contains at least two elements. Let $P_1, P_2 \in C$ be distinct. We assert that $C = \{P_1, P_2\}$. Suppose that there exists $P_3 \in C$ such that $P_3 \notin \{P_1, P_2\}$. Then it is clear that $I \subset P_2 \cap P_3$ and $P_2 \cap P_3$ is non-irreducible. This is in contradiction to the assumption that I is a maximal non-irreducible ideal of R. Therefore, $C = \{P_1, P_2\}$ and so $I = P_1 \cap P_2$. We next show that P_1 and P_2 are maximal ideals of R. Towards showing it, we first prove that $P_1 + P_2 = R$. Suppose that $P_1 + P_2 \neq R$. Let M be a maximal ideal of R such that $P_1 + P_2 \subseteq M$. Since P_1 and P_2 are not comparable under the inclusion relation, there exist $a \in P_1 \setminus P_2$ and $b \in P_2 \setminus P_1$. Consider the ideals $J_1 = I + Ra + Rb^2$ and $J_2 = I + Ra^2 + Rb$ of R. It is clear that $I \subseteq J_1 \cap J_2$. As $a^2 \in (J_1 \cap J_2) \setminus I$, it follows that $I \subset J_1 \cap J_2$. Since I is a maximal non-irreducible ideal of R, we obtain that $J_1 \cap J_2$ is irreducible. Therefore, either $J_1 \subseteq J_2$ or $J_2 \subseteq J_1$. If $J_1 \subseteq J_2$, then $a = x + ra^2 + sb$ for some $x \in I = P_1 \cap P_2$ and $r, s \in R$. This implies that $a(1 - ra) = x + sb \in P_2$. As $a \notin P_2$, we obtain that $1 - ra \in P_2$. Therefore, $1 = ra + 1 - ra \in P_1 + P_2 \subseteq M$. This is a contradiction. Observe that we get a similar contradiction if $J_2 \subseteq J_1$. Hence $P_1 + P_2 = R$. Let M_1 be a maximal ideal of R such that $P_1 \subseteq M_1$. Since $P_1 + P_2 = R$, it follows that the ideal $M_1 \cap P_2$ is not irreducible. As $I \subseteq M_1 \cap P_2$, we obtain that $I = P_1 \cap P_2 = M_1 \cap P_2$. Since $P_1 \not\supseteq P_2$, it follows that $P_1 \supseteq M_1$ and so $P_1 = M_1$ is a maximal ideal of R. Similarly it can be shown that P_2 is a maximal ideal of R. Thus $I = M_1 \cap M_2$ for some distinct maximal ideals M_1, M_2 of R.

(ii) ⇒ (i) If $I = M_1 \cap M_2$ for some distinct maximal ideals M_1, M_2 of R, then it is clear that I is not irreducible. It is verified in the proof of (ii) ⇒ (iii) of Proposition 3.2 that M_1 and M_2 are the only proper ideals J of R such that $I \subset J$. Since M_1 and M_2 are both irreducible, we obtain that I is a maximal non-irreducible ideal of R.

Let I be a proper ideal of a ring R such that $I \neq \sqrt{I}$. We next attempt to characterize such ideals I in order that I is a maximal non-irreducible ideal of R. We do not know the precise characterization of such ideals. However, we have the following partial results.

Lemma 5.2. Let I be a proper ideal of a ring R such that $I \neq \sqrt{I}$. If I is a maximal non-irreducible ideal of R, then \sqrt{I} is a prime ideal of R and moreover, R/I is quasilocal.

Proof. Let C be the collection of all prime ideals P of R such that P is minimal over I. We assert that C is singleton. Let $P, Q \in C$. Since $I \neq \sqrt{I}$, it is clear that $I \subset P \cap Q$. As I is a maximal non-irreducible ideal of R, it follows that $P \cap Q$ is irreducible. Hence either $P \subseteq Q$ or
Lemma 5.3. Let \((T, N)\) be a quasilocal ring such that \((0) \neq \sqrt{(0)}\) and \((0)\) is a maximal non-irreducible ideal of \(T\). Then \(\dim_{T/N}(N/N^2) \leq 2\).

Proof. Suppose that \(\dim_{T/N}(N/N^2) \geq 3\). Let \(\{a, b, c\} \subseteq N\) be such that \(\{a+N^2, b+N^2, c+N^2\}\) is linearly independent over \(T/N\). Consider the ideals \(J_1 = Ta + Tc\) and \(J_2 = Tb + Tc\). By the choice of \(a, b, c\), it is clear that \(J_1 \nsubseteq J_2\), \(J_2 \nsubseteq J_1\) and so \(J_1 \cap J_2\) is not an irreducible ideal of \(T\). Moreover, as \(c \in J_1 \cap J_2\), it follows that \(J_1 \cap J_2 \neq (0)\). This contradicts the hypothesis that \((0)\) is a maximal non-irreducible ideal of \(T\). Therefore, \(\dim_{T/N}(N/N^2) \leq 2\). \(\square\)

Lemma 5.4. Let \((T, N)\) be a quasilocal ring such that \((0) \neq \sqrt{(0)}\) and \(\dim_{T/N}(N/N^2) = 2\). Then the following statements are equivalent:

(i) \((0)\) is a maximal non-irreducible ideal of \(T\).

(ii) \(N^2 = (0)\).

Proof. By hypothesis, \(\dim_{T/N}(N/N^2) = 2\). Let \(\{a, b\} \subseteq N\) be such that \(\{a + N^2, b + N^2\}\) is a basis of \(N/N^2\) as a vector space over \(T/N\).

(i) \(\Rightarrow\) (ii) Consider the ideals \(J_1 = N^2 + Ta\) and \(J_2 = N^2 + Tb\). By the choice of the elements \(a, b\), it is clear that \(J_1 \nsubseteq J_2\) and \(J_2 \nsubseteq J_1\). Hence the ideal \(J_1 \cap J_2\) is not irreducible. Since \((0)\) is a maximal non-irreducible ideal of \(T\), it follows that \(J_1 \cap J_2 = (0)\). As \(N^2 \subseteq J_1 \cap J_2\), we obtain that \(N^2 = (0)\).

(ii) \(\Rightarrow\) (i) It follows from \(N^2 = (0)\) and from the choice of the elements \(a, b\) that \(Ta \nsubseteq Tb, Tb \nsubseteq Ta,\) and \(Ta \cap Tb = (0)\). This implies that \((0)\) is not an irreducible ideal of \(T\). Let \(J\) be any nonzero proper ideal of \(T\). Then either \(\dim_{T/N}(J) = 1\) or \(2\). If \(\dim_{T/N}(J) = 2\), then \(J = N\) is irreducible. Suppose that \(\dim_{T/N}(J) = 1\). Let \(A, B\) be proper ideals of \(T\) such that \(J = A \cap B\). If \(J \neq A\) and \(J \neq B\), then we get that \(A = B = N\) and so \(J = N\). This is a contradiction. Hence either \(J = A\) or \(J = B\). This shows that \(J\) is irreducible. Hence \((0)\) is a maximal non-irreducible ideal of \(T\). \(\square\)
Acknowledgements

We are very much thankful to the referee for a very careful reading of this paper and valuable suggestions. We are also very much thankful to Professor H. Ansari-Toroghy for his support.

References

S. Visweswaran
Department of Mathematics, Saurashtra University, P.O. Box No. 360 005 Rajkot, India.
Email: s.visweswaran2006@yahoo.co.in

Aniruddha Parmar
Department of Mathematics, Saurashtra University, P.O. Box No. 360 005 Rajkot, India.
Email: anirudh.maths@gmail.com