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Ω-ALMOST BOOLEAN RINGS

M.PHANI KRISHNA KISHORE

Abstract. In this paper the concept of an Ω - Almost Boolean
ring is introduced and illistrated how a sheaf of algebras can be con-
structed from an Ω− Almost Boolean ring over a locally Boolean
space.

1. Introduction

Ever since Dauns and Hoffmann [2] exhibited representation of bireg-
ular rings by sheaves, several algebraists paid attention to the represen-
tation of algebraic structures by sheaves of suitable algebras over suit-
able topological spaces. The works of Pierce.R.S [4], Subrahmanyam.N.V
[5], Comer.S.D [1], Davey.B.A [3], Wolf.A [10], Swamy.
U.M [6] thrown much light on the theory of representations of alge-
bras by sheaves. In particular, Subrahmanyam.N.V [5], Comer.S.D[1],
Swamy.U.M [6] concentrated on sheaves of algebras over (locally) com-
pact, hausdorff, and totally disconnected spaces, which are called (lo-
cally)Boolean spaces. Swamy.U.M and Rao.G.C [7] introduced the
concept of an Almost Boolean Ring and observed Stone like correspon-
dence with Almost Distributive Lattices(ADLs). Later, Swamy.U.M
and Kishore.M.P.K [8] studied the prime ideal spectrum of an Al-
most Boolean Ring(ABR) and observed that the class of all prime
ideals together with hull-kernel topology forms a locally Boolean space.
Swamy.U.M et.al., [9] characterized the class of Almost Boolean Rings
by sheaves of sets over locally Boolean spaces. In a quest to find
equivalent characterization for sheaves of algebras, the concept of a
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Ω-Almost Boolean rings is introduced here and observed the equiva-
lence between these two classes. An Almost Boolean ring (ABR) R is
defined as a (2,2,0) type algebraic structure that satisfies the conditions
of a Boolean ring except for the associativity of addition. Instead, it
satisfies (x +(y + z)). t = ((x + y) + z).t, for x,y,z,t in R. As a con-
sequence several properties were observed [8].

The annihilator ideals and prime ideals of an ABR are defined anal-
ogous to those of a ring. It is also observed that the set X of all prime
ideals of an ABR R together with the hull-kernel topology, forms a lo-
cally Boolean space in which the sets of the form Xa = {P ∈ X|a /∈ P}
for some a ∈ R, is a base [8]. A sheaf is a triple,(S, π,X) where S and
X are topological spaces and π is a surjective local homeomorphism of
S onto X. For Y ⊆ X, a section on Y is a continuous map f : Y → S
such that π ◦ f = IdY . It can be observed that if f and g are sections
on Y (⊆ X) and f (p) = g(p) for some p ∈ Y, then there exists an open
set W in Y containing p such that
f |W = g|W . The class { f(U) | U is a basic open setin X and f is a
section on U } is a base for the topology on S.

Any section on X is called a global section. The sheaf (S, π,X) is
called a global sheaf if every element of the sheaf space S is in the image
of some global section. A sheaf of algebras is a sheaf (S, π,X) in which
for each
p ∈ X, the stalk Sp is an algebra and for each σ ∈ Ωn,the map
(s1, s2, ..., sn)→ σ(s1, s2, ..., sn) of S(n) into S is continuous where,

S(n) = {(s1, s2, ..., sn) ∈ Sn|π(s1) = π(s2) = ... = π(sn)}.

Suppose (S, π,X) is a sheaf and for each p ∈ X, stalk Sp is an algebra.
Then (S, π,X) is a sheaf of algebras if and only if for each open set U ⊆
X the set Γ(U, S) of all sections on U is an Ω-algebra, in which for any
n-ary operation σ ∈ Ωn, f1, f2, ..., fn ∈ Γ(U, S), σ(f1, f2, ..., fn)(p) is
defined point wise. That is (f1, f2, ..., fn)(p) = (f1(p), f2(p), ..., fn(p)).
Two sheaves (S, π,X) and (T, η, Y ) of Ω-algebras are said to be iso-
morphic if there exists homeomorphisms α : Y → X and β : T → S
such that π ◦ β = α ◦ η and for any q ∈ Y and p ∈ X such that
α(q) = p, β|Tq = Tq → Sp is a Ω-isomorphism. That is the diagram,
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T

η

α
X

π

S
β

Y

is commutative.

2. Ω-ALMOST BOOLEAN RING

Definition 2.1. An algebra (R, +, ., 0,Ω), where Ω is a set of finitary
operational symbols different from +, and . on R, is called an Ω -Almost
Boolean Ring if
(R, +, . , 0) is an ABR and for any n-ary σ ∈ Ω, x1, x2, ..., xn and
a ∈ R ,

I. (1). σ(x1, x2, ..., xi + a, ..., xn)
= σ(x1, x2, ..., xi, ..., xn) + σ(x1, ..., xi−1, a, xi+1, ..., xn)
(2). aσ(x1, x2, ..., xi, ..., xn) = σ(x1, x2, ..., axi, ..., xn)
for all 1 ≤ i ≤ n.

II. σ(x1 , x2 , ..., xn)∗ =
∑n

i=1 x ∗i (n ≥ 1 ), where∑n
i=1 x

∗
i = {

∑n
i=1 ai|ai ∈ x∗i } and x∗i is an annihilator of xi.

Example 2.2. Consider the Real number system with the usual mul-
tiplication (*) and define + and . on R by

x+ y =


x, if y = 0

y, if x = 0

0 otherwise

and x.y =

{
0, if x = 0

y, if x 6= 0

it can easily observed that (R+, .,Ω) is an Ω- Almost Boolean ring,
where Ω = {∗}.

Lemma 2.3. Let R be an Ω-ABR and σ ∈ Ωn, x1, x2, ..., xn ∈ R. Then
the following hold.
1.If xi = 0 for some i, then σ(x1, x2, ..., xn) = 0.
2. xi

∗ ⊆ σ(x1, x2, ..., xn)∗ for all i.
3.
∑n

i=1 x
∗
i ⊆ σ(x1, x2, ..., xn)∗.

The ideals and prime ideals of an Ω-ABR are defined same as that of
the underlying ABR and hence the set of all prime ideals of an ABR
together with hull-kernel topology forms a locally Boolean space.

Proof. Follows easily from Definition 2.1. �

Lemma 2.4. Let R be a Ω-ABR. For any x ∈ R, xR + x∗ = R.
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Proof. Clearly xR + x∗ ⊆ R.
Let a ∈ R. We have x ∈ xR and (a+ ax)x = ax+ ax = 0
and hence a+ ax ∈ x∗, so that x+ (a+ ax) ∈ xR + x∗.
It can be observed that,
a = a+ 0
= a+ (xa+ xa)
= aa+ (xa+ axa)
= (a+ (x+ ax))a
= (x+ (a+ ax))a ∈ xR + x∗ (since xR + x∗ is an ideal of R)
Therefore R ⊆ xR + x∗

Thus xR + x∗ = R �

Lemma 2.5. Let P be a prime ideal of an Ω-ABR and let x ∈ R then
x∗ ⊆ P iff x /∈ P.
Proof. Suppose x∗ ⊆ P. Since xR + x∗ = R, xR 6⊆ P, and as a
consequence x /∈ P. Conversely suppose x /∈ P, then for a ∈ R, ax=0
implies a ∈ P and hence x∗ ⊆ P.

Lemma 2.6. Let R be an ABR together with an algebraic structure.
Then, for any x1, x2, ..., xn ∈ R and σ ∈ Ωn and the following are
equivalent:
1 σ(x1, x2, ..., xn)∗ =

∑n
i=1 x

∗
i

2. For any prime ideal P of the ABR, R, σ(x1, x2, ..., xn) ∈ P if and
only if xi ∈ P for some i.

Proof. Suppose (1) holds. Let P be any prime ideal of the ABR R then
σ(x1, x2, ..., xn) ∈ P ⇔ σ(x1, x2, ..., xn)∗ /∈ P (by Lemma 2.5)
⇔

∑n
i=1 xi

∗ /∈ P by (1)
⇔ xi

∗ /∈ P for some i
⇔ xi ∈ P for some i
Conversely suppose (2) holds. Then for any prime ideal of P of the
ABR R, we have
σ(x1, x2, ..., xn) ⊆ P ⇔ σ(x1, x2, ..., xn) /∈ P
⇔ xi /∈ P for all i by (2)
⇔ xi

∗ ⊆ P for all i
⇔

∑
xi
∗ ⊆ P (by the properties of ideals)

�

3. SHEAF OF Ω-ALGEBRAS FROM A GIVEN Ω-ALMOST
BOOLEAN RING

Swamy, U.M [6] gave a general construction of global sheaf from a
given topological space X and a non empty set A. On the same lines



Ω-ALMOST BOOLEAN RINGS 21

sheaf of algebras can be constructed from the given ABR. The following
observations can be made.

Lemma 3.1. Let X denote the set of all prime ideals of an ABR R. For
any P ∈ X, define φp = {(x, y) ∈ R×R|ax = ay for some a ∈ R−P}.
Then φp is a congruence relation on the Ω-ABR R.

Lemma 3.2. Let P be a Prime ideal of R and φP be the congruence
defined as in Lemma 3.1. Then [φP (x)]∗ = φP (x∗). Where φP (x∗) =
{φp(a)|a ∈ x∗} and (φp(x))∗ = {φp(a) ∈ R/φp|φp(a)φp(x) = φp(0)}.

Definition 3.3. Let R be a non empty set. Designate an arbitrary
element as 0. Define the binary operations +, ’.’ by,

x+ y =


x, if y = 0

y, if x = 0

0 otherwise

and x.y =

{
0, if x = 0

y, if x 6= 0
for any x, y in

R. Then (R,+,.,0) satisfies the conditions of an Almost Boolean Ring
and is defined as a discrete ABR.

Definition 3.4. An Ω-ABR is said to be discrete Ω-ABR if the under-
lying ABR is discrete.

Lemma 3.5. Let P be a Prime ideal of R and φp be the congruence
relation defined as in Lemma 3.1. Then R/φP is a discrete Ω-ABR
together with the induced operation of +, . and Ω operations.

Theorem 3.6. Let X be a topological space A be any non empty set.
Let p 7→ φp be a mapping of X into the set ξ(A), of all equivalence

relations on A. Let Sp = A/θp and S =
⋃+

p∈X Sp the disjoint union of

S ′ps. For any a ∈ A, define â : X → S by â(p) = θp(a). Equip S with
the largest topology with respect to which each â is continuous. Define
π : S → X by π(s) = p if s ∈ Sp. Then (S, π,X) is a global sheaf if and
only if, for any a, b ∈ A, the set 〈a, b〉 = {p ∈ X|(a, b) ∈ θp} is open in
X.

Note:The above theorem is restatement of similar theorm which is
given in terms of congruences in [6]. However for the sake of complete-
ness proof is given here for the construction of global sheaf of sets.
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Proof. Let (S, π,X) be a global sheaf. First we prove that for a ∈ A,
â is a global section. Continuity of â is clear from the definition. Also
π ◦ â(p) = π(ηp(a)) = p for all p ∈ X. Therefore π ◦ â is the identity
and hence â is a global section.
Now we claim that X(a,b) is open in X. Let p ∈ X(a, b) that is, p ∈ X
and â(p) = b̂(p) (=s say), s ∈ S. By the definition of sheaf there exists
open sets G and U in S and X respectively such that s ∈ G and π|G :
G→ U is a homeomorphism. Observe that π(s) = π(â(p)) = p, p ∈ U .
Now take
V= â−1(G)∩ b̂−1(G)∩U . Since â, b̂, are continuous and U is open, it fol-

lows that V is open in X and p ∈ V . Now for any q ∈ V, â(q),b̂(q) ∈ G
and π(â(q)) = π(b̂(q)). From the fact that π|G is one-one map, it fol-

lows that â(q)) = b̂(q). Therefore q ∈ X(a, b) and hence X(a,b) is open.
Conversely assume that X(a,b) is open in X. We now prove that (S, π,X)
is a global sheaf. Let s ∈ S, then there exists p ∈ X, a ∈ A such
that s ∈ ηp(a). Now since ηp(a) = â(p), â(p) ∈ â(X) it follows that
s ∈ â(X).
We now prove that π|â(X) : â(X)→ X is a homeomorphism.
Suppose, π|â(X)(ηp(a)) = π|â(X)(ηq(a)), by the definition of π, it follows
that p =q. Thus ηp(a) = ηq(a) and hence π|â(X) is one-one.
Given p ∈ X, observe that π|â(X)(ηp(a)) = p for a ∈ A, ηp(a) ∈ â(X).
Therefore π|â(X) is onto. Let U be open in X and s ∈ (π|â(X))

−1(U).
Then π|â(X)(s) ∈ U . Now since s ∈ Sp for some p, there exists a ∈ A
such that s = ηp(a) and hence π|â(X)(ηp(a)) ∈ U. Since π|â(X)(ηp(a)) =
p, it follows that p ∈ U , clearly â(p) ∈ â(U). From the fact that â is
an open map, it is clear that â(U) is open in S.
Let s′ ∈ â(U), then s′ = â(q)(= ηq(a)) for some q ∈ U . It can be
observed that π|â(X)(ηp(a)) ∈ U and hence s′ = ηq(a) ∈ (π|â(X))

−1(U).
Thus â(U) ⊆ π|â(X)(U) and henceπ|â(X) is continuous.
Let H be an open set in â(X). By subspace toplogy induced by S, there
exists an open set G in S such thatH = â(X)∩G. Let s ∈ H, then there
exists q ∈ X such that s = â(q)(= ηq(a)), s ∈ G. Since q ∈ â−1(G),
consider W = â−1(G) ∩ X. Clearly q ∈ W, W is open in X. Now let
p ∈ W , that is p ∈ â−1(G) ∩X, then â(p) ∈ G and since â(p) ∈ â(X),
it follows that â(p) ∈ â(X) ∩ G = H. p = π|â(X)(â(p)) ∈ π|â(X)(H).
Thus π|â(X) is an open map. �

Lemma 3.7. Let R be an Ω-ABR and X be the spectrum of R, that is,
the topological space of all prime ideals of R together with the hull-kernel
topology. Then, for any x, y ∈ R, the set (x, y) = {P ∈ X|(x, y) ∈ φP}
in an open set in X.
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Proof. Let P ∈< x, y > . Then (x, y) ∈ φP that is ax= ay for some
a /∈ P, so that P ∈ Xa. Now for Q ∈ Xa, a /∈ Q and ax = ay and hence
Q ∈ (x, y). Thus P ∈ Xa ⊆< x, y > and hence < x, y > is an open set
in X. �

Theorem 3.8. Let X be the set of all prime ideals of an Ω-ABR R.
For P ∈ X, let SP = R/φP . Consider S =

⋃+
P∈X SP the disjoint union

of SP s. For x ∈ R, define x̂ : X → S by x̂(P ) = φP (x) and equip
S with the largest topology with respect to which each x̂ is continuous.
Define π : S → X by π(s) = P for all s ∈ SP then (S, π,X) is a sheaf
of Ω-algebras.

Proof. By Theorem 3.6 and Lemma 3.7, (S, π,X) is a sheaf of sets.
Each stalk SP = R/φP is an Ω-algebra. Therefore it is enough to show
that Ω-operations are continuous, that is, for each σ ∈ Ωn then the
map
(s1, s2, ..., sn) 7→ σ(s1, s2, ..., sn) of S(n) into S is continuous. Where,

S(n) = {(s1, s2, ..., sn) ∈ Sn|π(S1) = π(S2) = ... = π(Sn)}.

Let (s1, s2, ..., sn) ∈ S(n). Then there exists x1, x2, ..., xn ∈ R such that

si = φp(xi) (1 ≤ i ≤ n) for some P ∈ X.

Let H be an open set in S and σ(φp(x1), φp(x2), ..., φp(xp)) ∈ H, which
implies

φp(σ(x1, x2, ..., xn)) ∈ H, so that σ ˆ(x1, x2, ..., xn)(P ) ∈ H.
Now, σ ˆ(x1, x2, ..., xn) being continuous there exist open set U in X co-
taining P such that

σ ˆ(x1, x2, ..., xn)(U) ⊆ H.

Consider W = (x̂1(U), x̂2(U), ..., x̂n(U))
⋂
S(n). Then W is an open

set containing (s1, s2, ..., sn) ∈ S(n).
Let t ∈ W, where, t = (x̂1(q), x̂2(q), ..., x̂n(q)) for some q ∈ U . Then,

σ(t) = σ(x̂1(q), x̂2(q), ..., x̂n(q))

= σ(θq(x1), θq(x2), ..., θq(xn))

= θq(σ(x1, x2, ...xn))

= σ ˆ(x1, x2, ..., xn)(q) ∈ H
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Therefore σ(W ) ⊆ H and hence σ is continuous and (S, π,X) is a sheaf
of Ω-algebras. �

Lemma 3.9. Let R be an Ω-ABR and let x, y ∈ R. Then for P ∈
SpecR, x̂(P ) = 0̂(P )⇔ x ∈ P.

Proof. Observe that x̂(P ) = 0̂(P ) implies φp(x) = φp(0) and as a con-
sequence (x, 0) ∈ φp. By the definition of φP it follows that ax = 0
for some a /∈ P and hence x ∈ P (since P is prime). Conversely,
suppose x ∈ P. Choose y /∈ P. Then y + xy /∈ P (since, if y + xy ∈
P, y = ((y + xy) + xy))y ∈ P a controduction). Thus P ∈ Xy+xy, and

(y + xy)x = 0 = (y + xy)0. Thus x̂(P ) = 0̂(P ). �

Theorem 3.10. Let R be an Ω-ABR and let (S, π,X) be a sheaf of
Ω-algebras described in Theorem 3.8. Define So

P = SP − {0̂(P )} and
So =

⋃
P∈X S

0
p and πo to be the restriction of π to So. Then (So, πo, X)

is a sheaf of Ω-algebras.

Proof. Clearly So can be equipped with the subspace toplology induced
by that of the topology present on S. Now let s1, s2, ..., sn ∈ So

p i.e

Si = x̂i(P ) for some xi ∈ R (1 ≤ i ≤ n) and x̂i(P ) 6= 0̂(P ) for
all i. Then by Lemma 3.9, if follows that xi /∈ P for 1 ≤ i ≤
n. By Lemma 2.6, σ(x1, x2, ..., xn) /∈ P and again by Lemma 3.9,
σ( ˆx1, x2, ..., xn)(P ) 6= 0̂(P ). Hence, σ(s1, s2, ..., sn) ∈ So

p . Therefore So
p

is a sub algebra of Sp and hence an Ω-algebra. Let s ∈ So then there
exists x ∈ R such that s = x̂(P )(6= ô(P )) for some P ∈ Xx. Choose
G = x̂(Xx) and U = Xx. Clearly G is open in So and πo/G : G → U
is a homeomorphism. Thus πo is a local homeomorphism and hence
(So, πo, X) is a sheaf of Ω-algebras.

�
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