Journal of Algebra and Related Topics Vol. 3, No 2, (2015), pp 17-25

Ω -ALMOST BOOLEAN RINGS

M.PHANI KRISHNA KISHORE

ABSTRACT. In this paper the concept of an Ω - Almost Boolean ring is introduced and illistrated how a sheaf of algebras can be constructed from an Ω - Almost Boolean ring over a locally Boolean space.

1. INTRODUCTION

Ever since Dauns and Hoffmann [2] exhibited representation of biregular rings by sheaves, several algebraists paid attention to the representation of algebraic structures by sheaves of suitable algebras over suitable topological spaces. The works of Pierce.R.S [4], Subrahmanyam.N.V [5], Comer.S.D [1], Davey.B.A [3], Wolf.A [10], Swamy. U.M [6] thrown much light on the theory of representations of algebras by sheaves. In particular, Subrahmanyam.N.V [5], Comer.S.D[1], Swamy.U.M [6] concentrated on sheaves of algebras over (locally) compact, hausdorff, and totally disconnected spaces, which are called (locally)Boolean spaces. Swamy.U.M and Rao.G.C [7] introduced the concept of an Almost Boolean Ring and observed Stone like correspondence with Almost Distributive Lattices (ADLs). Later, Swamy U.M and Kishore.M.P.K [8] studied the prime ideal spectrum of an Almost Boolean Ring(ABR) and observed that the class of all prime ideals together with hull-kernel topology forms a locally Boolean space. Swamy.U.M et.al., [9] characterized the class of Almost Boolean Rings by sheaves of sets over locally Boolean spaces. In a quest to find equivalent characterization for sheaves of algebras, the concept of a

Keywords: Almost Boolean Rings, Sheaves over locally Boolean spaces, Boolean spaces. Received: 21 September 2015, Accepted: 30 December 2015.

MSC(2010): Primary: 06E99; Secondary: 18F20

Received. 21 September 2015, Accepted: 50 Decem

 $[\]ast {\rm Corresponding}$ author .

 Ω -Almost Boolean rings is introduced here and observed the equivalence between these two classes. An Almost Boolean ring (ABR) R is defined as a (2,2,0) type algebraic structure that satisfies the conditions of a Boolean ring except for the associativity of addition. Instead, it satisfies (x +(y + z)). t = ((x + y) + z).t, for x,y,z,t in R. As a consequence several properties were observed [8].

The annihilator ideals and prime ideals of an ABR are defined analogous to those of a ring. It is also observed that the set X of all prime ideals of an ABR R together with the hull-kernel topology, forms a locally Boolean space in which the sets of the form $X_a = \{P \in X | a \notin P\}$ for some $a \in R$, is a base [8]. A sheaf is a triple, (S, π, X) where S and X are topological spaces and π is a surjective local homeomorphism of S onto X. For $Y \subseteq X$, a section on Y is a continuous map $f: Y \to S$ such that $\pi \circ f = Id_Y$. It can be observed that if f and g are sections on $Y(\subseteq X)$ and f (p) = g(p) for some $p \in Y$, then there exists an open set W in Y containing p such that

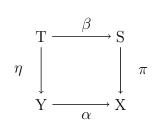
 $f|_W = g|_W$. The class { $f(U) \mid U$ is a basic open set in X and f is a section on U } is a base for the topology on S.

Any section on X is called a global section. The sheaf (S, π, X) is called a global sheaf if every element of the sheaf space S is in the image of some global section. A sheaf of algebras is a sheaf (S, π, X) in which for each

 $p \in X$, the stalk S_p is an algebra and for each $\sigma \in \Omega_n$, the map $(s_1, s_2, ..., s_n) \rightarrow \sigma(s_1, s_2, ..., s_n)$ of $S^{(n)}$ into S is continuous where,

$$S^{(n)} = \{(s_1, s_2, \dots, s_n) \in S_n | \pi(s_1) = \pi(s_2) = \dots = \pi(s_n) \}.$$

Suppose (S, π, X) is a sheaf and for each $p \in X$, stalk S_p is an algebra. Then (S, π, X) is a sheaf of algebras if and only if for each open set $U \subseteq X$ the set $\Gamma(U, S)$ of all sections on U is an Ω -algebra, in which for any n-ary operation $\sigma \in \Omega_n$, $f_1, f_2, ..., f_n \in \Gamma(U, S)$, $\sigma(f_1, f_2, ..., f_n)(p)$ is defined point wise. That is $(f_1, f_2, ..., f_n)(p) = (f_1(p), f_2(p), ..., f_n(p))$. Two sheaves (S, π, X) and (T, η, Y) of Ω -algebras are said to be isomorphic if there exists homeomorphisms $\alpha : Y \to X$ and $\beta : T \to S$ such that $\pi \circ \beta = \alpha \circ \eta$ and for any $q \in Y$ and $p \in X$ such that $\alpha(q) = p$, $\beta|_{T_q} = T_q \to S_p$ is a Ω -isomorphism. That is the diagram,



is commutative.

2. Ω-ALMOST BOOLEAN RING

Definition 2.1. An algebra $(R, +, ., 0, \Omega)$, where Ω is a set of finitary operational symbols different from +, and . on R, is called an Ω -Almost Boolean Ring if

 $(\mathbf{R}, +, ..., 0)$ is an ABR and for any n-ary $\sigma \in \Omega, x_1, x_2, ..., x_n$ and $a \in \mathbb{R}$,

I. (1). $\sigma(x_1, x_2, ..., x_i + a, ..., x_n)$ = $\sigma(x_1, x_2, ..., x_i, ..., x_n) + \sigma(x_1, ..., x_{i-1}, a, x_{i+1}, ..., x_n)$ (2). $a\sigma(x_1, x_2, ..., x_i, ..., x_n) = \sigma(x_1, x_2, ..., ax_i, ..., x_n)$ for all $1 \le i \le n$.

II.
$$\sigma(x_1, x_2, ..., x_n)^* = \sum_{i=1}^n x_i^* (n \ge 1)$$
, where
 $\sum_{i=1}^n x_i^* = \{\sum_{i=1}^n a_i | a_i \in x_i^*\}$ and x_i^* is an annihilator of x_i .

Example 2.2. Consider the Real number system with the usual multiplication (*) and define + and . on R by

$$x + y = \begin{cases} x, & if \ y = 0\\ y, & if \ x = 0\\ 0 & otherwise \end{cases} \quad and \ x.y = \begin{cases} 0, & if \ x = 0\\ y, & if \ x \neq 0 \end{cases}$$

it can easily observed that $(R+, ., \Omega)$ is an Ω - Almost Boolean ring, where $\Omega = \{*\}$.

Lemma 2.3. Let R be an Ω -ABR and $\sigma \in \Omega_n, x_1, x_2, ..., x_n \in R$. Then the following hold.

1. If $x_i = 0$ for some *i*, then $\sigma(x_1, x_2, ..., x_n) = 0$. 2. $x_i^* \subseteq \sigma(x_1, x_2, ..., x_n)^*$ for all *i*. 3. $\sum_{i=1}^n x_i^* \subseteq \sigma(x_1, x_2, ..., x_n)^*$.

The ideals and prime ideals of an Ω -ABR are defined same as that of the underlying ABR and hence the set of all prime ideals of an ABR together with hull-kernel topology forms a locally Boolean space.

Proof. Follows easily from Definition 2.1.

Lemma 2.4. Let R be a Ω -ABR. For any $x \in R$, $xR + x^* = R$.

Proof. Clearly $xR + x^* \subseteq R$. Let $a \in R$. We have $x \in xR$ and (a + ax)x = ax + ax = 0and hence $a + ax \in x^*$, so that $x + (a + ax) \in xR + x^*$. It can be observed that, a = a + 0= a + (xa + xa)= aa + (xa + axa)= (a + (x + ax))a $= (x + (a + ax))a \in xR + x^*$ (since $xR + x^*$ is an ideal of R) Therefore $R \subseteq xR + x^*$ Thus $xR + x^* = R$

Lemma 2.5. Let P be a prime ideal of an Ω -ABR and let $x \in R$ then $x^* \subseteq P$ iff $x \notin P$.

Proof. Suppose $x^* \subseteq P$. Since $xR + x^* = R$, $xR \not\subseteq P$, and as a consequence $x \notin P$. Conversely suppose $x \notin P$, then for $a \in R$, ax=0implies $a \in P$ and hence $x^* \subseteq P$.

Lemma 2.6. Let R be an ABR together with an algebraic structure. Then, for any $x_1, x_2, ..., x_n \in R$ and $\sigma \in \Omega_n$ and the following are equivalent:

 $1 \sigma(x_1, x_2, \dots, x_n)^* = \sum_{i=1}^n x_i^*$ 2. For any prime ideal P of the ABR, R, $\sigma(x_1, x_2, ..., x_n) \in P$ if and only if $x_i \in P$ for some *i*.

Proof. Suppose (1) holds. Let P be any prime ideal of the ABR R then $\sigma(x_1, x_2, ..., x_n) \in P \Leftrightarrow \sigma(x_1, x_2, ..., x_n)^* \notin P$ (by Lemma 2.5) $\Leftrightarrow \sum_{i=1}^{n} x_i^* \notin P$ by (1) $\Leftrightarrow x_i^* \notin P$ for some i $\Leftrightarrow x_i \in P$ for some iConversely suppose (2) holds. Then for any prime ideal of P of the ABR R, we have $\sigma(x_1, x_2, ..., x_n) \subseteq P \Leftrightarrow \sigma(x_1, x_2, ..., x_n) \notin P$ $\Leftrightarrow x_i \notin P$ for all *i* by (2) $\Leftrightarrow x_i^* \subseteq P \text{ for all } i$ $\Leftrightarrow \sum x_i^* \subseteq P$ (by the properties of ideals)

3. SHEAF OF Ω -ALGEBRAS FROM A GIVEN Ω -ALMOST BOOLEAN RING

Swamy, U.M [6] gave a general construction of global sheaf from a given topological space X and a non empty set A. On the same lines

20

sheaf of algebras can be constructed from the given ABR. The following observations can be made.

Lemma 3.1. Let X denote the set of all prime ideals of an ABR R. For any $P \in X$, define $\phi_p = \{(x, y) \in R \times R | ax = ay \text{ for some } a \in R - P\}$. Then ϕ_p is a congruence relation on the Ω -ABR R.

Lemma 3.2. Let P be a Prime ideal of R and ϕ_P be the congruence defined as in Lemma 3.1. Then $[\phi_P(x)]^* = \phi_P(x^*)$. Where $\phi_P(x^*) = \{\phi_p(a)|a \in x^*\}$ and $(\phi_p(x))^* = \{\phi_p(a) \in R/\phi_p | \phi_p(a)\phi_p(x) = \phi_p(0)\}.$

Definition 3.3. Let R be a non empty set. Designate an arbitrary element as 0. Define the binary operations +, '.' by,

$$x + y = \begin{cases} x, & \text{if } y = 0\\ y, & \text{if } x = 0\\ 0 & \text{otherwise} \end{cases} \quad and \ x.y = \begin{cases} 0, & \text{if } x = 0\\ y, & \text{if } x \neq 0 \end{cases} \quad \text{for any x, y in}$$

R. Then (R, +, ., 0) satisfies the conditions of an Almost Boolean Ring and is defined as a discrete ABR.

Definition 3.4. An Ω -ABR is said to be discrete Ω -ABR if the underlying ABR is discrete.

Lemma 3.5. Let P be a Prime ideal of R and ϕ_p be the congruence relation defined as in Lemma 3.1. Then R/ϕ_P is a discrete Ω -ABR together with the induced operation of +, . and Ω operations.

Theorem 3.6. Let X be a topological space A be any non empty set. Let $p \mapsto \phi_p$ be a mapping of X into the set $\xi(A)$, of all equivalence relations on A. Let $S_p = A/\theta_p$ and $S = \bigcup_{p \in X}^+ S_p$ the disjoint union of S'_ps . For any $a \in A$, define $\hat{a} : X \to S$ by $\hat{a}(p) = \theta_p(a)$. Equip S with the largest topology with respect to which each \hat{a} is continuous. Define $\pi : S \to X$ by $\pi(s) = p$ if $s \in S_p$. Then (S, π, X) is a global sheaf if and only if, for any $a, b \in A$, the set $\langle a, b \rangle = \{p \in X | (a, b) \in \theta_p\}$ is open in X.

Note: The above theorem is restatement of similar theorem which is given in terms of congruences in [6]. However for the sake of completeness proof is given here for the construction of global sheaf of sets.

Proof. Let (S, π, X) be a global sheaf. First we prove that for $a \in A$, \hat{a} is a global section. Continuity of \hat{a} is clear from the definition. Also $\pi \circ \hat{a}(p) = \pi(\eta_p(a)) = p$ for all $p \in X$. Therefore $\pi \circ \hat{a}$ is the identity and hence \hat{a} is a global section.

Now we claim that X(a,b) is open in X. Let $p \in X(a, b)$ that is, $p \in X$ and $\hat{a}(p) = \hat{b}(p)$ (=s say), $s \in S$. By the definition of sheaf there exists open sets G and U in S and X respectively such that $s \in G$ and $\pi|_G :$ $G \to U$ is a homeomorphism. Observe that $\pi(s) = \pi(\hat{a}(p)) = p, p \in U$. Now take

 $V = \hat{a}^{-1}(G) \cap \hat{b}^{-1}(G) \cap U$. Since \hat{a}, \hat{b} , are continuous and U is open, it follows that V is open in X and $p \in V$. Now for any $q \in V$, $\hat{a}(q), \hat{b}(q) \in G$ and $\pi(\hat{a}(q)) = \pi(\hat{b}(q))$. From the fact that $\pi|_G$ is one-one map, it follows that $\hat{a}(q)) = \hat{b}(q)$. Therefore $q \in X(a, b)$ and hence X(a,b) is open. Conversely assume that X(a,b) is open in X. We now prove that (S, π, X) is a global sheaf. Let $s \in S$, then there exists $p \in X$, $a \in A$ such that $s \in \eta_p(a)$. Now since $\eta_p(a) = \hat{a}(p), \ \hat{a}(p) \in \hat{a}(X)$ it follows that $s \in \hat{a}(X)$.

We now prove that $\pi|_{\hat{a}(X)} : \hat{a}(X) \to X$ is a homeomorphism.

Suppose, $\pi|_{\hat{a}(X)}(\eta_p(a)) = \pi|_{\hat{a}(X)}(\eta_q(a))$, by the definition of π , it follows that p = q. Thus $\eta_p(a) = \eta_q(a)$ and hence $\pi|_{\hat{a}(X)}$ is one-one.

Given $p \in X$, observe that $\pi|_{\hat{a}(X)}(\eta_p(a)) = p$ for $a \in A, \eta_p(a) \in \hat{a}(X)$. Therefore $\pi|_{\hat{a}(X)}$ is onto. Let U be open in X and $s \in (\pi|_{\hat{a}(X)})^{-1}(U)$. Then $\pi|_{\hat{a}(X)}(s) \in U$. Now since $s \in S_p$ for some p, there exists $a \in A$ such that $s = \eta_p(a)$ and hence $\pi|_{\hat{a}(X)}(\eta_p(a)) \in U$. Since $\pi|_{\hat{a}(X)}(\eta_p(a)) = p$, it follows that $p \in U$, clearly $\hat{a}(p) \in \hat{a}(U)$. From the fact that \hat{a} is an open map, it is clear that $\hat{a}(U)$ is open in S.

Let $s' \in \hat{a}(U)$, then $s' = \hat{a}(q)(=\eta_q(a))$ for some $q \in U$. It can be observed that $\pi|_{\hat{a}(X)}(\eta_p(a)) \in U$ and hence $s' = \eta_q(a) \in (\pi|_{\hat{a}(X)})^{-1}(U)$. Thus $\hat{a}(U) \subseteq \pi|_{\hat{a}(X)}(U)$ and hence $\pi|_{\hat{a}(X)}$ is continuous.

Let H be an open set in $\hat{a}(X)$. By subspace toplogy induced by S, there exists an open set G in S such that $H = \hat{a}(X) \cap G$. Let $s \in H$, then there exists $q \in X$ such that $s = \hat{a}(q)(=\eta_q(a)), s \in G$. Since $q \in \hat{a}^{-1}(G)$, consider $W = \hat{a}^{-1}(G) \cap X$. Clearly $q \in W$, W is open in X. Now let $p \in W$, that is $p \in \hat{a}^{-1}(G) \cap X$, then $\hat{a}(p) \in G$ and since $\hat{a}(p) \in \hat{a}(X)$, it follows that $\hat{a}(p) \in \hat{a}(X) \cap G = H$. $p = \pi|_{\hat{a}(X)}(\hat{a}(p)) \in \pi|_{\hat{a}(X)}(H)$. Thus $\pi|_{\hat{a}(X)}$ is an open map.

Lemma 3.7. Let R be an Ω -ABR and X be the spectrum of R, that is, the topological space of all prime ideals of R together with the hull-kernel topology. Then, for any $x, y \in R$, the set $(x, y) = \{P \in X | (x, y) \in \phi_P\}$ in an open set in X.

22

Proof. Let $P \in \langle x, y \rangle$. Then $(x, y) \in \phi_P$ that is ax= ay for some $a \notin P$, so that $P \in X_a$. Now for $Q \in X_a, a \notin Q$ and ax = ay and hence $Q \in (x, y)$. Thus $P \in X_a \subseteq \langle x, y \rangle$ and hence $\langle x, y \rangle$ is an open set in X.

Theorem 3.8. Let X be the set of all prime ideals of an Ω -ABR R. For $P \in X$, let $S_P = R/\phi_P$. Consider $S = \bigcup_{P \in X}^+ S_P$ the disjoint union of S_P s. For $x \in R$, define $\hat{x} : X \to S$ by $\hat{x}(P) = \phi_P(x)$ and equip S with the largest topology with respect to which each \hat{x} is continuous. Define $\pi : S \to X$ by $\pi(s) = P$ for all $s \in S_P$ then (S, π, X) is a sheaf of Ω -algebras.

Proof. By Theorem 3.6 and Lemma 3.7, (S, π, X) is a sheaf of sets. Each stalk $S_P = R/\phi_P$ is an Ω -algebra. Therefore it is enough to show that Ω -operations are continuous, that is, for each $\sigma \in \Omega_n$ then the map

 $(s_1, s_2, ..., s_n) \mapsto \sigma(s_1, s_2, ..., s_n)$ of $S^{(n)}$ into S is continuous. Where,

$$S^{(n)} = \{(s_1, s_2, \dots, s_n) \in S^n | \pi(S_1) = \pi(S_2) = \dots = \pi(S_n)\}.$$

Let $(s_1, s_2, ..., s_n) \in S^{(n)}$. Then there exists $x_1, x_2, ..., x_n \in R$ such that

 $s_i = \phi_p(x_i) \ (1 \le i \le n)$ for some $P \in X$.

Let H be an open set in S and $\sigma(\phi_p(x_1), \phi_p(x_2), ..., \phi_p(x_p)) \in H$, which implies

 $\phi_p(\sigma(x_1, x_2, ..., x_n)) \in H$, so that $\sigma(x_1, x_2, ..., x_n)(P) \in H$. Now, $\sigma(x_1, x_2, ..., x_n)$ being continuous there exist open set U in X cotaining P such that $\sigma(x_1, x_2, ..., x_n)(U) \subseteq H$.

Consider $W = (\hat{x}_1(U), \hat{x}_2(U), ..., \hat{x}_n(U)) \bigcap S^{(n)}$. Then W is an open set containing $(s_1, s_2, ..., s_n) \in S^{(n)}$. Let $t \in W$, where, $t = (\hat{x}_1(q), \hat{x}_2(q), ..., \hat{x}_n(q))$ for some $q \in U$. Then,

$$\sigma(t) = \sigma(\hat{x}_1(q), \hat{x}_2(q), \dots, \hat{x}_n(q))$$
$$= \sigma(\theta_q(x_1), \theta_q(x_2), \dots, \theta_q(x_n))$$
$$= \theta_q(\sigma(x_1, x_2, \dots, x_n))$$
$$= \sigma(x_1, x_2, \dots, x_n)(q) \in H$$

Therefore $\sigma(W) \subseteq H$ and hence σ is continuous and (S, π, X) is a sheaf of Ω -algebras. \Box

Lemma 3.9. Let R be an Ω -ABR and let $x, y \in R$. Then for $P \in SpecR$, $\hat{x}(P) = \hat{0}(P) \Leftrightarrow x \in P$.

Proof. Observe that $\hat{x}(P) = \hat{0}(P)$ implies $\phi_p(x) = \phi_p(0)$ and as a consequence $(x, 0) \in \phi_p$. By the definition of ϕ_P it follows that ax = 0 for some $a \notin P$ and hence $x \in P$ (since P is prime). Conversely, suppose $x \in P$. Choose $y \notin P$. Then $y + xy \notin P$ (since, if $y + xy \in P$, $y = ((y + xy) + xy))y \in P$ a controduction). Thus $P \in X_{y+xy}$, and (y + xy)x = 0 = (y + xy)0. Thus $\hat{x}(P) = \hat{0}(P)$.

Theorem 3.10. Let R be an Ω -ABR and let (S, π, X) be a sheaf of Ω -algebras described in Theorem 3.8. Define $S_P^o = S_P - \{\hat{0}(P)\}$ and $S^o = \bigcup_{P \in X} S_P^0$ and π^o to be the restriction of π to S^o . Then (S^o, π^o, X) is a sheaf of Ω -algebras.

Proof. Clearly S^o can be equipped with the subspace topology induced by that of the topology present on S. Now let $s_1, s_2, ..., s_n \in S_p^o$ i.e $S_i = \hat{x}_i(P)$ for some $x_i \in R$ $(1 \leq i \leq n)$ and $\hat{x}_i(P) \neq \hat{0}(P)$ for all i. Then by Lemma 3.9, if follows that $x_i \notin P$ for $1 \leq i \leq$ n. By Lemma 2.6, $\sigma(x_1, x_2, ..., x_n) \notin P$ and again by Lemma 3.9, $\sigma(x_1, x_2, ..., x_n)(P) \neq \hat{0}(P)$. Hence, $\sigma(s_1, s_2, ..., s_n) \in S_p^o$. Therefore S_p^o is a sub algebra of S_p and hence an Ω -algebra. Let $s \in S^o$ then there exists $x \in R$ such that $s = \hat{x}(P)(\neq \hat{o}(P))$ for some $P \in X_x$. Choose $G = \hat{x}(X_x)$ and $U = X_x$. Clearly G is open in S^o and $\pi^o/G : G \to U$ is a homeomorphism. Thus π^o is a local homeomorphism and hence (S^o, π^o, X) is a sheaf of Ω -algebras.

Acknowledgments

The author is greatful to Prof.U.M.Swamy, Professor (Retd), Andhra University and the anaonymous referees for the invaluable suggestions.

References

- S. D. Comer, Representation by algebra of sections over Boolean spaces, Numer. Pacific J. Math, 38 (1971), 29-38.
- J. Dauns and K. H. Hoffmann, Representation of biregular rings by sheaves, Math. Z., 91 (1966), 103-123.
- B. A. Davey, sheaf spaces and sheaves of universal algebras, Math. Z., 134(1973), 275-290.

$\Omega\text{-}\mathrm{ALMOST}$ BOOLEAN RINGS

- R.S. Pierce, Modules over commutative regular rings, Memors. Amer. Math.Soc., 70 (1967).
- 5. N.V. Subrahmanyam, *Lectures on sheaf theory*, Lecture notes, Andhra Univ., Waltair, India (1978).
- U.M. Swamy, Representation of Universal algebras by sheaves, Proc. Amer.Math. Soc., 45 (1974), 55-58.
- U.M. Swamy, and G. C. Rao, Almost distributive lattices, J. Austral. Math. Soc. 31 (1981), 77-91.
- 8. U.M. Swamy and M.P.K. Kishore, On Prime ideals of an Almost Boolean Ring, Proc. of AP Academy of Sciences, Vol.8, 4 (2004), 293-298.
- U.M. Swamy, G. C. Rao and M.P.K. Kishore, Algebraic representation of sheaves over locally Boolean spaces, Proc. of AP Academy of Sciences, Vol.8, 4 (2004), 299-304.
- A. Wolf, Sheaf representation of Arithmetical algebras, Memors. Amer. Math.Soc., 148 (2004), (1974), 87-93.

Author

Department of Information Technology, GVP College of $\operatorname{Engineering}(A), \ Visakhapatnam, AP, India.$

Email: kishorempk73gvpce.ac.in