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HOMOTOPY APPROXIMATION OF MODULES

M. ROUTARAY ∗ AND A. BEHERA

Abstract. Deleanu, Frei, and Hilton have developed the notion
of generalized Adams completion in a categorical context. In this
paper, we have obtained the Postnikov-like approximation of a
module, with the help of a suitable set of morphisms.

1. Introduction

The notion of (generalized) Adams completion arose from a general
categorical completion process, suggested by Adams ([1],[2]). Origi-
nally, this was considered for admissible categories and generalized ho-
mology (or cohomology) theories. Subsequently, this notion has been
considered in a more general framework by Deleanu, Frei and Hilton
[7] where an arbitrary category and an arbitrary set of morphisms of
the category are considered.

We emphasize that many algebric and geometrical constructions in
algebric topology can be viewed as Adams completions or cocomple-
tions of objects in suitable categories, with respect to carefully chosen
sets of morphisms. The current work is also in the same direction. The
central idea of this note is to approximate a module (Postnikov-like
decomposition) in terms of Adams completion.

Let C be a category and S be a set of morphisms of C. Let C[S−1]
denote the category of fractions of C with respect to S and F : C →
C[S−1], the canonical functor. Let S denote the category of sets and
functions. Then for a given object Y of C, C[S−1](-, Y ) : C → S defines
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a contravariant functor. If this functor is representable by an object
YS of C, i.e., C[S−1](-, Y ) ∼= C(-, YS), then YS is called the generalized
Adams completion of Y with respect to the set of morphisms S or sim-
ply the S-completion of Y. We shall often refer to YS as the completion
of Y [8].

2. The category M̃

Behera and Nanda [4] have obtained the Postnikov approximation
of a 1-connected based CW -complex, with the help of a suitable set of
morphisms. They have obtained this decomposition by introducing a
Serre class C of groups. This note contains a Postnikov-like decompo-
sition of a module over a ring with unity.

The relative homotopy theory of modules, including the (module)
homotopy exact sequence was introduced by Peter Hilton ([11], Chap-
ter 13). In fact he has developed homotopy theory in module theory,
parallel to the existing homotopy theory in topology. Unlike homotopy
theory in topology, there are two types of homotopy theory in module
theory, the injective theory and projective theory. They are dual but
not isomorphic [16]. Using injective theory we have obtained, by con-
sidering a Serre class C of modules [6], the Postnikov-like factorzation
of a module. The narrative may be recalled from [11]. We briefly de-
scribe some of the concepts towards notational view-points.

Let Λ be a ring with unity. Let A and B be right Λ-modules and
f : A → B a Λ-homomorphism in the category M. The map f is i-
nullhomotopic, denoted f 'i 0, if f can be extended to some injective
module Ā containing A. Also if g : A → B then f 'i g, if f − g 'i 0
[11]. The i-homotopy class of f is denoted by [f ]i.

Let A and B be right Λ modules and f : A→ B. A mapping cylinder
of f is the module Ā⊕B together with maps λ : A→ Ā⊕B, given by
λ(a) = i(a)+f(a) where i : A→ Ā is the inclusion, and κ : Ā⊕B → B
is defined by κ(ā+ b) = b [11].

Let U be a fixed Grothendieck universe [11]. Let M denote the
category of all Λ-modules and Λ-homomorphisms and let M̃ be the
corresponding i-homotopy category, that is, the objects of M̃ are all
Λ-modules and the morphisms of M̃ are i-homotopic classes of Λ-
homomorpisms.

We assume that the underlying sets of the elements of M are ele-
ments of U . We fix a suitable set of morhisms in M̃. For n ≥ 1, let
Sn denote the set of all maps α : A → B such that for any module
M , α∗ : π̄m(M,A) → π̄m(M,B) is a C-isomorphism for m ≤ n and a
C-epimorphism for m = n+ 1.
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We will show that the set of morphisms Sn of the category M̃ admits
a calculus of left fractions [12].

Proposition 2.1. Sn admits a calculus of left fractions.

Proof. Clearly Sn is closed under composition. We shall verify con-
ditions (i) and (ii) of ([7], Theorem 1.3, p.67). Let βα ∈ Sn and
α ∈ Sn where α : X → Y and β : Y → Z. Since βα, α ∈ Sn,
for any module M in M̃, (βα)∗ = β∗α∗ : π̄m(M,X) → π̄m(M,Z)
and α∗ : π̄m(M,X) → π̄m(M,Y ) are C-isomorphisms for m ≤ n
and C-epimorphisms for m = n + 1. It is to be shown that β∗ :
π̄m(M,Y )→ π̄m(M,Z) is C-isomorpism for m ≤ n and C-epimorphism
for m = n + 1. Since β∗α∗ and α∗ are C-isomorphism for m ≤ n and
C-epimorphism for m = n + 1, β∗ : π̄m(M,Y ) → π̄m(M,Z) is a C-
epimorphism for m ≤ n + 1. It is enough to show that β∗ is a C-
monomorphism for m ≤ n. This is obvious for any [b] ,

[
b̃
]
∈ π̄m(M,Y )

with β∗ [b] = β∗

[
b̃
]

there exist [a] , [ã] ∈ π̄m(M,X) such that α∗ [a] = [b]

and α∗ [ã] =
[
b̃
]
, since α∗ is a C-isomorphism for m ≤ n; hence

(βα)∗ [a] = β∗α∗ [a] = β∗ [b] = β∗

[
b̃
]

= β∗α∗ [ã] = (βα)∗ [ã] giving

[a] = [ã] as (β∗α∗) is a C-isomorphism for m ≤ n. Hence β ∈ Sn.
In order to prove condition (ii) of ([7], Theorem 1.3, p. 67) consider

the diagram

A
α //

γ
��

B

C

in M̃ with γ ∈ Sn. We assert that the above diagram can be embedded
to a weak push-out diagram

A
α //

γ
��

B

δ
��

C
β
// D

in M̃ with δ ∈ Sn. Let α = [f ]i and γ = [s]i. Let Ā be an injective
module containing A and ι : A → Ā be the inclusion. The map ιf :
A → Ā ⊕ B is defined by ιf (a) = i(a) + f(a), and r : Ā ⊕ B → B
is defined by r(ā + b) = b. Clearly r ◦ ιf = f ; this implies ιf is co-
fibration [17]. Let j : B → Ā⊕B be defined by j(b) = 0+b = b. Clearly
r ◦ j = 1B. We need to show that j ◦ r ' 1Ā⊕B, i.e., 1Ā⊕B − jr 'i 0.
We have j ◦ r(ā+ b) = j(b) = b and (1Ā⊕B − jr) (ā+ b)− jr(ā+ b) = ā.



16 ROUTARAY-MITALI AND BEHERA A

Let t : Ā ⊕ B → Ā be defined by t(ā + b) = ā and s : Ā → Ā ⊕ B be
defined by s(ā) = ā. We have s ◦ t : Ā⊕ B → Ā⊕ B and st(ā + b) =
s(t(ā+ b)) = s(ā) = ā. Clearly 1Ā⊕B− jr = s ◦ t. Since Ā is injective it
follows that 1Ā⊕B−jr 'i 0. Thus 1Ā⊕B 'i jr. We consider the diagram

A
s //

ιf
��

C

u

��
Ā⊕B v

// Q

and form its push-out in M where Q =
(
Ā⊕B ⊕ C

)
/L is the factor

module and L = {i(a) + f(a) + s(a) : a ∈ A} is a Λ-submodule of
Ā ⊕ B ⊕ C. Define u : C → Q by u(c) = (0 + 0 + c) + L and v :
Ā⊕B → Q by v(ā + b) = (ā + b + 0) + L. Clearly, the two maps are
well defined and Λ-module homomorphisms. For any a ∈ A, us(a) =
u(s(a)) = (0 + 0 + s(a)) + L = (s(a)) + L = L. On the other hand
vιf (a) = v (ι(a) + f(a)) = (ι(a) + f(a) + 0) + L = L. Thus us = vιf .
Hence the above diagram is commutative.

Since ιf is co-fibration, so is u [17], we therefore have the following
diagram

A
ιf //

s

��

Ā⊕B p //

v

��

X

C u
// Q q

// X

where X is the co-kernel of ιf , as well as of u; p and q are the usual
projections. We consider the exact homotopy sequences

· · · // π̄m+1(M,X) // π̄m(M,A) //

s∗
��

π̄m(M, Ā⊕B)

v∗
��

//

· · · // π̄m+1(M,X) // π̄m(M,C) // π̄m(M,Q) //

π̄m(M,X) // π̄m−1(M,A) //

s∗
��

· · ·

π̄m(M,X) // π̄m−1(M,C) // · · ·

From Five lemma [5] it follows that v∗ : π̄m(M, Ā ⊕ B) → π̄m(M,Q)
is C-isomorphism for m ≤ n and C-epimorphism for m = n + 1. Since
j is a i-null homotopy equivalence, (vj)∗ : π̄m (M,B) → π̄m (M,Q) is
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a C-isomorphism for m ≤ n and a C-epimorphism for m = n + 1. We
consider the following diagram:

A
s //

f
��

C

u
��

B
vj
// Q

Let β = [u]i and δ = [vj]i. Taking the corresponding i-homotopic
classes, we have a commutative diagram

A
r=[s]i //

α=[f ]i
��

C

β=[u]i
��

B
δ=[vj]i

// Q

in M̃ with δ ∈ Sn. This indeed is a weak push-out diagramin M̃. This
completes the proof of the proposition. �

Proposition 2.2. Let sj : Aj → Bj lie in Sn, for each j ∈ J, where
the index set J is an element of U . Then ∨

j∈J
sj : ∨

j∈J
Aj → ∨

j∈J
Bj lies in

Sn.

Proof. We consider the commutative diagram

⊕
j∈J
π̄(M,Aj) '

{αj∗} //

⊕
j∈J

sj∗ '

��

π̄(M, ∨
j∈J
Aj)(
∨

j∈J
sj

)
∗

��
⊕
j∈J
π̄(M,Bi)

'
{βj∗}

// π̄(M, ∨
j∈J
Aj)

where αj : Aj → ∨
j∈J
Aj and βj : Bj → ∨

j∈J
Bj are the canonical in-

clusions. Note that each horizontal row is an isomorphism, hence a
C-isomorphism. Since each sj∗ is a C-isomorphism in dim ≤ n and a C-
epimorphism in dimension n+1, so is ⊕

j∈J
sj∗ , and from the commutative

diagram it follows that

(
∨
j∈J
sj

)
∗

is also a C-isomorphism in dim ≤ n

and a C-epimorphism in dim n + 1. Thus ∨
j∈J
sj ∈ Sn. This competes

the proof. �

The following result is well known.

Proposition 2.3. The category M̃ is cocomplete.
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From Propositions 2.1, 2.2 and 2.3 we see that all the conditions of
([4], p. 528) are satisfied and hence we have the following result.

Theorem 2.4. Every object M of the category M̃ has an Adams com-
pletion MSn with respect to the set Sn of Λ-module homorphisms. Fur-
thermore, there exists a Λ- module homorphism en : M → MSn in S̄n
which is couniversal with respect to the Λ-module homomorphisms in
Sn: given a Λ- module homorphism s : M → N in Sn there exists a
unique Λ-module homorphism t : N → MSn in S̄n such that ts = en.
In other words the following diagram is commutative:

M
en //

s
��

MSn

N
t

<<

Theorem 2.5. The Λ-module homorphism en : M →MSn is in Sn.

Proof. Let S1
n be the set of all morphisms f : A→ B in the categoryM

such that f∗ : π̄m(M,A)→ π̄m(M,B) is a C-monomorphism for m ≤ n
and S2

n be the set of all morphisms f : A→ B in the category M̃ such
that f∗ : π̄m(M,A) → π̄m(M,B) is a C-epimorphism for m ≤ n + 1.
Clearly (i) Sn = S1

n ∩ S2
n, (ii) S1

n and S2
n satisfy all the conditions of

([4], P.533). Therefore, en ∈ Sn. This completes the proof. �

3. A Postnikov-like approximation

We obtain a decomposition of a module with the help of the sets of
morphisms Sn.

Theorem 3.1. For any Λ-module A, for n ≥ 1, there exist modules
An, maps en : A→ An and maps pn+1 : An+1 → An such that

(i) en∗ : π̄m(M,A)→ π̄m(M,An) is C- isomorphism for m ≤ n and
π̄m(M,An) = 0, for m > n,

(ii) en = pn+1 ◦ en+1.

Proof. For each integer n ≥ 1, let An be the Sn-completion of A and en :
A → An be the canonical map as stated in Theorem 2.5 Since en+1 ∈
Sn+1, it follows that en+1 ∈ Sn; hence by the couniversal property
of en+1, there exists a map pn+1 : An+1 → An making the following
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diagram commutative, i.e., pn+1 ◦ en+1 = en

A
en+1 //

en
��

An+1

pn+1||
An

Since en ∈ Sn, en∗ : π̄m(M,A) → π̄m(M,An) is a C-isomorphism for
m ≤ n. We show that π̄m(M,An) = 0, m > n. Every Λ-module M
has an injective resolution [5]. So we can take an injective resolution of
M as M →M → SM → · · · → SmM → · · · with successive cokernels
SM,S2M · · · , Sm+1M, · · · . We break the exact sequence into short
exact sequences:

0→M →M → SM → 0

0→ SM → SM → S2M → 0

...

0→ Sm−1M → Sm−1M → SmM → 0

...

Applying ExtjΛ(M,−) to the short exact sequence 0 → Sm−1M →
Sm−1M → SmM → 0 of Λ-modules, we get the exact sequence

0→ ExtjΛ
(
M,Sm−1M

)
→ ExtjΛ

(
M,Sm−1M

)
→ ExtjΛ (M,SmM)→ 0

for any j > 0. Since Sm−1M is injective, ExtjΛ(M,Sm−1M) = 0 for each

j > 0 [5]. It is clear that ExtjΛ(M,SmM) = 0 and SmM is injective
[11]. Hence π̄m(M,An) = 0 for all m > n. Thus we get Postnikov-like
approximation of a module in M̃. This completes the proof.

�
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