Journal of Algebra and Related Topics Vol. 4, No 1, (2016), pp 21-32

THE SMALL INTERSECTION GRAPH RELATIVE TO MULTIPLICATION MODULES

H. ANSARI-TOROGHY *, F. FARSHADIFAR, AND F. MAHBOOBI-ABKENAR

ABSTRACT. Let R be a commutative ring and let M be an Rmodule. We define the small intersection graph G(M) of M with all non-small proper submodules of M as vertices and two distinct vertices N, K are adjacent if and only if $N \cap K$ is a non-small submodule of M. In this article, we investigate the interplay between the graph-theoretic properties of G(M) and algebraic properties of M, where M is a multiplication module.

1. INTRODUCTION

Throughout this paper, R will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers. Let M be an R-module. We denote the set of all maximal submodules of M by Max(M) and the intersection of all maximal submodule of M by Rad(M). A submodule N of M is called *small* in M (denoted by $N \ll M$), in case for every submodule L of M, N + L = M implies that L = M. A module Mis said to be *hollow* module if every proper submodule of M is a small submodule.

A graph G is defined as the pair (V(G), E(G)), where V(G) is the set of vertices of G and E(G) is the set of edges of G. For two distinct vertices a and b denoted by a - b means that a and b are adjacent. The *degree* of a vertex a of graph G which denoted by deg(a) is the number of edges incident on a. If $|V(G)| \ge 2$, a path from a to b is

MSC(2010): Primary: 05C75; Secondary: 13A99, 05C99

Keywords: Graph, non-small submodule, multiplication module.

Received: 18 February 2016, Accepted: 13 April 2016.

^{*}Corresponding author .

a series of adjacent vertices $a - v_1 - v_2 - \dots - v_n - b$. In a graph G, the distance between two distinct vertices a and b, dented by d(a, b)is the length of the shortest path connecting a and b. If there is not a path between a and b, $d(a,b) = \infty$. The diameter of a graph G is $diam(G) = sup \{ d(a, b) \mid a, b \in V(G) \}$. A graph G is called *connected*, if for any vertices a and b of G there is a path between a and b. If not, G is disconnected. The girth of G, is the length of the shortest cycle in G and it is denoted by q(G). If G has no cycle, we define the girth of G to be infinite. An r-partite graph is one whose vertex set can be partitioned into r subsets such that no edge has both ends in any one subset. A *complete* r-partite graph is one each vertex is jointed to every vertex that is not in the same subset. The *complete bipartite* (i.e., 2-partite) graph with part sizes m and n is denoted by $K_{m,n}$. A clique of a graph is its maximal complete subgraph and the number of vertices in the largest clique of a graph G, denoted by $\omega(G)$, is called the *clique* number of G. For a graph G = (V, E), a set $S \subseteq V$ is an *independent* if no two vertices in S are adjacent. The independence number $\alpha(G)$ is the maximum size of an independent set in G. The (open) neighbourhood N(a) of a vertex $a \in V$ is the set of vertices which are adjacent to a. For each $S \subseteq V$, $N(S) = \bigcup_{a \in S} N(a)$ and $N[S] = N(S) \bigcup S$. A set of vertices S in G is a dominating set, if N[S] = V. The dominating number, $\gamma(G)$, of G is the minimum cardinality of a dominating set of G ([9]). Note that a graph whose vertices-set is empty is a null graph and a graph whose edge-set is empty is an *empty* graph.

The idea of zero divisor graph of a commutative ring was introduced by I. Beck in 1988 [2]. The zero-divisor graph of a commutative ring has also been studied by several other authors. One of the most important graphs which has been studied is the intersection graph. Bosak [4] in 1964 defined the intersection graph of semigroups. In 1964, Csákány and PolláK [10], studied the graph of subgroups of a finite groups. In 2009, the intersection graph of ideals of ring was considered by Chakrabarty, Ghosh, Mukherjee and San [5]. The intersection graph of ideal of rings and submodules of modules have been investigated by several other authors (e.g., [1, 10, 14]).

An *R*-module *M* is said to be a *multiplication R*-module if for each submodule *N* of *M* there exists an ideal *I* of *R* such that N = IM.

In [7], the authors introduced and studied the small intersection graph of a commutative ring. In this article, we give a generalization of this concept and obtain some results similar to those of in [7] when M is a multiplication module. Also we provide some examples and remarks which show that the similarly doesn't go parallel in general when M is not a multiplication R-module. This graph helps us to consider algebraic properties submodules of M by using graph theoretical tools.

2. Basic properties of G(M)

Definition 2.1. Let M be an R-module. We define the *small inter*section graph G(M) of M with all non-small proper submodules of M as vertices and two distinct vertices N, K are adjacent if and only if $N \cap K \not\ll M$. Clearly when M = R, we get the small intersection graph G(R) of R introduced in [7].

A proper submodule N of an R-module M is said to be a prime submodule of M if $ax \in N$ for $a \in R$ and $x \in M$, then either $aM \subseteq N$ or $x \in N$. We remark that if N is a prime submodule of M, then P = (N : M) is necessarily a prime ideal of R. Moreover, every maximal submodule of M is a prime submodule by [11, Proposition 4].

The next lemma plays a key role in the sequel.

Lemma 2.2. Let M be a non-zero multiplication R-module.

- (a) Every proper submodule of M is contained in a maximal submodule of M. In particular, $Max(M) \neq \emptyset$.
- (b) If N is a submodule of M, then $N \ll M$ if and only if $N \subseteq Rad(M)$.
- (c) If N, K are submodules of M and P a prime submodule of M with $P \supseteq N \cap K$, then $P \supseteq N$ or $P \supseteq K$.

Proof. (a) See [8, Theorem 2.5].

(b) Let N be a small submodule of M. If $N \not\subseteq Rad(M)$, then there exists $M_j \in Max(M)$ such that $N \not\subseteq M_j$. This implies that $N+M_j = M$. Since N is a small submodule, $M_j = M$, a contradiction. Conversely, if $N \not\ll M$, then there exists a proper submodule K of M such that N + K = M. Since M is a multiplication module, by part (a), there exists $M_t \in Max(M)$ such that $K \subseteq M_t$. It follows that $M = K + N \subseteq M_t + N$ and hence $M = M_t + N$. Since $N \subseteq M_t$, $M_t = M$, a contradiction.

(c) Let $P \subset M$ be a prime submodule with $P \supseteq N \cap K$. Then $(P:_R M) \supseteq (N \cap K:_R M) = (N:_R M) \cap (K:_R M)$. Since $(P:_R M)$ is a prime ideal, $(P:_R M) \supseteq (N:_R M)$ or $(P:_R M) \supseteq (K:_R M)$. Thus $(P:_R M)M \supseteq (N:_R M)M$ or $(P:_R M)M \supseteq (K:_R M)M$. It follows that $P \supseteq N$ or $P \supseteq K$ because M is a multiplication module. \Box

Remark 2.3. The parts (a) and (b) of Lemma 2.2 are also true when M is replaced by a coatomic R-module (we recall that an R- module M is a *coatomic* if every proper submodule of M is contained in a maximal submodule).

In the rest of this paper, we assume that M is a non-zero multiplication R-module. We recall that $Max(M) \neq \emptyset$ by Lemma 2.2 part (a).

Lemma 2.4. Let M be an R-module with $Max(M) = \{M_i\}_{i \in I}$, where |I| > 1, and let Λ be a non-empty proper finite subset of I. Then $\bigcap_{\lambda \in \Lambda} M_{\lambda}$ is not a small submodule of M.

Proof. Let $\bigcap_{\lambda \in \Lambda} M_{\lambda}$ be a small submodule of M and let $j \in I \setminus \Lambda$. Then by Lemma 2.2 (b), $\bigcap_{\lambda \in \Lambda} M_{\lambda} \subseteq M_j$. Hence by Lemma 2.2 (c), $M_{\lambda} \subseteq M_j$ for some $\lambda \in \Lambda$, a contradiction.

Proposition 2.5. Let M be an R-module. Then G(M) is a null graph if and only if M is a local module.

Proof. The necessity is clear and the sufficiency follows from Lemma 2.2 (b).

All definitions of graph theory are for non-null graphs ([3]). So in this paper, all considered graphs are non-null.

Theorem 2.6. Let M be an R-module. Then G(M) is an empty graph if and only if $Max(M) = \{M_1, M_2\}$, where M_1 and M_2 are finitely generated hollow R-modules.

Proof. Let G(M) be an empty graph. If |Max(M)| = 1, then G(M)is a null graph by Proposition 2.5, a contradiction. If $|Max(M)| \geq 3$, then by choosing $M_1, M_2 \in Max(M)$, we have $M_1 \cap M_2$ is a nonsmall submodule of M by Lemma 2.4. Thus M_1 and M_2 are adjacent, a contradiction. Hence, |Max(M)| = 2. Suppose that Max(M) = $\{M_1, M_2\}$. We claim that M_1, M_2 are hollow *R*-modules. $M_1 \cap M_2$ is a maximal submodule of M_1 because $\frac{M}{M_2}$ is a simple *R*-module and $\frac{M}{M_2}$ $\frac{M_1+M_2}{M_2} \cong \frac{M_1}{M_1 \cap M_2}$. We show that this is the only maximal submodule of M_1 . Let K be a maximal submodule of M_1 . If $K \not\ll M$, then $K \cap M_1 = K$ implies that K and M_1 are adjacent, a contradiction. Thus $K \ll M$. So by Lemma 2.2 (b), $K \subseteq M_1 \cap M_2 \subseteq M_1$ which implies that $K = M_1 \cap M_2$ by maximality of K. Therefore, M_1 is a local R-module. Thus M_1 is a hollow *R*-module. Now, we show that M_1 is a finitely generated R-module. Choose $x \in M_1 \setminus M_2$, so $Rx \not\ll M$. If $Rx \neq M_1$, then $Rx \cap M_1 = Rx$ which shows that Rx and M_1 are adjacent, a contradiction. Hence M_1 is a finitely generated local *R*-module. We have similar argument for M_2 . Hence M_1 and M_2 are finitely generated local *R*-module. Conversely, let $Max(M) = \{M_1, M_2\}$ where M_1, M_2 are finitely generated hollow R-modules. We can see $M_1 \cap M_2$ is a maximal submodule of M_1 and M_2 . By [13, page 352], $M_1 \cap M_2$ is the only maximal submodule of M_1 and M_2 . Suppose that $N \neq M_1$ and M_2 is a non-small submodule of M. Then $N \subseteq M_1$ or $N \subseteq M_2$. Without loss of generality, we can assume that $N \subseteq M_1$. By Lemma 2.2 (b), N is a small submodule, a contradiction. Hence, M_1 and M_2 are the only non-small submodules of M which are not adjacent. \Box

The following example shows that the condition "M is a multiplication module" can not be removed in Theorem 2.6.

Example 2.7. Let $M = \mathbb{Z}_2 \oplus \mathbb{Z}_2$ be a \mathbb{Z} -module. Then $V(G(M)) = Max(M) = \{(1,0)\mathbb{Z}, (0,1)\mathbb{Z}, (1,1)\mathbb{Z}\}$. But G(M) is an empty graph.

Theorem 2.8. Let M be an R-module. The following statements are equivalent.

- (a) G(M) is not connected.
- (b) |Max(M)| = 2.
- (c) $G(M) = G_1$ and G_2 , where G_1, G_2 are two disjoint complete subgraphs.

Proof. (a) \Rightarrow (b) Suppose that G(M) is not connected and |Max(M)| > 2. Let G_1, G_2 be two components of G(M) and N, K be submodules of M such that $N \in G_1$ and $K \in G_2$. Consider M_1, M_2 be maximal submodules of M and $N \subseteq M_1$ and $K \subseteq M_2$. If $M_1 = M_2$, then $N - M_1 - K$ is a path in G(M), which is a contradiction. So assume that $M_1 \neq M_2$. Since |Max(M)| > 2, we have $M_1 \cap M_2 \neq 0$ and is a non-small submodule of M. Thus $N - M_1 - M_2 - K$ is a path between G_1 and G_2 , a contradiction. Therefore, |Max(M)| = 2.

 $(b) \Rightarrow (c)$ Let $|Max(M)| = \{M_1, M_2\}$ where M_1 and M_2 are two maximal submodules of M. Let $G_j = \{M_k < M \mid M_k \subseteq M_j \text{ and } M_k \notin M\}$ for j = 1, 2. Consider $N, K \in G_1$. We claim that N and K are adjacent. Otherwise, if $N \cap K \ll M$, then by Lemma 2.2 (b), $N \cap K \subseteq M_1 \cap M_2$ which implies that $N \subseteq M_2$ or $K \subseteq M_2$ by Lemma 2.2 (c). This implies that $N \ll M$ or $K \ll M$, a contradiction. Thus G_1 is a complete subgraph and by similar arguments G_2 is a complete subgraph too. We show that there is no path between G_1 and G_2 . Assume to the contrary that there are $N \in G_2$ and $K \in G_2$ which are adjacent. We have $N \cap K \subseteq M_1 \cap M_2$. So $N \cap K$ is a small submodule of M by Lemma 2.2 (b), a contradiction. Hence $G = G_1 \cup G_2$ which G_1 and G_2 are complete subgraphs.

 $(c) \Rightarrow (a)$ This is clear.

Example 2.9. Let $R = \mathbb{Z}$ and $M = \mathbb{Z}_{36}$. Then $V(G(M)) = \{3M, 9M, 2M, 4M\}$. We can see G(M) is not connected and $G(M) = G_1 \cup G_2$

26

where $G_1 = \{3M, 9M\}$ and $G_2 = \{2M, 4M\}$ are complete subgraphs (Figure 1).

The following example shows that the condition "M is a multiplication module" can not be dropped in Theorem 2.8.

Example 2.10. Let $M = \mathbb{Z}_2 \oplus \mathbb{Z}_4$ be a \mathbb{Z} -module. This is clear that M is not a multiplication module. Also we have $Max(M) = \{M_1, M_2, M_3\}$ and $V(G) = \{N_1, N_2, M_1, M_2, M_3\}$, where $N_1 := (1, 0)\mathbb{Z}, N_2 := (1, 2)\mathbb{Z}, M_1 := (0, 1)\mathbb{Z}, M_2 := (1, 1)\mathbb{Z}$, and $M_3 := (0, 1)\mathbb{Z} + (1, 2)\mathbb{Z}$. We see that $|Max(M)| \ge 3$ but G(M) is not connected (Figure 2).

Theorem 2.11. Let G(M) be a connected graph. Then $diam(G(M)) \leq 2$.

Proof. Suppose that N and K are two vertices of G(M) which are not adjacent. Thus $N \cap K \ll M$. Then by Lemma 2.2 (a), there exists two maximal submodules M_1, M_2 of M such that $N \subseteq M_1$ and $K \subseteq M_2$. If $N \cap M_2 \ll M$, then $N - M_2 - K$ is a path so that d(N, K) = 2. Similarly, if $K \ll M_1$, then d(N, K) = 2. Now assume that $N \cap M_2 \ll M$ and $K \cap M_1 \ll M$. By Theorem 2.8 and our assumption $Max(M) \ge 3$. Let $M_3 \in Max(M)$. Then by Lemma 2.2 (b), $N \cap K \subseteq Rad(M) \subseteq M_3$. Thus $N \subseteq M_3$ or $K \subseteq M_3$. Without loss of generality, we can assume that $N \subseteq M_3$. If $K \cap M_3 \ll M$, then $N - M_3 - K$ is a path. If $K \cap M_3 \ll M$, then $K \cap M_3 \subseteq Rad(M) \subseteq M_1$. So we have $N - M_1 - K$. Therefore, d(N, K) = 2.

Theorem 2.12. Let M be an R-module and G(M) contains a cycle. Then g(G(M)) = 3.

Proof. Let |Max(M)| = 2. Then G(M) is union of two disjoint subgraphs by Theorem 2.8. So if G(M) contains a cycle, then g(G(M)) =3. Now let $|Max(M)| \ge 3$ and choose M_1, M_2 , and $M_3 \in Max(M)$. Then by Lemma 2.4, $M_1 - M_2 - M_3 - M_1$ is a cycle in G(M). Hence g(G(M)) = 3.

A vertex a in a connected graph G is a cut vertex if $G - \{a\}$ is disconnected.

Theorem 2.13. Let M be an R-module and G(M) be a connected graph. Then G(M) has no cut vertex.

Proof. Let L be a cut vertex of G(M). Then $G(M) \setminus L$ is not connected. So there exist at least two vertices N, K of G(M) such that L lies between every path from N to K. By Theorem 2.11, we see the shortest path between N, K is length of 2. Hence N - L - K is a path. So $N \cap K \ll M, N \cap L \ll M$ and $K \cap L \ll M$. We claim that L is a maximal submodule of M. Otherwise, by Lemma 2.2 (a), there exists a maximal submodule H of M such that $L \subseteq H$. Since $L \cap N \subseteq H \cap N$ and $L \cap N \ll M$, we have $H \cap N$ is a non-small submodule of M. By similar arguments we have $H \cap K \not\ll M$. Hence N - H - K is a path in $G(M) \setminus L$ which is a contradiction. Thus L is a maximal submodule. Now we show that there exists a maximal submodule $M_i \neq L$ of M such that $N \nsubseteq M_i$. Otherwise, if $N \subseteq M_i$ for each $M_i \in Max(M)$, then $N \subseteq \bigcap_{M_i \neq L} M_i$. Hence $N \cap L \subseteq \bigcap_{M_i \in Max(M)} M_i = Rad(M)$. So by Lemma 2.2 (b), $N \ll M$, a contradiction. Similarly, there exists $M_i \neq L$ such that $K \not\subseteq M_i$. We claim that for each $M_t \in Max(M)$, $N \subseteq M_t$ or $K \subseteq M_t$. Since $N \cap K \ll M$, by Lemma 2.2 (b), $N \cap K \subseteq$ $Rad(M) \subseteq M_t$ for each $M_t \in Max(M)$. Hence $N \subseteq M_t$ or $K \subseteq M_t$ by Lemma 2.2 (a). Since G(M) is connected, $|Max(M)| \geq 3$ by Theorem **2.8.** Now Assume that $L \neq M_i, M_i \in Max(M)$ such that $N \not\subseteq M_i$ and $K \not\subseteq M_j$. Hence we have $N \subseteq M_j$ and $K \subseteq M_i$. Thus $N - M_j - M_i - K$ is a path in $G(M) \setminus L$, a contradiction. Therefore, G(M) has no cut vertex.

Theorem 2.14. Let M be an R-module. Then G(M) can not be a complete n-partite graph.

Proof. Let G(M) be a complete *n*-partite graph with parts V_1, \ldots, V_n . Then by Lemma 2.4, M_i and M_j are adjacent for every $M_i, M_j \in$ Max(M). So each V_i contains at most one maximal submodule of M. By Pigeon hole principal, $|Max(M)| \leq n$. Now we claim that |Max(M)| = n. Otherwise, let |Max(M)| = t, where t < n. Suppose that $M_i \in V_i$, $1 \leq i \leq t$. Then V_{t+1} contains no maximal submodule of M. By Lemma 2.4, we see that $\bigcap_{i \neq i} M_i$ is a non-small submodule of M. Since $\cap_{i\neq i} M_i \cap M_i = Rad(M)$, we have $\cap_{i\neq i} M_i$ and M_i are non-adjacent by Lemma 2.2 (b). Thus $\bigcap_{j\neq i} M_j \in V_i$. Let N be a vertex in V_{t+1} . Then there exists a maximal submodule M_k of M such that $N \subseteq M_k$. Thus N is adjacent to M_k . Since G(M) is a complete *n*-partite graph and $M_k \in V_k$, N is adjacent to all vertices of V_k . Hence N is adjacent to $\bigcap_{j \neq k} M_j$. But this is a contradiction because $N \cap (\bigcap_{j \neq k} M_j) \subseteq M_k \cap (\bigcap_{j \neq k} M_j) = Rad(M) \ll M$. Thus |Max(M)| = n. Now we assume that $H = \bigcap_{i=3}^{n} M_i$. By Lemma 2.4, H is a non-small submodule of M. Since $H \cap M_1 = \bigcap_{i \neq 2} M_i \ll M$, we have H is adjacent to M_1 . By similar arguments H is adjacent to M_2 . Hence $H \notin V_1, V_2$. Further for each $i \ (3 \le i \le n), H \cap M_i = H \not\ll M$. Thus H is adjacent to all maximal submodules M_i of M. Hence for each $i \ (1 \leq i \leq n), \ H \notin V_i$, a contradiction.

Theorem 2.15. Let M be an R-module with $|Max(M)| < \infty$. Then we have the following.

- (a) There is no vertex in G(M) which is adjacent to every other vertex.
- (b) G(M) can not be a complete graph.

Proof. (a) Let |Max(M)| = t. Suppose on the contrary that there exists a non-small submodule $N \in V(G(M))$ such that N is adjacent to every vertex. By Lemma 2.2 (a), there exists a maximal submodule M_i of M such that $N \subseteq M_i$. Now $K := \bigcap_{i \neq i} M_i$ is a non-small submodule of M by Lemma 2.4. Since N is adjacent to all other vertices, $N \cap K \not\ll$ M. But $N \cap K \subseteq M_i \cap (\cap_{i \neq i} M_i) = Rad(M)$. Thus $N \cap K$ is a small submodule of M by Lemma 2.2 (b), a contradiction.

(b) This is an immediate consequence of part (a).

The next example shows that the condition "Max(M) is a finite set" can not be omitted in Theorem 2.15.

Example 2.16. Let $M = \mathbb{Z}$ be as a \mathbb{Z} -module. One can see that $|Max(M)| = \infty$ and 0 is the only small submodule of M. So every submodule of M is non-small and they are adjacent to each other. Thus G(M) is a complete graph.

28

A vertex of a graph G is said to be *pendent* if its neighbourhood contains exactly one vertex.

Theorem 2.17. Let M be an R-module.

- (a) G(M) contains a pendent vertex if and only if |Max(M)| = 2and $G(M) = G_1 \cup G_2$, where G_1, G_2 are two disjoint complete subgraphs and $|V(G_i)| = 2$ for some i = 1, 2.
- (b) G(M) is not a star graph.

Proof. (a) Let N be a pendent vertex of G(M). Suppose on the contrary that $|Max(M)| \geq 3$. By Lemma 2.4, for each $M_i \in Max(M)$, M_i is adjacent to other maximal submodules of M. Thus $deg(M_i) \geq 2$ and hence N is not a maximal submodule. By Lemma 2.2 (a), there exists a maximal submodule M_i of M such that $N \subseteq M_i$. Without loss of generality, we may assume that $N \subseteq M_1$. Then N and M_1 are adjacent. Since deg(N) = 1, we have the only vertex of G(M)which is adjacent to N is M_1 in other word there is no maximal submodule $M_i \neq M_1$ such that $N \subseteq M_i$. Thus $N \cap M_2 \ll M$. Hence by Lemma 2.2 (b), $N \cap M_2 \subseteq Rad(M) \subseteq M_j$ for each $M_j \neq M_1, M_2$. Thus $N \subseteq M_j$ $(j \neq 1, 2)$ by Lemma 2.2 (c), a contradiction. Therefore, |Max(M)| = 2. By Theorem 2.8, $G(M) = G_1 \cup G_2$ where G_1, G_2 are complete subgraphs of G(M). Let $N \in G_i$ for i $(1 \leq i \leq 2)$. Then $|V(G_i)| = 2$ because G_i is a complete subgraph and deg(N) = 1. The converse is straightforward.

(b) Let G(M) be a star graph. Then G(M) contains a pendent vertex and hence |Max(M)| = 2 by part (a). Therefore, G(M) is not connected by Theorem 2.8, a contradiction.

A regular graph is a graph where each vertex has the same number of neighbours (i.e. every vertex has the same degree). A regular graph is r-regular (or regular of degree r) if the degree of each vertex is r.

Theorem 2.18. Let M be an R module.

- (a) If N and K are two vertex of G(M) such that $N \subseteq K$, then $deg(N) \leq deg(K)$;
- (b) If G(M) is an r-regular graph, then |Max(M)| = 2 and |V(G(M))| = 2r + 2.

Proof. (a) Suppose that N and K are two vertex of G(M) such that $N \subseteq K$. Let L be a vertex adjacent to N. Thus $L \cap N \not\ll M$ and hence $L \cap K \not\ll M$. This implies that K is adjacent to L so that $deg(N) \leq deg(K)$.

(b) Assume on the contrary that $|Max(M)| \ge 3$. Then for each $M_i \in Max(M)$, since $deg(M_i) = r$ and M_i is adjacent to all maximal submodules by Lemma 2.4, we have Max(M) is a finite set. Now for $M_1, M_2 \in Max(M), \ deg(M_1 \cap M_2) \leq deg(M_1)$ by part (a). Clearly, $deg(M_1 \cap M_2) \neq deg(M_1)$ because if $N = \bigcap_{j \neq 2} M_j$, then N is adjacent to M_1 but N is not adjacent to $M_1 \cap M_2$ by Lemma 2.2 (b). Hence $deg(M_1 \cap M_2) < r$, a contradiction. Therefore, $|Max(M)| \leq 2$. Clearly, $|Max(M)| \neq 1$. Thus |Max(M)| = 2 and G(M) is a union of two disjoint complete subgraphs by Theorem 2.8. Let $Max(M) = \{M_1, M_2\}$ and assume that $M_i \in G_i$. Since for each $i = 1, 2, \ deg(M_i) = r$, we have $|G_i| = r + 1$. It follows that |V(G(M))| = 2r + 2.

3. CLIQUE NUMBER, INDEPENDENCE NUMBER, AND DOMINATION NUMBER

In this section, we will study the clique number, independence number, and domination number of the small intersection graph. We recall that M is a multiplication R-module.

Proposition 3.1. Let M be an R-module. Then we have the following.

- (a) If G(M) is a non-empty graph, then $\omega(G(M)) \ge |Max(M)|$.
- (b) If G(M) is an empty graph, then $\omega(G(M)) = 1$ if and only if $Max(M) = \{M_1, M_2\}$, where M_1 and M_2 are finitely generated hollow *R*-modules.
- (c) If $\omega(G(M)) < \infty$, then $|Max(M)| < \infty$.
- (d) If $\omega(G(M)) < \infty$, then $\omega(G(M)) \ge 2^{|Max(M)|-1} 1$.

Proof. (a) If |Max(M)| = 2, then $\omega(G(M)) \ge 2$ by Theorem 2.8. If $|Max(M)| \ge 3$, then the subgraph of G(M) with the vertex set of $\{M_i\}_{M_i \in Max(M)}$ is a complete subgraph of G(M) by Lemma 2.4. Hence $\omega(G(M)) \ge |Max(M)|$.

- (b) This follows directly from Theorem 2.6.
- (c) This is clear by part (a) and (b).
- (d) Let $Max(M) = \{M_1, ..., M_t\}$. Also for each $1 \le i \le t$, set $A_i = \{M_1, ..., M_{i-1}, M_{i+1}, M_t\}.$

Now let $P(A_i)$ be the power set of A_i and for each $X \in P(A_i)$, set $M_X = \bigcap_{M_j \in X} M_j$ for $1 \leq j \leq t$. The subgraph of G(M) with the vertex set $\{M_X\}_{X \in P(A_i) \setminus \{\emptyset\}}$ is a complete subgraph of G(M)by Lemma 2.4. Clearly, $|\{M_X\}_{X \in P(A_i) \setminus \{\emptyset\}}| = 2^{|Max(M)|-1} - 1$. Thus $\omega(G(M)) \geq 2^{|Max(M)|-1} - 1$.

The following remarks show that the condition "M is a multiplication module" can not be omitted in Proposition 3.1.

Remark 3.2. Let $M := \mathbb{Z}_2 \oplus \mathbb{Z}_2$ be as Example 2.7 which is an empty graph. Then we see that |Max(M)| = 3; but $\omega(G(M)) = 1$.

Remark 3.3. Let $M := \mathbb{Z}_2 \oplus \mathbb{Z}_4$ be as Example 2.10. Then G(M) is a non-empty graph with $\omega(G(M)) < |Max(M)|$.

Corollary 3.4. Let M be a finitely generated R-module. If $\omega(G(M)) < \infty$, then M/Rad(M) is a cyclic R-module.

Proof. This follows from Proposition 3.1 (c) and [8, Theorem 2.8]. \Box

Theorem 3.5. Let R be a ring and M be an R-module. Then $\gamma(G(M)) \leq 2$. Moreover, if Max(M) is a finite set, then $\gamma(G(M)) = 2$.

Proof. Since G(M) is a non-null graph, we have $|Max(M)| \geq 2$. Set $S := \{M_1, M_2\}$, where $M_1, M_2 \in Max(M)$. Let $N \in V(G(M))$. We claim that N is adjacent to M_1 or M_2 . Clearly, when $N \subseteq M_1$ or $N \subseteq M_2$, the claim is true. So we assume that $N \notin M_1$ and $N \notin M_2$. Without loss of generality, we may assume that N is not adjacent to M_1 . Then $N \cap M_1 \subseteq Rad(M)$ by Lemma 2.2 (b). It follows that $N \subseteq M_2$, a contradiction. Similarly, N is adjacent to M_2 . Hence $\gamma(G(M)) \leq 2$. The last assertion follows from Theorem 2.15.

Example 3.6. Let $M := \mathbb{Z}_{36}$ be as Example 2.9. Then we see that $|Max(M)| < \infty$ and $\gamma(G(M)) = 2$.

Remark 3.7. The condition "*M* is a multiplication module" can not be omitted in Theorem 3.5. For example, let $M = \mathbb{Z}_2 \oplus Z_6$ be a \mathbb{Z} -module. Then $V(G(M)) = \{(0,1)\mathbb{Z}, (0,2)\mathbb{Z}, (0,3)\mathbb{Z}, (1,0)\mathbb{Z}, (1,1)\mathbb{Z}, (1,2)\mathbb{Z}, (1,3)\mathbb{Z}, (1,0)\mathbb{Z} + (0,3)\mathbb{Z}\}$ and $Max(M) = \{(0,1)\mathbb{Z}, (1,2)\mathbb{Z}, (1,1)\mathbb{Z}, (1,0)\mathbb{Z} + (0,3)\mathbb{Z}\}$. We see that $|Max(M)| < \infty$; but $\gamma(G(M)) = 3$.

Theorem 3.8. Let M be an R-module and $|Max(M)| < \infty$. Then $\alpha(G(M)) = |Max(M)|$.

Proof. Let $Max(M) = \{M_1, ..., M_n\}$. Since $T := \{\bigcap_{j=1, i \neq j}^n M_j\}_{i=1}^n$ is an independent set in G(M), we have $n \leq \alpha(G(M))$ (Note that if $\alpha, \beta \in T$, then $\alpha \cap \beta = Rad(M)$, so α is not adjacent to β by Lemma 2.2 (c)). Now let $\alpha(G(M)) = m$ and let $S = \{N_1, N_2, ..., N_m\}$ be a maximal independent set in G(M). Then for each $N \in S$, $N \not\ll M$. By Lemma 2.2 (b), $N \not\subseteq M_t$ for some $M_t \in Max(M)$. If m > n, then by Pigeon hole principal, there exists $1 \leq i, j \leq n$ such that $N_i \not\subseteq M_t$ and $N_j \not\subseteq M_t$. Since S is an independent set, N_i and N_j are not adjacent and $N_i \cap N_j \ll M$. So $N_i \cap N_j \subseteq M_t$ by Lemma 2.2 (b). Hence $N_i \subseteq M_t$ or $N_j \subseteq M_t$ by Lemma 2.2 (c), a contradiction. We have similar arguments when $\alpha(G(M)) = \infty$. Thus $\alpha(G(M)) = |Max(M)|$ and the proof is complete. \Box

Acknowledgments

We would like to thank the referee for careful reading and valuable comments.

References

- S. Akbari, H. A. Tavallaee, and S. Khalashi Ghezelahmad, Intersection graph of submudeles of a module, J. Algebra Appl, 11 (2012), 1250019.
- 2. I. Beck. Coloring of a commutative ring. J. Algebra, 116 (1988), 208-226.
- J. A. Bondy and U. S. R. Murty, *Graph theory*, Gradute Text in Mathematics, 244, Springer, New York, 2008.
- J. Bosak, The graphs of semigroups, In Theory of Graphs and Application(Academic Press), New York, (1964), 119–125
- I. Chakrabarty, S. Ghosh, T. K. Mukherjee, and M. K. Sen, *Intersection graphs* of ideals of rings, Discrete Math., **309** (2009), 5381–5392.
- B. Csákány and G. Pollák, The graph of subgroups of a finite subgroup, Czechoslovak Math. J., 19 (1969), 241–247.
- 7. S. Ebrahimi Atani, S. Dolati Pish Hesari, and M. Khoramdel, A graph associated to proper non-small graph ideals of a commutative ring, submitted.
- Z. A. El-Bast and P. P Smith, *Multiplication Modules*, Comm. Algebra, 16 (1988), 755–799.
- T. W. Haynes, S. T. Hedetniemi, and P.J. Slater, Fundemental of domination in graphs, Inc, New York, NY, 1988.
- S. H. Jafari and N. Jafari Rad, Domination in the intersection graph of rings and modules, Ital. J. Pure Appl. Math. 28 (2011), 19–22.
- C. P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Paul, 33 (1) (1984), 61–69.
- 12. C. P. Lu, Spectra of modules, Comm. Algebra, 23 (1995), 3741–3752.
- 13. R. Wisbauer, *The foundation of modules and rings*, Philadelphia: Gordan and Breach, 1991.
- 14. E. Yaraneri, Intersection graph of a module, J. Algebra Appl, **12** (2013), 1250218.

H. Ansari-Toroghy

Department of Mathematics, University of Guilan, P.O.41335-19141, Rasht, Iran. Email: ansari@guilan.ac.ir

F. Farshadifar

Department of Mathematics, University of Farhangian Tehran, Iran. Email: f.farshadifar@gmail.com

F. Mahboobi-Abkenar

Department of Mathematics, University of Guilan Rasht, Iran. Email: mahboobi@phd.guilan.ac.ir