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THE SMALL INTERSECTION GRAPH RELATIVE TO
MULTIPLICATION MODULES

H. ANSARI-TOROGHY ∗, F. FARSHADIFAR, AND F.
MAHBOOBI-ABKENAR

Abstract. Let R be a commutative ring and let M be an R-
module. We define the small intersection graph G(M) of M with
all non-small proper submodules of M as vertices and two distinct
vertices N,K are adjacent if and only if N ∩K is a non-small sub-
module of M . In this article, we investigate the interplay between
the graph-theoretic properties of G(M) and algebraic properties of
M , where M is a multiplication module.

1. Introduction

Throughout this paper, R will denote a commutative ring with iden-
tity and Z will denote the ring of integers. Let M be an R-module. We
denote the set of all maximal submodules of M by Max(M) and the
intersection of all maximal submodule of M by Rad(M). A submodule
N of M is called small in M (denoted by N � M), in case for every
submodule L of M , N + L = M implies that L = M . A module M
is said to be hollow module if every proper submodule of M is a small
submodule.

A graph G is defined as the pair (V (G), E(G)), where V (G) is the
set of vertices of G and E(G) is the set of edges of G. For two distinct
vertices a and b denoted by a − b means that a and b are adjacent.
The degree of a vertex a of graph G which denoted by deg(a) is the
number of edges incident on a. If |V (G)| > 2, a path from a to b is
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a series of adjacent vertices a − v1 − v2 − ... − vn − b. In a graph G,
the distance between two distinct vertices a and b, dented by d(a, b)
is the length of the shortest path connecting a and b. If there is not
a path between a and b, d(a, b) = ∞. The diameter of a graph G is
diam(G) = sup {d(a, b) | a, b ∈ V (G)}. A graph G is called connected,
if for any vertices a and b of G there is a path between a and b. If not,
G is disconnected. The girth of G, is the length of the shortest cycle
in G and it is denoted by g(G). If G has no cycle, we define the girth
of G to be infinite. An r-partite graph is one whose vertex set can
be partitioned into r subsets such that no edge has both ends in any
one subset. A complete r-partite graph is one each vertex is jointed to
every vertex that is not in the same subset. The complete bipartite (i.e,
2-partite) graph with part sizes m and n is denoted by Km,n. A clique
of a graph is its maximal complete subgraph and the number of vertices
in the largest clique of a graph G, denoted by ω(G), is called the clique
number of G. For a graph G = (V,E), a set S ⊆ V is an independent if
no two vertices in S are adjacent. The independence number α(G) is the
maximum size of an independent set in G. The (open) neighbourhood
N(a) of a vertex a ∈ V is the set of vertices which are adjacent to a.
For each S ⊆ V , N(S) =

⋃
a∈S N(a) and N [S] = N(S)

⋃
S. A set

of vertices S in G is a dominating set, if N [S] = V . The dominating
number, γ(G), of G is the minimum cardinality of a dominating set of
G ([9]). Note that a graph whose vertices-set is empty is a null graph
and a graph whose edge-set is empty is an empty graph.

The idea of zero divisor graph of a commutative ring was introduced
by I. Beck in 1988 [2]. The zero-divisor graph of a commutative ring has
also been studied by several other authors. One of the most important
graphs which has been studied is the intersection graph. Bosak [4] in
1964 defined the intersection graph of semigroups. In 1964, Csákány
and PolláK [10], studied the graph of subgroups of a finite groups.
In 2009, the intersection graph of ideals of ring was considered by
Chakrabarty, Ghosh, Mukherjee and San [5]. The intersection graph
of ideal of rings and submodules of modules have been investigated by
several other authors (e.g., [1, 10, 14]).

An R-module M is said to be a multiplication R-module if for each
submodule N of M there exists an ideal I of R such that N = IM .

In [7], the authors introduced and studied the small intersection
graph of a commutative ring. In this article, we give a generalization of
this concept and obtain some results similar to those of in [7] when M is
a multiplication module. Also we provide some examples and remarks
which show that the similarly doesn’t go parallel in general when M
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is not a multiplication R-module. This graph helps us to consider
algebraic properties submodules of M by using graph theoretical tools.

2. Basic properties of G(M)

Definition 2.1. Let M be an R-module. We define the small inter-
section graph G(M) of M with all non-small proper submodules of
M as vertices and two distinct vertices N,K are adjacent if and only
if N ∩ K 6� M . Clearly when M = R, we get the small intersection
graph G(R) of R introduced in [7].

A proper submodule N of an R-module M is said to be a prime
submodule of M if ax ∈ N for a ∈ R and x ∈M , then either aM ⊆ N
or x ∈ N . We remark that if N is a prime submodule of M , then
P = (N : M) is necessarily a prime ideal of R. Moreover, every
maximal submodule of M is a prime submodule by [11, Proposition 4].

The next lemma plays a key role in the sequel.

Lemma 2.2. Let M be a non-zero multiplication R-module.

(a) Every proper submodule of M is contained in a maximal sub-
module of M . In particular, Max(M) 6= ∅.

(b) If N is a submodule of M , then N � M if and only if N ⊆
Rad(M).

(c) If N,K are submodules of M and P a prime submodule of M
with P ⊇ N ∩K, then P ⊇ N or P ⊇ K.

Proof. (a) See [8, Theorem 2.5].
(b) Let N be a small submodule of M . If N * Rad(M), then

there exists Mj ∈ Max(M) such that N * Mj. This implies that
N+Mj = M . Since N is a small submodule, Mj = M , a contradiction.
Conversely, if N 6� M , then there exists a proper submodule K of M
such that N + K = M . Since M is a multiplication module, by part
(a), there exists Mt ∈ Max(M) such that K ⊆ Mt. It follows that
M = K + N ⊆ Mt + N and hence M = Mt + N . Since N ⊆ Mt,
Mt = M , a contradiction.

(c) Let P ⊂ M be a prime submodule with P ⊇ N ∩ K. Then
(P :R M) ⊇ (N ∩K :R M) = (N :R M)∩ (K :R M). Since (P :R M) is
a prime ideal, (P :R M) ⊇ (N :R M) or (P :R M) ⊇ (K :R M). Thus
(P :R M)M ⊇ (N :R M)M or (P :R M)M ⊇ (K :R M)M . It follows
that P ⊇ N or P ⊇ K because M is a multiplication module. �

Remark 2.3. The parts (a) and (b) of Lemma 2.2 are also true when M
is replaced by a coatomic R-module (we recall that an R- module M is
a coatomic if every proper submodule of M is contained in a maximal
submodule).
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In the rest of this paper, we assume that M is a non-zero multipli-
cation R-module. We recall that Max(M) 6= ∅ by Lemma 2.2 part
(a).

Lemma 2.4. Let M be an R-module with Max(M) = {Mi}i∈I , where
|I| > 1, and let Λ be a non-empty proper finite subset of I. Then⋂
λ∈ΛMλ is not a small submodule of M .

Proof. Let
⋂
λ∈ΛMλ be a small submodule of M and let j ∈ I \ Λ.

Then by Lemma 2.2 (b),
⋂
λ∈ΛMλ ⊆ Mj. Hence by Lemma 2.2 (c),

Mλ ⊆Mj for some λ ∈ Λ, a contradiction. �

Proposition 2.5. Let M be an R-module. Then G(M) is a null graph
if and only if M is a local module.

Proof. The necessity is clear and the sufficiency follows from Lemma
2.2 (b). �

All definitions of graph theory are for non-null graphs ([3]). So in
this paper, all considered graphs are non-null.

Theorem 2.6. Let M be an R-module. Then G(M) is an empty graph
if and only if Max(M) = {M1,M2}, where M1 and M2 are finitely
generated hollow R-modules.

Proof. Let G(M) be an empty graph. If |Max(M)| = 1, then G(M)
is a null graph by Proposition 2.5, a contradiction. If |Max(M)| ≥ 3,
then by choosing M1,M2 ∈ Max(M), we have M1 ∩ M2 is a non-
small submodule of M by Lemma 2.4. Thus M1 and M2 are adjacent,
a contradiction. Hence, |Max(M)| = 2. Suppose that Max(M) =
{M1,M2}. We claim that M1,M2 are hollow R-modules. M1 ∩M2 is a
maximal submodule of M1 because M

M2
is a simple R-module and M

M2
=

M1+M2

M2

∼= M1

M1∩M2
. We show that this is the only maximal submodule

of M1. Let K be a maximal submodule of M1. If K 6� M , then
K∩M1 = K implies that K and M1 are adjacent, a contradiction. Thus
K �M . So by Lemma 2.2 (b), K ⊆M1∩M2 ⊆M1 which implies that
K = M1∩M2 by maximality of K. Therefore, M1 is a local R-module.
Thus M1 is a hollow R-module. Now, we show that M1 is a finitely
generated R-module. Choose x ∈ M1 \M2, so Rx 6� M . If Rx 6= M1,
then Rx ∩ M1 = Rx which shows that Rx and M1 are adjacent, a
contradiction. Hence M1 is a finitely generated local R-module. We
have similar argument for M2. Hence M1 and M2 are finitely generated
local R-module. Conversely, let Max(M) = {M1,M2} where M1,M2

are finitely generated hollow R-modules. We can see M1 ∩ M2 is a
maximal submodule of M1 and M2. By [13, page 352], M1 ∩ M2 is
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the only maximal submodule of M1 and M2. Suppose that N 6= M1

and M2 is a non-small submodule of M . Then N ⊆ M1 or N ⊆ M2.
Without loss of generality, we can assume that N ⊆ M1. By Lemma
2.2 (b), N is a small submodule, a contradiction. Hence, M1 and M2

are the only non-small submodules of M which are not adjacent. �

The following example shows that the condition “M is a multiplica-
tion module” can not be removed in Theorem 2.6.

Example 2.7. Let M = Z2 ⊕ Z2 be a Z-module. Then V (G(M)) =
Max(M) = {(1, 0)Z, (0, 1)Z, (1, 1)Z}. But G(M) is an empty graph.

Theorem 2.8. Let M be an R-module. The following statements are
equivalent.

(a) G(M) is not connected.
(b) |Max(M)| = 2.
(c) G(M) = G1 and G2, where G1, G2 are two disjoint complete

subgraphs.

Proof. (a)⇒ (b) Suppose thatG(M) is not connected and |Max(M)| >
2. Let G1, G2 be two components of G(M) and N,K be submodules
of M such that N ∈ G1 and K ∈ G2. Consider M1,M2 be maximal
submodules of M and N ⊆ M1 and K ⊆ M2. If M1 = M2, then
N −M1 −K is a path in G(M), which is a contradiction. So assume
that M1 6= M2. Since |Max(M)| > 2, we have M1 ∩M2 6= 0 and is a
non-small submodule of M . Thus N −M1−M2−K is a path between
G1 and G2, a contradiction. Therefore, |Max(M)| = 2.

(b)⇒ (c) Let |Max(M)| = {M1,M2} where M1 and M2 are two maxi-
mal submodules of M . Let Gj = {Mk < M | Mk ⊆Mj andMk 6�M}
for j = 1, 2. ConsiderN,K ∈ G1. We claim thatN andK are adjacent.
Otherwise, if N ∩K �M , then by Lemma 2.2 (b), N ∩K ⊆M1 ∩M2

which implies that N ⊆ M2 or K ⊆ M2 by Lemma 2.2 (c). This im-
plies that N �M or K �M , a contradiction. Thus G1 is a complete
subgraph and by similar arguments G2 is a complete subgraph too.
We show that there is no path between G1 and G2. Assume to the
contrary that there are N ∈ G2 and K ∈ G2 which are adjacent. We
have N ∩ K ⊆ M1 ∩M2. So N ∩ K is a small submodule of M by
Lemma 2.2 (b), a contradiction. Hence G = G1 ∪G2 which G1 and G2

are complete subgraphs.
(c)⇒ (a) This is clear.

�

Example 2.9. Let R = Z and M = Z36. Then V (G(M)) = {3M, 9M,
2M, 4M}. We can see G(M) is not connected and G(M) = G1 ∪ G2
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where G1 = {3M, 9M} and G2 = {2M, 4M} are complete subgraphs
(Figure 1).

Figure 1. G(Z36).

2M

4M

3M

9M

The following example shows that the condition “M is a multiplica-
tion module” can not be dropped in Theorem 2.8.

Example 2.10. Let M = Z2⊕Z4 be a Z-module. This is clear that M
is not a multiplication module. Also we haveMax(M) = {M1,M2,M3}
and V (G) = {N1, N2,M1,M2,M3}, where N1 := (1, 0)Z, N2 := (1, 2)Z,
M1 := (0, 1)Z, M2 := (1, 1)Z, and M3 := (0, 1)Z+ (1, 2)Z. We see that
|Max(M) |≥ 3 but G(M) is not connected (Figure 2).

Figure 2. G(Z2 ⊕ Z4).

M3

N2N1

M1

M2

Theorem 2.11. Let G(M) be a connected graph. Then diam(G(M)) 6
2.

Proof. Suppose that N and K are two vertices of G(M) which are
not adjacent. Thus N ∩ K � M . Then by Lemma 2.2 (a), there
exists two maximal submodules M1,M2 of M such that N ⊆ M1 and
K ⊆ M2. If N ∩ M2 6� M , then N − M2 − K is a path so that
d(N,K) = 2. Similarly, if K 6� M1, then d(N,K) = 2. Now assume
that N ∩ M2 � M and K ∩ M1 � M . By Theorem 2.8 and our
assumption Max(M) ≥ 3. Let M3 ∈ Max(M). Then by Lemma 2.2
(b), N ∩ K ⊆ Rad(M) ⊆ M3. Thus N ⊆ M3 or K ⊆ M3. Without
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loss of generality, we can assume that N ⊆M3. If K ∩M3 6�M , then
N−M3−K is a path. If K∩M3 �M , then K∩M3 ⊆ Rad(M) ⊆M1.
So we have N −M1 −K. Therefore, d(N,K) = 2.

�

Theorem 2.12. Let M be an R-module and G(M) contains a cycle.
Then g(G(M)) = 3.

Proof. Let |Max(M)| = 2. Then G(M) is union of two disjoint sub-
graphs by Theorem 2.8. So if G(M) contains a cycle, then g(G(M)) =
3. Now let |Max(M)| ≥ 3 and choose M1,M2, and M3 ∈ Max(M).
Then by Lemma 2.4, M1 −M2 −M3 −M1 is a cycle in G(M). Hence
g(G(M)) = 3. �

A vertex a in a connected graph G is a cut vertex if G − {a} is
disconnected.

Theorem 2.13. Let M be an R-module and G(M) be a connected
graph. Then G(M) has no cut vertex.

Proof. Let L be a cut vertex of G(M). Then G(M)\L is not connected.
So there exist at least two vertices N,K of G(M) such that L lies
between every path from N to K. By Theorem 2.11, we see the shortest
path between N,K is length of 2. Hence N − L − K is a path. So
N ∩ K � M , N ∩ L 6� M and K ∩ L 6� M . We claim that L is a
maximal submodule of M . Otherwise, by Lemma 2.2 (a), there exists
a maximal submodule H of M such that L ⊆ H. Since L∩N ⊆ H ∩N
and L ∩N 6�M , we have H ∩N is a non-small submodule of M . By
similar arguments we have H ∩K 6�M . Hence N −H −K is a path
in G(M)\L which is a contradiction. Thus L is a maximal submodule.
Now we show that there exists a maximal submodule Mi 6= L of M
such that N * Mi. Otherwise, if N ⊆ Mi for each Mi ∈ Max(M),
then N ⊆

⋂
Mi 6=LMi. Hence N ∩ L ⊆

⋂
Mi∈Max(M)Mi = Rad(M). So

by Lemma 2.2 (b), N � M , a contradiction. Similarly, there exists
Mj 6= L such that K * Mj. We claim that for each Mt ∈ Max(M),
N ⊆Mt or K ⊆Mt. Since N ∩K �M , by Lemma 2.2 (b), N ∩K ⊆
Rad(M) ⊆Mt for each Mt ∈Max(M). Hence N ⊆Mt or K ⊆Mt by
Lemma 2.2 (a). Since G(M) is connected, |Max(M)| ≥ 3 by Theorem
2.8. Now Assume that L 6= Mi,Mj ∈Max(M) such that N *Mi and
K *Mj. Hence we have N ⊆Mj and K ⊆Mi. Thus N−Mj−Mi−K
is a path in G(M) \ L, a contradiction. Therefore, G(M) has no cut
vertex. �

Theorem 2.14. Let M be an R-module. Then G(M) can not be a
complete n-partite graph.
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Proof. Let G(M) be a complete n-partite graph with parts V1, ..., Vn.
Then by Lemma 2.4, Mi and Mj are adjacent for every Mi,Mj ∈
Max(M). So each Vi contains at most one maximal submodule of
M . By Pigeon hole principal, |Max(M)| ≤ n. Now we claim that
|Max(M)| = n. Otherwise, let |Max(M)| = t, where t < n. Suppose
that Mi ∈ Vi, 1 ≤ i ≤ t. Then Vt+1 contains no maximal submodule
of M . By Lemma 2.4, we see that ∩j 6=iMj is a non-small submodule
of M . Since ∩j 6=iMj ∩ Mi = Rad(M), we have ∩j 6=iMj and Mi are
non-adjacent by Lemma 2.2 (b). Thus ∩j 6=iMj ∈ Vi. Let N be a
vertex in Vt+1. Then there exists a maximal submodule Mk of M
such that N ⊆ Mk. Thus N is adjacent to Mk. Since G(M) is a
complete n-partite graph and Mk ∈ Vk, N is adjacent to all vertices
of Vk. Hence N is adjacent to ∩j 6=kMj. But this is a contradiction
because N ∩ (∩j 6=kMj) ⊆ Mk ∩ (∩j 6=kMj) = Rad(M) � M . Thus
|Max(M)| = n. Now we assume that H = ∩ni=3Mi. By Lemma 2.4,
H is a non-small submodule of M . Since H ∩M1 = ∩i 6=2Mi 6� M , we
have H is adjacent to M1. By similar arguments H is adjacent to M2.
Hence H 6∈ V1, V2. Further for each i (3 ≤ i ≤ n), H ∩Mi = H 6� M .
Thus H is adjacent to all maximal submodules Mi of M . Hence for
each i (1 ≤ i ≤ n), H 6∈ Vi, a contradiction. �

Theorem 2.15. Let M be an R-module with |Max(M)| < ∞. Then
we have the following.

(a) There is no vertex in G(M) which is adjacent to every other
vertex.

(b) G(M) can not be a complete graph.

Proof. (a) Let |Max(M)| = t. Suppose on the contrary that there
exists a non-small submodule N ∈ V (G(M)) such that N is adjacent to
every vertex. By Lemma 2.2 (a), there exists a maximal submodule Mi

of M such that N ⊆Mi. Now K := ∩j 6=iMj is a non-small submodule
of M by Lemma 2.4. Since N is adjacent to all other vertices, N∩K 6�
M . But N ∩K ⊆ Mi ∩ (∩j 6=iMj) = Rad(M). Thus N ∩K is a small
submodule of M by Lemma 2.2 (b), a contradiction.

(b) This is an immediate consequence of part (a). �

The next example shows that the condition “Max(M) is a finite set”
can not be omitted in Theorem 2.15.

Example 2.16. Let M = Z be as a Z-module. One can see that
|Max(M)| = ∞ and 0 is the only small submodule of M . So every
submodule of M is non-small and they are adjacent to each other.
Thus G(M) is a complete graph.
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A vertex of a graph G is said to be pendent if its neighbourhood
contains exactly one vertex.

Theorem 2.17. Let M be an R-module.

(a) G(M) contains a pendent vertex if and only if |Max(M)| = 2
and G(M) = G1 ∪ G2, where G1, G2 are two disjoint complete
subgraphs and |V (Gi)| = 2 for some i = 1, 2.

(b) G(M) is not a star graph.

Proof. (a) Let N be a pendent vertex of G(M). Suppose on the con-
trary that |Max(M)| ≥ 3. By Lemma 2.4, for each Mi ∈ Max(M),
Mi is adjacent to other maximal submodules of M . Thus deg(Mi) ≥ 2
and hence N is not a maximal submodule. By Lemma 2.2 (a), there
exists a maximal submodule Mi of M such that N ⊆ Mi. Without
loss of generality, we may assume that N ⊆ M1. Then N and M1

are adjacent. Since deg(N) = 1, we have the only vertex of G(M)
which is adjacent to N is M1 in other word there is no maximal sub-
module Mi 6= M1 such that N ⊆ Mi. Thus N ∩ M2 � M . Hence
by Lemma 2.2 (b), N ∩M2 ⊆ Rad(M) ⊆ Mj for each Mj 6= M1,M2.
Thus N ⊆Mj (j 6= 1, 2) by Lemma 2.2 (c), a contradiction. Therefore,
|Max(M)| = 2. By Theorem 2.8, G(M) = G1 ∪ G2 where G1, G2 are
complete subgraphs of G(M). Let N ∈ Gi for i (1 ≤ i ≤ 2) . Then
|V (Gi)| = 2 because Gi is a complete subgraph and deg(N) = 1. The
converse is straightforward.

(b) Let G(M) be a star graph. Then G(M) contains a pendent ver-
tex and hence |Max(M)| = 2 by part (a). Therefore, G(M) is not
connected by Theorem 2.8, a contradiction. �

A regular graph is a graph where each vertex has the same number
of neighbours (i.e. every vertex has the same degree). A regular graph
is r-regular (or regular of degree r) if the degree of each vertex is r.

Theorem 2.18. Let M be an R module.

(a) If N and K are two vertex of G(M) such that N ⊆ K, then
deg(N) ≤ deg(K);

(b) If G(M) is an r-regular graph, then |Max(M)| = 2 and |V (G(M))|
= 2r + 2.

Proof. (a) Suppose that N and K are two vertex of G(M) such that
N ⊆ K. Let L be a vertex adjacent to N . Thus L ∩ N 6� M and
hence L ∩ K 6� M . This implies that K is adjacent to L so that
deg(N) ≤ deg(K).

(b) Assume on the contrary that |Max(M)| ≥ 3. Then for each Mi ∈
Max(M), since deg(Mi) = r and Mi is adjacent to all maximal sub-
modules by Lemma 2.4, we have Max(M) is a finite set. Now for
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M1,M2 ∈ Max(M), deg(M1 ∩M2) ≤ deg(M1) by part (a). Clearly,
deg(M1 ∩M2) 6= deg(M1) because if N = ∩j 6=2Mj, then N is adjacent
to M1 but N is not adjacent to M1 ∩M2 by Lemma 2.2 (b). Hence
deg(M1∩M2) < r, a contradiction. Therefore, |Max(M)| ≤ 2. Clearly,
|Max(M)| 6= 1. Thus |Max(M)| = 2 and G(M) is a union of two dis-
joint complete subgraphs by Theorem 2.8. Let Max(M) = {M1,M2}
and assume that Mi ∈ Gi. Since for each i = 1, 2, deg(Mi) = r, we
have |Gi| = r + 1. It follows that |V (G(M))| = 2r + 2. �

3. CLIQUE NUMBER, INDEPENDENCE NUMBER, AND
DOMINATION NUMBER

In this section, we will study the clique number, independence num-
ber, and domination number of the small intersection graph. We recall
that M is a multiplication R-module.

Proposition 3.1. Let M be an R-module. Then we have the following.

(a) If G(M) is a non-empty graph, then ω(G(M)) ≥ |Max(M)|.
(b) If G(M) is an empty graph, then ω(G(M)) = 1 if and only if

Max(M) = {M1,M2}, where M1 and M2 are finitely generated
hollow R-modules.

(c) If ω(G(M)) <∞, then |Max(M)| <∞.
(d) If ω(G(M)) <∞, then ω(G(M)) ≥ 2|Max(M)|−1 − 1.

Proof. (a) If |Max(M)| = 2, then ω(G(M)) ≥ 2 by Theorem 2.8. If
|Max(M)| ≥ 3, then the subgraph of G(M) with the vertex set of
{Mi}Mi∈Max(M) is a complete subgraph of G(M) by Lemma 2.4. Hence
ω(G(M)) ≥ |Max(M)|.

(b) This follows directly from Theorem 2.6.
(c) This is clear by part (a) and (b).
(d) Let Max(M) = {M1, ...,Mt}. Also for each 1 ≤ i ≤ t, set

Ai = {M1, ...,Mi−1,Mi+1,Mt}.
Now let P (Ai) be the power set of Ai and for each X ∈ P (Ai),
setMX =

⋂
Mj∈XMj for 1 ≤ j ≤ t. The subgraph ofG(M) with

the vertex set {MX}X∈P (Ai)\{∅} is a complete subgraph of G(M)

by Lemma 2.4. Clearly, |{MX}X∈P (Ai)\{∅}| = 2|Max(M)|−1 − 1.

Thus ω(G(M)) ≥ 2|Max(M)|−1 − 1.

�

The following remarks show that the condition “ M is a multiplica-
tion module” can not be omitted in Proposition 3.1.

Remark 3.2. Let M := Z2 ⊕ Z2 be as Example 2.7 which is an empty
graph. Then we see that |Max(M)| = 3; but ω(G(M)) = 1.
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Remark 3.3. Let M := Z2 ⊕ Z4 be as Example 2.10. Then G(M) is a
non-empty graph with ω(G(M)) < |Max(M)|.

Corollary 3.4. Let M be a finitely generated R-module. If ω(G(M)) <
∞, then M/Rad(M) is a cyclic R-module.

Proof. This follows from Proposition 3.1 (c) and [8, Theorem 2.8]. �

Theorem 3.5. Let R be a ring and M be an R-module. Then γ(G(M))
≤ 2. Moreover, if Max(M) is a finite set, then γ(G(M)) = 2.

Proof. Since G(M) is a non-null graph, we have |Max(M)| ≥ 2. Set
S := {M1,M2}, where M1,M2 ∈ Max(M). Let N ∈ V (G(M)). We
claim that N is adjacent to M1 or M2. Clearly, when N ⊆ M1 or
N ⊆ M2, the claim is true. So we assume that N * M1 and N * M2.
Without loss of generality, we may assume that N is not adjacent to
M1. Then N ∩ M1 ⊆ Rad(M) by Lemma 2.2 (b). It follows that
N ⊆ M2, a contradiction. Similarly, N is adjacent to M2. Hence
γ(G(M)) ≤ 2. The last assertion follows from Theorem 2.15. �

Example 3.6. Let M := Z36 be as Example 2.9. Then we see that
|Max(M)| <∞ and γ(G(M)) = 2.

Remark 3.7. The condition “M is a multiplication module” can not be
omitted in Theorem 3.5. For example, let M = Z2⊕Z6 be a Z-module.
Then V (G(M)) = {(0, 1)Z, (0, 2)Z, (0, 3)Z, (1, 0)Z, (1, 1)Z, (1, 2)Z ,
(1, 3)Z , (1, 0)Z + (0, 3)Z} and Max(M) = {(0, 1)Z, (1, 2)Z, (1, 1)Z
, (1, 0)Z + (0, 3)Z}. We see that |Max(M)| <∞; but γ(G(M)) = 3.

Theorem 3.8. Let M be an R-module and |Max(M)| < ∞. Then
α(G(M)) = |Max(M)|.

Proof. Let Max(M) = {M1, ...,Mn}. Since T := {
⋂n
j=1,i 6=jMj}ni=1 is

an independent set in G(M), we have n ≤ α(G(M)) (Note that if
α, β ∈ T , then α ∩ β = Rad(M), so α is not adjacent to β by Lemma
2.2 (c)). Now let α(G(M)) = m and let S = {N1, N2, ..., Nm} be a
maximal independent set in G(M). Then for each N ∈ S, N 6� M .
By Lemma 2.2 (b), N *Mt for some Mt ∈Max(M). If m > n, then by
Pigeon hole principal, there exists 1 ≤ i, j ≤ n such that Ni *Mt and
Nj * Mt. Since S is an independent set, Ni and Nj are not adjacent
and Ni ∩ Nj � M . So Ni ∩ Nj ⊆ Mt by Lemma 2.2 (b). Hence
Ni ⊆ Mt or Nj ⊆ Mt by Lemma 2.2 (c), a contradiction. We have
similar arguments when α(G(M)) = ∞. Thus α(G(M)) = |Max(M)|
and the proof is complete. �
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