Journal of Algebra and Related Topics

Vol. 4, No 1, (2016), pp 21-32

THE SMALL INTERSECTION GRAPH RELATIVE TO MULTIPLICATION MODULES

H. ANSARI-TOROGHY *, F. FARSHADIFAR, AND F. MAHBOOBI-ABKENAR

Abstract

Let R be a commutative ring and let M be an R module. We define the small intersection graph $G(M)$ of M with all non-small proper submodules of M as vertices and two distinct vertices N, K are adjacent if and only if $N \cap K$ is a non-small submodule of M. In this article, we investigate the interplay between the graph-theoretic properties of $G(M)$ and algebraic properties of M, where M is a multiplication module.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers. Let M be an R-module. We denote the set of all maximal submodules of M by $\operatorname{Max}(M)$ and the intersection of all maximal submodule of M by $\operatorname{Rad}(M)$. A submodule N of M is called small in M (denoted by $N \ll M$), in case for every submodule L of $M, N+L=M$ implies that $L=M$. A module M is said to be hollow module if every proper submodule of M is a small submodule.

A graph G is defined as the pair $(V(G), E(G))$, where $V(G)$ is the set of vertices of G and $E(G)$ is the set of edges of G. For two distinct vertices a and b denoted by $a-b$ means that a and b are adjacent. The degree of a vertex a of graph G which denoted by $\operatorname{deg}(a)$ is the number of edges incident on a. If $|V(G)| \geqslant 2$, a path from a to b is

[^0]a series of adjacent vertices $a-v_{1}-v_{2}-\ldots-v_{n}-b$. In a graph G, the distance between two distinct vertices a and b, dented by $d(a, b)$ is the length of the shortest path connecting a and b. If there is not a path between a and $b, d(a, b)=\infty$. The diameter of a graph G is $\operatorname{diam}(G)=\sup \{d(a, b) \mid a, b \in V(G)\}$. A graph G is called connected, if for any vertices a and b of G there is a path between a and b. If not, G is disconnected. The girth of G, is the length of the shortest cycle in G and it is denoted by $g(G)$. If G has no cycle, we define the girth of G to be infinite. An r-partite graph is one whose vertex set can be partitioned into r subsets such that no edge has both ends in any one subset. A complete r-partite graph is one each vertex is jointed to every vertex that is not in the same subset. The complete bipartite (i.e, 2-partite) graph with part sizes m and n is denoted by $K_{m, n}$. A clique of a graph is its maximal complete subgraph and the number of vertices in the largest clique of a graph G, denoted by $\omega(G)$, is called the clique number of G. For a graph $G=(V, E)$, a set $S \subseteq V$ is an independent if no two vertices in S are adjacent. The independence number $\alpha(G)$ is the maximum size of an independent set in G. The (open) neighbourhood $N(a)$ of a vertex $a \in V$ is the set of vertices which are adjacent to a. For each $S \subseteq V, N(S)=\bigcup_{a \in S} N(a)$ and $N[S]=N(S) \bigcup S$. A set of vertices S in G is a dominating set, if $N[S]=V$. The dominating number, $\gamma(G)$, of G is the minimum cardinality of a dominating set of $G([9])$. Note that a graph whose vertices-set is empty is a null graph and a graph whose edge-set is empty is an empty graph.

The idea of zero divisor graph of a commutative ring was introduced by I. Beck in 1988 [2]. The zero-divisor graph of a commutative ring has also been studied by several other authors. One of the most important graphs which has been studied is the intersection graph. Bosak [4] in 1964 defined the intersection graph of semigroups. In 1964, Csákány and PolláK [10], studied the graph of subgroups of a finite groups. In 2009, the intersection graph of ideals of ring was considered by Chakrabarty, Ghosh, Mukherjee and San [5]. The intersection graph of ideal of rings and submodules of modules have been investigated by several other authors (e.g., [1, 10, 14]).

An R-module M is said to be a multiplication R-module if for each submodule N of M there exists an ideal I of R such that $N=I M$.

In [7], the authors introduced and studied the small intersection graph of a commutative ring. In this article, we give a generalization of this concept and obtain some results similar to those of in [7] when M is a multiplication module. Also we provide some examples and remarks which show that the similarly doesn't go parallel in general when M
is not a multiplication R-module. This graph helps us to consider algebraic properties submodules of M by using graph theoretical tools.

2. Basic properties of $\mathrm{G}(\mathrm{M})$

Definition 2.1. Let M be an R-module. We define the small intersection graph $G(M)$ of M with all non-small proper submodules of M as vertices and two distinct vertices N, K are adjacent if and only if $N \cap K \nless M$. Clearly when $M=R$, we get the small intersection graph $G(R)$ of R introduced in [7].

A proper submodule N of an R-module M is said to be a prime submodule of M if $a x \in N$ for $a \in R$ and $x \in M$, then either $a M \subseteq N$ or $x \in N$. We remark that if N is a prime submodule of M, then $P=(N: M)$ is necessarily a prime ideal of R. Moreover, every maximal submodule of M is a prime submodule by [11, Proposition 4].

The next lemma plays a key role in the sequel.
Lemma 2.2. Let M be a non-zero multiplication R-module.
(a) Every proper submodule of M is contained in a maximal submodule of M. In particular, $\operatorname{Max}(M) \neq \varnothing$.
(b) If N is a submodule of M, then $N \ll M$ if and only if $N \subseteq$ $\operatorname{Rad}(M)$.
(c) If N, K are submodules of M and P a prime submodule of M with $P \supseteq N \cap K$, then $P \supseteq N$ or $P \supseteq K$.
Proof. (a) See [8, Theorem 2.5].
(b) Let N be a small submodule of M. If $N \nsubseteq \operatorname{Rad}(M)$, then there exists $M_{j} \in \operatorname{Max}(M)$ such that $N \nsubseteq M_{j}$. This implies that $N+M_{j}=M$. Since N is a small submodule, $M_{j}=M$, a contradiction. Conversely, if $N \nless M$, then there exists a proper submodule K of M such that $N+K=M$. Since M is a multiplication module, by part (a), there exists $M_{t} \in \operatorname{Max}(M)$ such that $K \subseteq M_{t}$. It follows that $M=K+N \subseteq M_{t}+N$ and hence $M=M_{t}+N$. Since $N \subseteq M_{t}$, $M_{t}=M$, a contradiction.
(c) Let $P \subset M$ be a prime submodule with $P \supseteq N \cap K$. Then $\left(P:_{R} M\right) \supseteq\left(N \cap K:_{R} M\right)=\left(N:_{R} M\right) \cap\left(K:_{R} M\right)$. Since $\left(P:_{R} M\right)$ is a prime ideal, $\left(P:_{R} M\right) \supseteq\left(N:_{R} M\right)$ or $\left(P:_{R} M\right) \supseteq\left(K:_{R} M\right)$. Thus $\left(P:_{R} M\right) M \supseteq\left(N:_{R} M\right) M$ or $\left(P:_{R} M\right) M \supseteq\left(K:_{R} M\right) M$. It follows that $P \supseteq N$ or $P \supseteq K$ because M is a multiplication module.
Remark 2.3. The parts (a) and (b) of Lemma 2.2 are also true when M is replaced by a coatomic R-module (we recall that an R - module M is a coatomic if every proper submodule of M is contained in a maximal submodule).

In the rest of this paper, we assume that M is a non-zero multiplication R-module. We recall that $\operatorname{Max}(M) \neq \varnothing$ by Lemma 2.2 part (a).

Lemma 2.4. Let M be an R-module with $\operatorname{Max}(M)=\left\{M_{i}\right\}_{i \in I}$, where $|I|>1$, and let Λ be a non-empty proper finite subset of I. Then $\bigcap_{\lambda \in \Lambda} M_{\lambda}$ is not a small submodule of M.
Proof. Let $\bigcap_{\lambda \in \Lambda} M_{\lambda}$ be a small submodule of M and let $j \in I \backslash \Lambda$. Then by Lemma 2.2 (b), $\bigcap_{\lambda \in \Lambda} M_{\lambda} \subseteq M_{j}$. Hence by Lemma 2.2 (c), $M_{\lambda} \subseteq M_{j}$ for some $\lambda \in \Lambda$, a contradiction.

Proposition 2.5. Let M be an R-module. Then $G(M)$ is a null graph if and only if M is a local module.

Proof. The necessity is clear and the sufficiency follows from Lemma 2.2 (b).

All definitions of graph theory are for non-null graphs ([3]). So in this paper, all considered graphs are non-null.

Theorem 2.6. Let M be an R-module. Then $G(M)$ is an empty graph if and only if $\operatorname{Max}(M)=\left\{M_{1}, M_{2}\right\}$, where M_{1} and M_{2} are finitely generated hollow R-modules.

Proof. Let $G(M)$ be an empty graph. If $|\operatorname{Max}(M)|=1$, then $G(M)$ is a null graph by Proposition 2.5, a contradiction. If $|\operatorname{Max}(M)| \geq 3$, then by choosing $M_{1}, M_{2} \in \operatorname{Max}(M)$, we have $M_{1} \cap M_{2}$ is a nonsmall submodule of M by Lemma 2.4. Thus M_{1} and M_{2} are adjacent, a contradiction. Hence, $|\operatorname{Max}(M)|=2$. Suppose that $\operatorname{Max}(M)=$ $\left\{M_{1}, M_{2}\right\}$. We claim that M_{1}, M_{2} are hollow R-modules. $M_{1} \cap M_{2}$ is a maximal submodule of M_{1} because $\frac{M}{M_{2}}$ is a simple R-module and $\frac{M}{M_{2}}=$ $\frac{M_{1}+M_{2}}{M_{2}} \cong \frac{M_{1}}{M_{1} \cap M_{2}}$. We show that this is the only maximal submodule of M_{1}. Let K be a maximal submodule of M_{1}. If $K \nless M$, then $K \cap M_{1}=K$ implies that K and M_{1} are adjacent, a contradiction. Thus $K \ll M$. So by Lemma 2.2 (b), $K \subseteq M_{1} \cap M_{2} \subseteq M_{1}$ which implies that $K=M_{1} \cap M_{2}$ by maximality of K. Therefore, M_{1} is a local R-module. Thus M_{1} is a hollow R-module. Now, we show that M_{1} is a finitely generated R-module. Choose $x \in M_{1} \backslash M_{2}$, so $R x \nless M$. If $R x \neq M_{1}$, then $R x \cap M_{1}=R x$ which shows that $R x$ and M_{1} are adjacent, a contradiction. Hence M_{1} is a finitely generated local R-module. We have similar argument for M_{2}. Hence M_{1} and M_{2} are finitely generated local R-module. Conversely, let $\operatorname{Max}(M)=\left\{M_{1}, M_{2}\right\}$ where M_{1}, M_{2} are finitely generated hollow R-modules. We can see $M_{1} \cap M_{2}$ is a maximal submodule of M_{1} and M_{2}. By [13, page 352], $M_{1} \cap M_{2}$ is
the only maximal submodule of M_{1} and M_{2}. Suppose that $N \neq M_{1}$ and M_{2} is a non-small submodule of M. Then $N \subseteq M_{1}$ or $N \subseteq M_{2}$. Without loss of generality, we can assume that $N \subseteq M_{1}$. By Lemma 2.2 (b), N is a small submodule, a contradiction. Hence, M_{1} and M_{2} are the only non-small submodules of M which are not adjacent.

The following example shows that the condition " M is a multiplication module" can not be removed in Theorem 2.6.

Example 2.7. Let $M=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ be a \mathbb{Z}-module. Then $V(G(M))=$ $\operatorname{Max}(M)=\{(1,0) \mathbb{Z},(0,1) \mathbb{Z},(1,1) \mathbb{Z}\}$. But $G(M)$ is an empty graph.
Theorem 2.8. Let M be an R-module. The following statements are equivalent.
(a) $G(M)$ is not connected.
(b) $|\operatorname{Max}(M)|=2$.
(c) $G(M)=G_{1}$ and G_{2}, where G_{1}, G_{2} are two disjoint complete subgraphs.

Proof. $(a) \Rightarrow(b)$ Suppose that $G(M)$ is not connected and $|\operatorname{Max}(M)|>$ 2. Let G_{1}, G_{2} be two components of $G(M)$ and N, K be submodules of M such that $N \in G_{1}$ and $K \in G_{2}$. Consider M_{1}, M_{2} be maximal submodules of M and $N \subseteq M_{1}$ and $K \subseteq M_{2}$. If $M_{1}=M_{2}$, then $N-M_{1}-K$ is a path in $G(M)$, which is a contradiction. So assume that $M_{1} \neq M_{2}$. Since $|\operatorname{Max}(M)|>2$, we have $M_{1} \cap M_{2} \neq 0$ and is a non-small submodule of M. Thus $N-M_{1}-M_{2}-K$ is a path between G_{1} and G_{2}, a contradiction. Therefore, $|\operatorname{Max}(M)|=2$.
$(b) \Rightarrow(c)$ Let $|\operatorname{Max}(M)|=\left\{M_{1}, M_{2}\right\}$ where M_{1} and M_{2} are two maximal submodules of M. Let $G_{j}=\left\{M_{k}<M \mid M_{k} \subseteq M_{j}\right.$ and $\left.M_{k} \nless M\right\}$ for $j=1,2$. Consider $N, K \in G_{1}$. We claim that N and K are adjacent. Otherwise, if $N \cap K \ll M$, then by Lemma 2.2 (b), $N \cap K \subseteq M_{1} \cap M_{2}$ which implies that $N \subseteq M_{2}$ or $K \subseteq M_{2}$ by Lemma 2.2 (c). This implies that $N \ll M$ or $K \ll M$, a contradiction. Thus G_{1} is a complete subgraph and by similar arguments G_{2} is a complete subgraph too. We show that there is no path between G_{1} and G_{2}. Assume to the contrary that there are $N \in G_{2}$ and $K \in G_{2}$ which are adjacent. We have $N \cap K \subseteq M_{1} \cap M_{2}$. So $N \cap K$ is a small submodule of M by Lemma $2.2(\mathrm{~b})$, a contradiction. Hence $G=G_{1} \cup G_{2}$ which G_{1} and G_{2} are complete subgraphs.
$(c) \Rightarrow(a)$ This is clear.

Example 2.9. Let $R=\mathbb{Z}$ and $M=\mathbb{Z}_{36}$. Then $V(G(M))=\{3 M, 9 M$, $2 M, 4 M\}$. We can see $G(M)$ is not connected and $G(M)=G_{1} \cup G_{2}$
where $G_{1}=\{3 M, 9 M\}$ and $G_{2}=\{2 M, 4 M\}$ are complete subgraphs (Figure 1).

Figure 1. $G\left(\mathbb{Z}_{36}\right)$.

The following example shows that the condition " M is a multiplication module" can not be dropped in Theorem 2.8.

Example 2.10. Let $M=\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}$ be a \mathbb{Z}-module. This is clear that M is not a multiplication module. Also we have $\operatorname{Max}(M)=\left\{M_{1}, M_{2}, M_{3}\right\}$ and $V(G)=\left\{N_{1}, N_{2}, M_{1}, M_{2}, M_{3}\right\}$, where $N_{1}:=(1,0) \mathbb{Z}, N_{2}:=(1,2) \mathbb{Z}$, $M_{1}:=(0,1) \mathbb{Z}, M_{2}:=(1,1) \mathbb{Z}$, and $M_{3}:=(0,1) \mathbb{Z}+(1,2) \mathbb{Z}$. We see that $|\operatorname{Max}(M)| \geq 3$ but $G(M)$ is not connected (Figure 2).

Figure 2. $G\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}\right)$.

Theorem 2.11. Let $G(M)$ be a connected graph. Then $\operatorname{diam}(G(M)) \leqslant$ 2.

Proof. Suppose that N and K are two vertices of $G(M)$ which are not adjacent. Thus $N \cap K \ll M$. Then by Lemma 2.2 (a), there exists two maximal submodules M_{1}, M_{2} of M such that $N \subseteq M_{1}$ and $K \subseteq M_{2}$. If $N \cap M_{2} \nless M$, then $N-M_{2}-K$ is a path so that $d(N, K)=2$. Similarly, if $K \nless M_{1}$, then $d(N, K)=2$. Now assume that $N \cap M_{2} \ll M$ and $K \cap M_{1} \ll M$. By Theorem 2.8 and our assumption $\operatorname{Max}(M) \geq 3$. Let $M_{3} \in \operatorname{Max}(M)$. Then by Lemma 2.2 (b), $N \cap K \subseteq \operatorname{Rad}(M) \subseteq M_{3}$. Thus $N \subseteq M_{3}$ or $K \subseteq M_{3}$. Without
loss of generality, we can assume that $N \subseteq M_{3}$. If $K \cap M_{3} \nless M$, then $N-M_{3}-K$ is a path. If $K \cap M_{3} \ll M$, then $K \cap M_{3} \subseteq \operatorname{Rad}(M) \subseteq M_{1}$. So we have $N-M_{1}-K$. Therefore, $d(N, K)=2$.

Theorem 2.12. Let M be an R-module and $G(M)$ contains a cycle. Then $g(G(M))=3$.

Proof. Let $|\operatorname{Max}(M)|=2$. Then $G(M)$ is union of two disjoint subgraphs by Theorem 2.8. So if $G(M)$ contains a cycle, then $g(G(M))=$ 3. Now let $|\operatorname{Max}(M)| \geq 3$ and choose M_{1}, M_{2}, and $M_{3} \in \operatorname{Max}(M)$. Then by Lemma 2.4, $M_{1}-M_{2}-M_{3}-M_{1}$ is a cycle in $G(M)$. Hence $g(G(M))=3$.

A vertex a in a connected graph G is a cut vertex if $G-\{a\}$ is disconnected.

Theorem 2.13. Let M be an R-module and $G(M)$ be a connected graph. Then $G(M)$ has no cut vertex.
Proof. Let L be a cut vertex of $G(M)$. Then $G(M) \backslash L$ is not connected. So there exist at least two vertices N, K of $G(M)$ such that L lies between every path from N to K. By Theorem 2.11, we see the shortest path between N, K is length of 2 . Hence $N-L-K$ is a path. So $N \cap K \ll M, N \cap L \nless M$ and $K \cap L \nless M$. We claim that L is a maximal submodule of M. Otherwise, by Lemma 2.2 (a), there exists a maximal submodule H of M such that $L \subseteq H$. Since $L \cap N \subseteq H \cap N$ and $L \cap N \nless M$, we have $H \cap N$ is a non-small submodule of M. By similar arguments we have $H \cap K \nless M$. Hence $N-H-K$ is a path in $G(M) \backslash L$ which is a contradiction. Thus L is a maximal submodule. Now we show that there exists a maximal submodule $M_{i} \neq L$ of M such that $N \nsubseteq M_{i}$. Otherwise, if $N \subseteq M_{i}$ for each $M_{i} \in \operatorname{Max}(M)$, then $N \subseteq \bigcap_{M_{i} \neq L} M_{i}$. Hence $N \cap L \subseteq \bigcap_{M_{i} \in \operatorname{Max}(M)} M_{i}=\operatorname{Rad}(M)$. So by Lemma 2.2 (b), $N \ll M$, a contradiction. Similarly, there exists $M_{j} \neq L$ such that $K \nsubseteq M_{j}$. We claim that for each $M_{t} \in \operatorname{Max}(M)$, $N \subseteq M_{t}$ or $K \subseteq M_{t}$. Since $N \cap K \ll M$, by Lemma 2.2 (b), $N \cap K \subseteq$ $\operatorname{Rad}(M) \subseteq M_{t}$ for each $M_{t} \in \operatorname{Max}(M)$. Hence $N \subseteq M_{t}$ or $K \subseteq M_{t}$ by Lemma 2.2 (a). Since $G(M)$ is connected, $|\operatorname{Max}(M)| \geq 3$ by Theorem 2.8. Now Assume that $L \neq M_{i}, M_{j} \in \operatorname{Max}(M)$ such that $N \nsubseteq M_{i}$ and $K \nsubseteq M_{j}$. Hence we have $N \subseteq M_{j}$ and $K \subseteq M_{i}$. Thus $N-M_{j}-M_{i}-K$ is a path in $G(M) \backslash L$, a contradiction. Therefore, $G(M)$ has no cut vertex.

Theorem 2.14. Let M be an R-module. Then $G(M)$ can not be a complete n-partite graph.

Proof. Let $G(M)$ be a complete n-partite graph with parts V_{1}, \ldots, V_{n}. Then by Lemma 2.4, M_{i} and M_{j} are adjacent for every $M_{i}, M_{j} \in$ $\operatorname{Max}(M)$. So each V_{i} contains at most one maximal submodule of M. By Pigeon hole principal, $|\operatorname{Max}(M)| \leq n$. Now we claim that $|\operatorname{Max}(M)|=n$. Otherwise, let $|\operatorname{Max}(M)|=t$, where $t<n$. Suppose that $M_{i} \in V_{i}, 1 \leq i \leq t$. Then V_{t+1} contains no maximal submodule of M. By Lemma 2.4, we see that $\cap_{j \neq i} M_{j}$ is a non-small submodule of M. Since $\cap_{j \neq i} M_{j} \cap M_{i}=\operatorname{Rad}(M)$, we have $\cap_{j \neq i} M_{j}$ and M_{i} are non-adjacent by Lemma 2.2 (b). Thus $\cap_{j \neq i} M_{j} \in V_{i}$. Let N be a vertex in V_{t+1}. Then there exists a maximal submodule M_{k} of M such that $N \subseteq M_{k}$. Thus N is adjacent to M_{k}. Since $G(M)$ is a complete n-partite graph and $M_{k} \in V_{k}, N$ is adjacent to all vertices of V_{k}. Hence N is adjacent to $\cap_{j \neq k} M_{j}$. But this is a contradiction because $N \cap\left(\cap_{j \neq k} M_{j}\right) \subseteq M_{k} \cap\left(\cap_{j \neq k} M j\right)=\operatorname{Rad}(M) \ll M$. Thus $|\operatorname{Max}(M)|=n$. Now we assume that $H=\cap_{i=3}^{n} M_{i}$. By Lemma 2.4, H is a non-small submodule of M. Since $H \cap M_{1}=\cap_{i \neq 2} M_{i} \nless M$, we have H is adjacent to M_{1}. By similar arguments H is adjacent to M_{2}. Hence $H \notin V_{1}, V_{2}$. Further for each $i(3 \leq i \leq n), H \cap M_{i}=H \nless M$. Thus H is adjacent to all maximal submodules M_{i} of M. Hence for each $i(1 \leq i \leq n), H \notin V_{i}$, a contradiction.

Theorem 2.15. Let M be an R-module with $|\operatorname{Max}(M)|<\infty$. Then we have the following.
(a) There is no vertex in $G(M)$ which is adjacent to every other vertex.
(b) $G(M)$ can not be a complete graph.

Proof. (a) Let $|\operatorname{Max}(M)|=t$. Suppose on the contrary that there exists a non-small submodule $N \in V(G(M))$ such that N is adjacent to every vertex. By Lemma 2.2 (a), there exists a maximal submodule M_{i} of M such that $N \subseteq M_{i}$. Now $K:=\cap_{j \neq i} M_{j}$ is a non-small submodule of M by Lemma 2.4. Since N is adjacent to all other vertices, $N \cap K \nless<$ M. But $N \cap K \subseteq M_{i} \cap\left(\cap_{j \neq i} M_{j}\right)=\operatorname{Rad}(M)$. Thus $N \cap K$ is a small submodule of M by Lemma 2.2 (b), a contradiction.
(b) This is an immediate consequence of part (a).

The next example shows that the condition " $\operatorname{Max}(M)$ is a finite set" can not be omitted in Theorem 2.15.

Example 2.16. Let $M=\mathbb{Z}$ be as a \mathbb{Z}-module. One can see that $|\operatorname{Max}(M)|=\infty$ and 0 is the only small submodule of M. So every submodule of M is non-small and they are adjacent to each other. Thus $G(M)$ is a complete graph.

A vertex of a graph G is said to be pendent if its neighbourhood contains exactly one vertex.
Theorem 2.17. Let M be an R-module.
(a) $G(M)$ contains a pendent vertex if and only if $|\operatorname{Max}(M)|=2$ and $G(M)=G_{1} \cup G_{2}$, where G_{1}, G_{2} are two disjoint complete subgraphs and $\left|V\left(G_{i}\right)\right|=2$ for some $i=1,2$.
(b) $G(M)$ is not a star graph.

Proof. (a) Let N be a pendent vertex of $G(M)$. Suppose on the contrary that $|\operatorname{Max}(M)| \geq 3$. By Lemma 2.4, for each $M_{i} \in \operatorname{Max}(M)$, M_{i} is adjacent to other maximal submodules of M. Thus $\operatorname{deg}\left(M_{i}\right) \geq 2$ and hence N is not a maximal submodule. By Lemma 2.2 (a), there exists a maximal submodule M_{i} of M such that $N \subseteq M_{i}$. Without loss of generality, we may assume that $N \subseteq M_{1}$. Then N and M_{1} are adjacent. Since $\operatorname{deg}(N)=1$, we have the only vertex of $G(M)$ which is adjacent to N is M_{1} in other word there is no maximal submodule $M_{i} \neq M_{1}$ such that $N \subseteq M_{i}$. Thus $N \cap M_{2} \ll M$. Hence by Lemma $2.2(\mathrm{~b}), N \cap M_{2} \subseteq \operatorname{Rad}(M) \subseteq M_{j}$ for each $M_{j} \neq M_{1}, M_{2}$. Thus $N \subseteq M_{j}(j \neq 1,2)$ by Lemma 2.2 (c), a contradiction. Therefore, $|\operatorname{Max}(M)|=2$. By Theorem 2.8, $G(M)=G_{1} \cup G_{2}$ where G_{1}, G_{2} are complete subgraphs of $G(M)$. Let $N \in G_{i}$ for $i(1 \leq i \leq 2)$. Then $\left|V\left(G_{i}\right)\right|=2$ because G_{i} is a complete subgraph and $\operatorname{deg}(N)=1$. The converse is straightforward.
(b) Let $G(M)$ be a star graph. Then $G(M)$ contains a pendent vertex and hence $|\operatorname{Max}(M)|=2$ by part (a). Therefore, $G(M)$ is not connected by Theorem 2.8, a contradiction.

A regular graph is a graph where each vertex has the same number of neighbours (i.e. every vertex has the same degree). A regular graph is r-regular (or regular of degree r) if the degree of each vertex is r.
Theorem 2.18. Let M be an R module.
(a) If N and K are two vertex of $G(M)$ such that $N \subseteq K$, then $\operatorname{deg}(N) \leq \operatorname{deg}(K)$;
(b) If $G(M)$ is an r-regular graph, then $|M a x(M)|=2$ and $|V(G(M))|$ $=2 r+2$.

Proof. (a) Suppose that N and K are two vertex of $G(M)$ such that $N \subseteq K$. Let L be a vertex adjacent to N. Thus $L \cap N \nless M$ and hence $L \cap K \nless M$. This implies that K is adjacent to L so that $\operatorname{deg}(N) \leq \operatorname{deg}(K)$.
(b) Assume on the contrary that $|\operatorname{Max}(M)| \geq 3$. Then for each $M_{i} \in$ $\operatorname{Max}(M)$, since $\operatorname{deg}\left(M_{i}\right)=r$ and M_{i} is adjacent to all maximal submodules by Lemma 2.4, we have $\operatorname{Max}(M)$ is a finite set. Now for
$M_{1}, M_{2} \in \operatorname{Max}(M), \operatorname{deg}\left(M_{1} \cap M_{2}\right) \leq \operatorname{deg}\left(M_{1}\right)$ by part (a). Clearly, $\operatorname{deg}\left(M_{1} \cap M_{2}\right) \neq \operatorname{deg}\left(M_{1}\right)$ because if $N=\cap_{j \neq 2} M_{j}$, then N is adjacent to M_{1} but N is not adjacent to $M_{1} \cap M_{2}$ by Lemma 2.2 (b). Hence $\operatorname{deg}\left(M_{1} \cap M_{2}\right)<r$, a contradiction. Therefore, $|\operatorname{Max}(M)| \leq 2$. Clearly, $|\operatorname{Max}(M)| \neq 1$. Thus $|\operatorname{Max}(M)|=2$ and $G(M)$ is a union of two disjoint complete subgraphs by Theorem 2.8. Let $\operatorname{Max}(M)=\left\{M_{1}, M_{2}\right\}$ and assume that $M_{i} \in G_{i}$. Since for each $i=1,2, \operatorname{deg}\left(M_{i}\right)=r$, we have $\left|G_{i}\right|=r+1$. It follows that $|V(G(M))|=2 r+2$.

3. CLIQUE NUMBER, INDEPENDENCE NUMBER, AND DOMINATION NUMBER

In this section, we will study the clique number, independence number, and domination number of the small intersection graph. We recall that M is a multiplication R-module.
Proposition 3.1. Let M be an R-module. Then we have the following.
(a) If $G(M)$ is a non-empty graph, then $\omega(G(M)) \geq|\operatorname{Max}(M)|$.
(b) If $G(M)$ is an empty graph, then $\omega(G(M))=1$ if and only if $\operatorname{Max}(M)=\left\{M_{1}, M_{2}\right\}$, where M_{1} and M_{2} are finitely generated hollow R-modules.
(c) If $\omega(G(M))<\infty$, then $|\operatorname{Max}(M)|<\infty$.
(d) If $\omega(G(M))<\infty$, then $\omega(G(M)) \geq 2^{|\operatorname{Max}(M)|-1}-1$.

Proof. (a) If $|\operatorname{Max}(M)|=2$, then $\omega(G(M)) \geq 2$ by Theorem 2.8. If $|\operatorname{Max}(M)| \geq 3$, then the subgraph of $G(M)$ with the vertex set of $\left\{M_{i}\right\}_{M_{i} \in \operatorname{Max}(M)}$ is a complete subgraph of $G(M)$ by Lemma 2.4. Hence $\omega(G(M)) \geq|M a x(M)|$.
(b) This follows directly from Theorem 2.6.
(c) This is clear by part (a) and (b).
(d) Let $\operatorname{Max}(M)=\left\{M_{1}, \ldots, M_{t}\right\}$. Also for each $1 \leq i \leq t$, set

$$
A_{i}=\left\{M_{1}, \ldots, M_{i-1}, M_{i+1}, M_{t}\right\}
$$

Now let $P\left(A_{i}\right)$ be the power set of A_{i} and for each $X \in P\left(A_{i}\right)$, set $M_{X}=\bigcap_{M_{j} \in X} M_{j}$ for $1 \leq j \leq t$. The subgraph of $G(M)$ with the vertex set $\left\{M_{X}\right\}_{X \in P\left(A_{i}\right) \backslash\{\emptyset\}}$ is a complete subgraph of $G(M)$ by Lemma 2.4. Clearly, $\left|\left\{M_{X}\right\}_{X \in P\left(A_{i}\right) \backslash\{\emptyset\}}\right|=2^{|\operatorname{Max}(M)|-1}-1$. Thus $\omega(G(M)) \geq 2^{|\operatorname{Max}(M)|-1}-1$.

The following remarks show that the condition " M is a multiplication module" can not be omitted in Proposition 3.1.

Remark 3.2. Let $M:=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ be as Example 2.7 which is an empty graph. Then we see that $|\operatorname{Max}(M)|=3$; but $\omega(G(M))=1$.

Remark 3.3. Let $M:=\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}$ be as Example 2.10. Then $G(M)$ is a non-empty graph with $\omega(G(M))<|\operatorname{Max}(M)|$.
Corollary 3.4. Let M be a finitely generated R-module. If $\omega(G(M))<$ ∞, then $M / \operatorname{Rad}(M)$ is a cyclic R-module.

Proof. This follows from Proposition 3.1 (c) and [8, Theorem 2.8].
Theorem 3.5. Let R be a ring and M be an R-module. Then $\gamma(G(M))$ ≤ 2. Moreover, if $\operatorname{Max}(M)$ is a finite set, then $\gamma(G(M))=2$.
Proof. Since $G(M)$ is a non-null graph, we have $|\operatorname{Max}(M)| \geq 2$. Set $S:=\left\{M_{1}, M_{2}\right\}$, where $M_{1}, M_{2} \in \operatorname{Max}(M)$. Let $N \in V(G(M))$. We claim that N is adjacent to M_{1} or M_{2}. Clearly, when $N \subseteq M_{1}$ or $N \subseteq M_{2}$, the claim is true. So we assume that $N \nsubseteq M_{1}$ and $N \nsubseteq M_{2}$. Without loss of generality, we may assume that N is not adjacent to M_{1}. Then $N \cap M_{1} \subseteq \operatorname{Rad}(M)$ by Lemma 2.2 (b). It follows that $N \subseteq M_{2}$, a contradiction. Similarly, N is adjacent to M_{2}. Hence $\gamma(G(M)) \leq 2$. The last assertion follows from Theorem 2.15.

Example 3.6. Let $M:=\mathbb{Z}_{36}$ be as Example 2.9. Then we see that $|\operatorname{Max}(M)|<\infty$ and $\gamma(G(M))=2$.

Remark 3.7. The condition " M is a multiplication module" can not be omitted in Theorem 3.5. For example, let $M=\mathbb{Z}_{2} \oplus Z_{6}$ be a \mathbb{Z}-module. Then $V(G(M))=\{(0,1) \mathbb{Z},(0,2) \mathbb{Z},(0,3) \mathbb{Z},(1,0) \mathbb{Z},(1,1) \mathbb{Z},(1,2) \mathbb{Z}$, $(1,3) \mathbb{Z},(1,0) \mathbb{Z}+(0,3) \mathbb{Z}\}$ and $\operatorname{Max}(M)=\{(0,1) \mathbb{Z},(1,2) \mathbb{Z},(1,1) \mathbb{Z}$ $,(1,0) \mathbb{Z}+(0,3) \mathbb{Z}\}$. We see that $|\operatorname{Max}(M)|<\infty$; but $\gamma(G(M))=3$.

Theorem 3.8. Let M be an R-module and $|\operatorname{Max}(M)|<\infty$. Then $\alpha(G(M))=|M a x(M)|$.

Proof. Let $\operatorname{Max}(M)=\left\{M_{1}, \ldots, M_{n}\right\}$. Since $T:=\left\{\bigcap_{j=1, i \neq j}^{n} M_{j}\right\}_{i=1}^{n}$ is an independent set in $G(M)$, we have $n \leq \alpha(G(M))$ (Note that if $\alpha, \beta \in T$, then $\alpha \cap \beta=\operatorname{Rad}(M)$, so α is not adjacent to β by Lemma 2.2 (c)). Now let $\alpha(G(M))=m$ and let $S=\left\{N_{1}, N_{2}, \ldots, N_{m}\right\}$ be a maximal independent set in $G(M)$. Then for each $N \in S, N \nless M$. By Lemma 2.2 (b), $N \nsubseteq M_{t}$ for some $M_{t} \in \operatorname{Max}(M)$. If $m>n$, then by Pigeon hole principal, there exists $1 \leq i, j \leq n$ such that $N_{i} \nsubseteq M_{t}$ and $N_{j} \nsubseteq M_{t}$. Since S is an independent set, N_{i} and N_{j} are not adjacent and $N_{i} \cap N_{j} \ll M$. So $N_{i} \cap N_{j} \subseteq M_{t}$ by Lemma $2.2(\mathrm{~b})$. Hence $N_{i} \subseteq M_{t}$ or $N_{j} \subseteq M_{t}$ by Lemma 2.2 (c), a contradiction. We have similar arguments when $\alpha(G(M))=\infty$. Thus $\alpha(G(M))=|\operatorname{Max}(M)|$ and the proof is complete.

Acknowledgments

We would like to thank the referee for careful reading and valuable comments.

References

1. S. Akbari, H. A. Tavallaee, and S. Khalashi Ghezelahmad, Intersection graph of submudeles of a module, J. Algebra Appl, 11 (2012), 1250019.
2. I. Beck. Coloring of a commutative ring. J. Algebra, 116 (1988), 208-226.
3. J. A. Bondy and U. S. R. Murty, Graph theory, Gradute Text in Mathematics, 244, Springer, New York, 2008.
4. J. Bosak, The graphs of semigroups, In Theory of Graphs and Application(Academic Press), New York, (1964), 119-125
5. I. Chakrabarty, S. Ghosh, T. K. Mukherjee, and M. K. Sen, Intersection graphs of ideals of rings, Discrete Math., 309 (2009), 5381-5392.
6. B. Csákány and G. Pollák, The graph of subgroups of a finite subgroup, Czechoslovak Math. J., 19 (1969), 241-247.
7. S. Ebrahimi Atani, S. Dolati Pish Hesari, and M. Khoramdel, A graph associated to proper non-small graph ideals of a commutative ring, submitted.
8. Z. A. El-Bast and P. P Smith, Multiplication Modules, Comm. Algebra, 16 (1988), 755-799.
9. T. W. Haynes, S. T. Hedetniemi, and P.J. Slater, Fundemental of domination in graphs, Inc, New York, NY, 1988.
10. S. H. Jafari and N. Jafari Rad, Domination in the intersection graph of rings and modules, Ital. J. Pure Appl. Math. 28 (2011), 19-22.
11. C. P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Paul, 33 (1) (1984), 61-69.
12. C. P. Lu, Spectra of modules, Comm. Algebra, 23 (1995), 3741-3752.
13. R. Wisbauer, The foundation of modules and rings, Philadelphia: Gordan and Breach, 1991.
14. E. Yaraneri, Intersection graph of a module, J. Algebra Appl, 12 (2013), 1250218.

H. Ansari-Toroghy

Department of Mathematics, University of Guilan, P.O.41335-19141, Rasht, Iran.
Email: ansari@guilan.ac.ir

F. Farshadifar

Department of Mathematics, University of Farhangian Tehran, Iran.
Email: f.farshadifar@gmail.com

F. Mahboobi-Abkenar

Department of Mathematics, University of Guilan Rasht, Iran.
Email: mahboobi@phd.guilan.ac.ir

[^0]: MSC(2010): Primary: 05C75; Secondary: 13A99, 05C99
 Keywords: Graph, non-small submodule, multiplication module.
 Received: 18 February 2016, Accepted: 13 April 2016.
 $*$ Corresponding author .

