Journal of Algebra and Related Topics Vol. 4, No 1, (2016), pp 1-11

ON COMPONENT EXTENSIONS OF LOCALLY COMPACT ABELIAN GROUPS

H. SAHLEH * AND A. A. ALIJANI

ABSTRACT. Let \pounds be the category of locally compact abelian groups and $A, C \in \pounds$. In this paper, we define component extensions of A by C and show that the set of all component extensions of Aby C forms a subgroup of Ext(C, A) whenever A is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. We also gives a necessary condition for an LCA group to be component injective in \pounds .

1. INTRODUCTION

Let \pounds denote the category of locally compact abelian (LCA) groups (will be written additively) with continuous homomorphisms as morphisms. The identity component of a group $G \in \pounds$ is denoted by G_0 . A morphism is called proper if it is open onto its image and a short exact sequence $0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ in \pounds is said to be proper exact if ϕ and ψ are proper morphisms. In this case the sequence is called an extension of A by C (in \pounds). Following [4], we let Ext(C, A) denote the (discrete) group of extensions of A by C. The group operation on Ext(C, A) is as in Theorem 2.19. The splitting problem in LCA groups is finding conditions on A and C under which Ext(C, A) = 0. In [2, 3, 5, 7, 8, 9, 12, 13] the splitting problem is studied. Sometimes, the splitting problem is limited to a subgroup or a subset of Ext(C, A). Some subgroups of Ext(C, A) such as

MSC(2010): Primary: 20K35; Secondary: 22B05

Keywords: Component extension, component injective, component projective.

Received: 9 April 2016, Accepted: 2 July 2016.

^{*}Corresponding author .

Pext(C, A), *Pext(C, A), Tpext(C, A) and Apext(C, A) have been studied in [2, 7, 8, 9]. In [13], we define s-pure extensions and obtained some results. In [8] the question investigated is connected with the search for condition under which the group of pure extensions, Pext(C, A), is null. In this paper, we introduce a new subgroup of Ext(C, A), namely $Ext(C, A)_0$. We study the vanishing problem for this subgroup and will find a classification for the group C. An extension $0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to$ 0 is called a component extension if $0 \to A_0 \xrightarrow{\phi} B_0 \xrightarrow{\psi} C_0 \to 0$ is an extension. Let $Ext(C, A)_0$ denote the set of all component extensions of A by C. In Section 2, we show that $Ext(C, A)_0$ is a subgroup of Ext(C, A) whenever A is a connected group (Theorem 2.19). In Section 3, we introduce component injective and component projective in \pounds . An LCA group G is a component projective group in \pounds if and only if $G \cong \mathbb{R}^n \bigoplus C \bigoplus A$ where C is a compact connected group having a cotorsion dual and A a discrete free group (Theorem 3.6). If G is a component injective group in \mathcal{L} , then $G \cong \mathbb{R}^n \bigoplus (\mathbb{R}/\mathbb{Z})^{\sigma} \bigoplus H$ where n is a nonnegative integer, σ a cardinal number and H a totally disconnected, LCA group (Theorem 3.3).

The additive topological group of real numbers is denoted by \mathbb{R} , \mathbb{Q} is the group of rationals with the discrete topology and \mathbb{Z} is the group of integers with the discrete topology. The Pontrjagin dual of a group G is denoted by \hat{G} . For more on locally compact abelian groups, see [6].

2. Component extensions

Let $A, C \in \mathcal{L}$. In this section, we will define component extensions and will show that the set of all component extensions of A by C is a subgroup of Ext(C, A) whenever A is a connected group.

Definition 2.1. An extension $0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ is called a component extension if $0 \to A_0 \xrightarrow{\phi} B_0 \xrightarrow{\psi} C_0 \to 0$ is an extension.

Lemma 2.2. An extension $E: 0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ is a component extension if and only if $0 \to A_0 \xrightarrow{\phi} B_0 \xrightarrow{\psi} C_0 \to 0$ is an exact sequence.

Proof. Let $0 \to A_0 \xrightarrow{\phi} B_0 \xrightarrow{\psi} C_0 \to 0$ be an exact sequence. By [6, Theorem 5.29], $\phi : A_0 \to B_0$ and $\psi : B_0 \to C_0$ are proper morphisms. Hence E is a component extension.

Remark 2.3. Let $G \in \pounds$ and H be a connected subgroup of G. We know that $(G/H)_0$ is the intersection of all open subgroups of G/H. But an open subgroup of G/H has the form K/H where K is an open subgroup

of G containing H. Since H is connected, then by [6, Theorem 7.8], $H \subseteq K$ for every open subgroup K of G. Hence, $(G/H)_0 = G_0/H$.

Lemma 2.4. Every extension of a connected LCA group by a LCA group is a component extension.

Proof. Let $E: 0 \to A \xrightarrow{\phi} B \to C \to 0$ be an extension such that A is connected. Since $\phi(A)$ is a connected subgroup of B, so by Remark 2.3, $C_0 \cong B_0/\phi(A)$. Hence $0 \to A \xrightarrow{\phi} B_0 \to C_0 \to 0$ is a component extension.

Lemma 2.5. Every extension of a totally disconnected group by a totally disconnected group is a component extension.

Proof. Let $E: 0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ be an extension such that A and C are totally disconnected. We claim that B is totally disconnected. Since $\psi(B_0) \subseteq C_0$ and C is totally disconnected, it follows that $\psi(B_0) = 0$. Hence, $B_0 \subseteq Im\phi$. But, $Im\phi$ is a totally disconnected group. Therefore, $B_0 = 0$ and B is a totally disconnected group. \Box

The extension $0 \to A \to A \bigoplus C \to C \to 0$ is called the trivial extension.

Lemma 2.6. The trivial extension of A by C is a component extension.

Proof. It is clear.

Recall that two extensions $0 \to A \xrightarrow{\phi_1} B \xrightarrow{\psi_1} C \to 0$ and $0 \to A \xrightarrow{\phi_2} X \xrightarrow{\psi_2} C \to 0$ are said to be equivalent if there is a topological isomorphism $\beta: B \to X$ such that the following diagram

$$0 \longrightarrow A \xrightarrow{\phi_1} B \xrightarrow{\psi_1} C \longrightarrow 0$$
$$\downarrow^{1_A} \downarrow^{\beta} \downarrow^{1_C} \downarrow^{1_C}$$
$$0 \longrightarrow A \xrightarrow{\phi_2} X \xrightarrow{\psi_2} C \longrightarrow 0$$

is commutative.

Lemma 2.7. An extension equivalent to a component extension is a component extension.

Proof. Let

$$E_1: 0 \to A \xrightarrow{\phi_1} B \xrightarrow{\psi_1} C \to 0$$

and

$$E_2: 0 \to A \xrightarrow{\phi_2} X \xrightarrow{\psi_2} C \to 0$$

be two equivalent extensions such that E_1 is a component extension. Then, there is a topological isomorphism $\beta: B \to X$ such that $\beta \phi_1 =$

 $\phi_2 \text{ and } \psi_2 \beta = \psi_1. \text{ Let } c_0 \in C_0. \text{ Since } E_1 \text{ is a component extension,}$ so $\psi_1(b_0) = c_0$ for some $b_0 \in B_0$. Hence, $\psi_2(\beta(b_0)) = \psi_1(b_0) = c_0$. So, $\psi_2 : X_0 \to C_0$ is surjective. Now, let $\psi_2(x_0) = 0$ for some $x_0 \in X_0$. Since $\beta(B_0) = X_0$, so there exists $b_0 \in B_0$ such that $\beta(b_0) = c_0$. Hence, $\psi_1(b_0) = \psi_2(\beta(b_0)) = 0$. Since E_1 is a component extension, then $\phi_1(a_0) = b_0$ for some $a_0 \in A_0$. Consequently, $\phi_2(a_0) = \beta(\phi_1(a_0)) = x_0$.

Definition 2.8. Let $E: 0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ be an extension and $\alpha: A \to A'$ be a proper morphism. We define the sequence αE as follows:

$$\alpha E: 0 \to A' \stackrel{\phi'}{\longrightarrow} X \stackrel{\psi'}{\longrightarrow} C \to 0$$

where

$$X = (A' \bigoplus B)/H$$
$$H = \{(-\alpha(a), \phi(a)); a \in A\}$$
$$\phi'(a') = (a', 0) + H$$
$$\psi'((a', b) + H) = \psi(b)$$

Then, αE is an extension which is called the standard pushout of E (See [4, Proposition 2.3]).

Let $\gamma: C' \to C$ be a proper morphism. We define the sequence $E\gamma$ as follows:

$$E\gamma: 0 \to A \xrightarrow{\phi'} X \xrightarrow{\psi'} C' \to 0$$

where

$$X = \{(b, c'); b \in B, c' \in C', \psi(b) = \gamma(c')\}$$
$$\phi'(a) = (\phi(a), 0)$$
$$\psi'(b, c') = c'$$

Then, $E\gamma$ is an extension which is called the standard pullback of E (See [4, Proposition 2.3]).

Lemma 2.9. A pullback of a component extension is a component extension.

Proof. Suppose $0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ is a component extension and

is the standard pullback diagram. Then,

$$B' = \{(b, c'); \psi(b) = \gamma(c')\}\$$

and

$$\phi': a \longmapsto (\phi(a), 0), \ \psi': (b, c') \longmapsto c'$$

We show that $0 \to A_0 \xrightarrow{\phi'} B'_0 \xrightarrow{\psi'} C'_0 \to 0$ is exact. Let $c'_0 \in C'_0$. Then, $\gamma(c'_0) \in C_0$. Since $\psi : B_0 \to C_0$ is surjective, so there exists $b_0 \in B_0$ such that $\psi(b_0) = \gamma(c'_0)$. Hence, $(b_0, c'_0) \in B'_0$ and $\psi'(b_0, c'_0) = c'_0$. So $\psi' : B'_0 \to C'_0$ is surjective. Now, suppose that $(b, c') \in B'_0$ and $\psi'(b, c') = 0$. Then, c' = 0 and $b \in B_0$. Since $\psi(b) = 0$, so there exists $a_0 \in A_0$ such that $\phi(a_0) = b$. Hence, $\phi'(a_0) = (b, 0) = (b, c')$. This shows that $Ker\psi' \mid_{B'_0} \subseteq Im\phi' \mid_{A_0}$.

Remark 2.10. Let $f: A \to C$ be a proper morphism and $G \in \pounds$. Then

- (1) $f_* : Ext(G, A) \to Ext(G, C)$ defined by $f_*([E]) = [fE]$ and
- (2) $f^* : Ext(C, G) \to Ext(A, G)$ defined by $f^*([E]) = [Ef]$ are group homomorphisms (See [10, Theorem 2.1]).

Recall that $Ext(C, A)_0$ denotes the set of all component extensions of A by C. We say that $Ext(C, A)_0 = 0$ if every component extension of A by C splits.

Lemma 2.11. Let $f : A \to C$ be a proper morphism. Then, $f^*(Ext(C,G)_0) \subseteq Ext(A,G)_0$ for all $G \in \mathcal{L}$.

Proof. Let $E \in Ext(C,G)_0$. Then, by definition, Ef is a pullback of E.By Remak 2.10 (2), $f^*(E) = [Ef]$. Now, by Lemma 2.9, $f^*(E) \in Ext(A,G)_0$.

Theorem 2.12. If C is a connected group and A a totally disconnected group, then $Ext(C, A)_0 = 0$.

Proof. Let $E: 0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ be a component extension. Then, $0 \to A_0 \xrightarrow{\phi} B_0 \xrightarrow{\psi} C_0 \to 0$ is an extension. Since A is totally disconnected and C connected, it follows that $\psi: B_0 \to C$ is a topological isomorphism. We claim that $B = B_0 + \phi(A)$. Let $b \in B$. Then $\psi(b) \in C$.

So $\psi(b) = \psi(b_0)$ for some $b_0 \in B_0$. Hence $b - b_0 \in ker\psi = im\phi$. So $b = b_0 + \phi(a)$ for some $a \in A$. Now, we show that $\phi(A) \bigcap B_0 = 0$. Let $b \in \phi(A) \bigcap B_0$. Then, $\psi(b) = 0$. Since $\psi : B_0 \to C$ is injective, so b = 0. Hence, $\phi(A) \bigcap B_0 = 0$. Since B_0 is σ -compact, it follows from [4, Corollary 3.2] that $B \cong \phi(A) \bigoplus B_0$. This shows that E splits. \Box

Lemma 2.13. Let $G \in \pounds$ be a non discrete group which contains a compact open subgroup K. Then $Ext(G, \mathbb{Z}) \neq 0$.

Proof. Consider the exact sequence $0 \to K \to G \to G/K \to 0$. By [4, Corollary 2.10], we have the exact sequence

$$\rightarrow Ext(G/K,\mathbb{Z}) \rightarrow Ext(G,\mathbb{Z}) \rightarrow Ext(K,\mathbb{Z}) \rightarrow 0$$

If $Ext(G, \mathbb{Z}) = 0$, then $Ext(K, \mathbb{Z}) = 0$. By [4, Theorem 2.12], $Ext(\mathbb{Z}, K) \cong Ext(K, \mathbb{Z}) = 0$. It follows from [4, Proposition 2.17] that $\hat{K} = 0$ which is a contradiction because G is not a discrete group. \Box

Lemma 2.14. Let $G \in \pounds$ be a non connected and non totally disconnected group such that G_0 is not an open subgroup of G. Then $Ext(G, \mathbb{Z})_0 \neq 0$.

Proof. Consider the extension $0 \to G_0 \xrightarrow{i} G \longrightarrow G/G_0 \to 0$. By [5, Corollary 2.10], we have the exact sequence

$$0 \to Ext(G/G_0, \mathbb{Z}) \xrightarrow{\pi^*} Ext(G, \mathbb{Z}) \xrightarrow{i^*} Ext(G_0, \mathbb{Z}) \to 0$$

Now, suppose that $Ext(G,\mathbb{Z})_0 = 0$. We have $\pi^*(Ext(G/G_0,\mathbb{Z})_0) \subseteq Ext(G,\mathbb{Z})_0$, so $\pi^*(Ext(G/G_0,\mathbb{Z})_0 = 0$. Since π^* is injective, then $Ext(G/G_0,\mathbb{Z})_0 = 0$. By Lemma 2.5, $Ext(G/G_0,\mathbb{Z}) = 0$ which is a contradiction because G/G_0 is a totally disconnected group which contains a compact open subgroup. On the other hand, G/G_0 is not a discrete group. So, by Lemma 2.13, $Ext(G/G_0,\mathbb{Z}) \neq 0$.

Lemma 2.15. Let A be a discrete divisible group and G a LCA group. Then $Ext(G, A)_0 = 0$.

Proof. Consider the extension $0 \to G_0 \xrightarrow{i} G \longrightarrow G/G_0 \to 0$. By [5, Corollary 2.10], we have the exact sequence

$$0 \to Ext(G/G_0, A) \to Ext(G, A) \xrightarrow{i^*} Ext(G_0, A) \to 0$$

Since, G/G_0 is a totally disconnected group, so by [4, Theorem 3.4] $Ext(G/G_0, A) = 0$. Hence, i^* is injective. By Lemma 2.11, $i^*(Ext(G, A)_0)$ $\subseteq Ext(G_0, A)_0$. By Theorem 2.12, $Ext(G_0, A)_0$ = 0. Hence, $i^*(Ext(G, A)_0) = 0$. Now $Ext(G, A)_0 = 0$ because i^* is

= 0. Hence, $i^*(Ext(G, A)_0) = 0$. Now $Ext(G, A)_0 = 0$ because i^* is injective.

The following remark shows that the pushout of a component extension need not be a component extension.

Remark 2.16. By Lemma 2.14, if $G = \hat{\mathbb{Q}} \bigoplus (\overline{\mathbb{Q}/\mathbb{Z}})$, then $Ext(G, \mathbb{Z})_0 \neq 0$. So there exists a non splitting component extension $E: 0 \to \mathbb{Z} \xrightarrow{\phi} X \to G \to 0$. Consider the standard pushout iE:

$$iE: 0 \to \mathbb{Q} \to (\mathbb{Q} \bigoplus X)/H \to G \to 0$$

where $H = \{(-n, \phi(n)); n \in \mathbb{Z}\}$. Let iE be a component extension. Then by Lemma 2.15, it splits. So $(\mathbb{Q} \bigoplus X)/H \cong \mathbb{Q} \bigoplus G$. Since $\mathbb{Q} \bigoplus G$ is torsion-free, so H is a pure subgroup. On the other hand, $H \subseteq \mathbb{Q} \bigoplus nX$. So H is a divisible group. Hence, for a positive integer $m \neq 1$, there exists $(-n, f(n)) \in H$ such that m(-n, f(n)) = (-1, f(1)). It follows that mn = 1 which is a contradiction. So iE is not a component extension.

Lemma 2.17. Let A be a connected group. Then a pushout of a component extension of A by C is a component extension.

Proof. Suppose $0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ is a component extension and

is a standard pushout diagram. Then

$$H = \{(\mu(a), -\phi(a)), a \in A\}$$

and

$$\phi':a'\longmapsto (a',0)+H,\ \psi':(a',b)+H\longmapsto \psi(b)$$

We show that $0 \to A'_0 \xrightarrow{\phi'} ((A' \bigoplus B)/H)_0 \xrightarrow{\psi'} C_0 \to 0$ is exact. Let $c_0 \in C_0$. Since $\psi : B_0 \to C_0$ is surjective, so there exists $b_0 \in B_0$ such that $\psi(b_0) = c_0$. Hence $(0, b_0) + H \in ((A' \bigoplus B)/H)_0$. Since $\psi'((0, b_0) + H) = c_0$, so $\psi' : ((A' \bigoplus B)/H)_0 \to C_0$ is surjective. Let $(a', b) + H \in ((A' \bigoplus B)/H)_0$ and $\psi'((a', b) + H) = 0$. So $\psi(b) = 0$. Hence, there is $a \in A$ such that $\phi(a) = -b$. Since A is connected, then $\mu(A) \subseteq A'_0$.

Let $E_1: 0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ and $E_2: 0 \to A \xrightarrow{\phi'} B' \xrightarrow{\psi'} C \to 0$ be two extensions of A by C. Then the direct sum of E_1 and E_2 is

denoted by $E_1 \bigoplus E_2$ and defined as follows:

$$E_1 \bigoplus E_2 : 0 \to A \bigoplus A \stackrel{\phi \bigoplus \phi'}{\longrightarrow} B \bigoplus B' \stackrel{\psi \bigoplus \psi'}{\longrightarrow} C \bigoplus C \to 0$$

Lemma 2.18. The direct sum of two component extensions is a component extension.

Proof. It is clear.

Theorem 2.19. Let $A, C \in \mathcal{L}$ such that A is a connected group. Then, $Ext(C, A)_0$ is an subgroup of Ext(C, A) with respect to the operation defined by

$$[E_1] + [E_2] = [\nabla_A (E_1 \bigoplus E_2) \triangle_C]$$

where E_1 and E_2 are component extensions of A by C and ∇_A and \triangle_C are the diagonal and codiagonal homomorphism.

Proof. Clearly, $0 \to A \to A \bigoplus C \to C \to 0$ is a component extension. Let $[E] \in Ext(C, A)_0$. The inverse of [E] is $[-1_A E]$ which belongs to $Ext(C, A)_0$ (Lemma 2.17). By Lemma 2.9 and Lemma 2.17, $[E_1] + [E_2] \in Ext(C, A)_0$ for two component extensions E_1 and E_2 of A by C. Therefore, $Ext(C, A)_0$ is a subgroup of Ext(C, A).

3. Component injective and projective in \pounds

In this section, we define the concept of component injective and component projective in \pounds and classify them.

Definition 3.1. Let $G \in \mathcal{L}$. We call G a component injective group in \mathcal{L} if for every component extension

$$0 \to A \xrightarrow{\phi} B \to C \to 0$$

and a morphism $f: A \to G$, there is a morphism $\overline{f}: B \longrightarrow G$ such that $\overline{f}\phi = f$.

We call G a component projective group in \pounds if for every component extension

$$0 \to A \to B \xrightarrow{\psi} C \to 0$$

and a morphism $f:G\to C,$ there is a morphism $\bar{f}:G\to B$ such that $\psi\bar{f}=f$.

Lemma 3.2. Q is not a component injective in \pounds .

Proof. By Lemma 2.14, there is a non splitting component extension $E: 0 \to \mathbb{Z} \xrightarrow{\phi} X \xrightarrow{\psi} G \to 0$. Let \mathbb{Q} be a component injective. Then, there is a morphism $f: X \to \mathbb{Q}$ such that $f\phi = i$ where $i: \mathbb{Z} \to \mathbb{Q}$ is an inclusion. Since E is a component extension, so $\psi(X_0) = G_0$. Hence,

8

 $X = X_0 + \phi(\mathbf{Z})$. Since f is continuous and \mathbf{Q} totally disconnected, then $f(X_0) = 0$. We claim that f(x) = n for some $n \in \mathbf{Z}$. Let $x \in X$. Then $x = x_0 + \phi(n)$ for some $n \in \mathbf{Z}$. So $f(x) = f(\phi(n)) = n$. An easy calculation shows that $f^{-1}(0) = X_0$. So X_0 is open in X. Hence $\psi(X_0) = G_0$ is open in G which is a contradiction.

Theorem 3.3. Let $G \in \pounds$. Consider the following conditions for G:

- (1) G is component injective in \mathcal{L} .
- (2) $Ext(X,G)_0 = 0$ for all $X \in \pounds$.
- (3) $G \cong \mathbb{R}^n \bigoplus (\mathbb{R}/\mathbb{Z})^{\sigma} \bigoplus H$ where *n* is a nonnegative integer, σ a cardinal number and *H* is a totally disconnected, *LCA* group.

Then: $(1) \Rightarrow (2) \Rightarrow (3)$.

Proof. $(1) \Rightarrow (2)$: It is clear.

 $(2) \Rightarrow (3)$: Let $G \in \pounds$ and $Ext(X, G)_0 = 0$ for all $X \in \pounds$. Let C be a connected group. Consider the following exact sequence

$$0 \to Ext(C,G_0) \xrightarrow{i_*} Ext(C,G) \xrightarrow{\pi_*} Ext(C,G/G_0) \to 0$$

Since $Ext(C,G)_0 = 0$ and $i_*(Ext(C,G_0)_0) \subseteq Ext(C,G)_0 = 0$, so $Ext(C,G_0)_0 = 0$. By Lemma 2.4 (2), $Ext(C,G_0) = 0$. So By [5, Theorem 3.3], $G_0 \cong \mathbb{R}^n \bigoplus (\mathbb{R}/\mathbb{Z})^{\sigma}$. Hence $G \cong G_0 \bigoplus G/G_0$. Set $H = G/G_0$. So $G \cong \mathbb{R}^n \bigoplus (\mathbb{R}/\mathbb{Z})^{\sigma} \bigoplus H$.

Remark 3.4. In Theorem 3.3, (3) may not imply (1).For example, take $G = \mathbf{Q}$. Then, by Lemma 3.2, G is not a component injective group. Also, if $X = \hat{\mathbb{Q}} \bigoplus \widehat{(\mathbb{Q}/\mathbb{Z})}$ then by Lemma 2.14 $Ext(X,\mathbb{Z})_0 \neq 0$. Hence, (3) may not imply (2) as well.

Lemma 3.5. Let $G \in \mathcal{L}$ and $\{H_i; i \in I\}$ be a collection in \mathcal{L} such that $\bigoplus_{i \in I} H_i \in \mathcal{L}$. If $Ext(H_i, G)_0 = 0$ for every i, then $Ext(\bigoplus_{i \in I} H_i, G)_0 = 0$.

Proof. By [4, Theorem 2.13], $\sigma : Ext(\bigoplus_{i \in I} H_i, G) \to \prod_{i \in I} Ext(H_i, G)$ defined by $\sigma([E]) = ([El_i])_{i \in I}$ is an isomorphism where $l_i : H_i \to \bigoplus_{i \in I} H_i$ is an injection. By Lemma 2.9, $[El_i] \in Ext(H_i, G)_0$ for every *i*. So $\sigma(Ext(\bigoplus_{i \in I} H_i, G)_0) \subseteq \prod_{i \in I} Ext(H_i, G)_0$. Now, suppose that $Ext(H_i, G)_0 = 0$ for every *i*. Then, $\sigma(Ext(\bigoplus_{i \in I} H_i, G)_0) = 0$. Since σ is injective, then $Ext(\bigoplus_{i \in I} H_i, G)_0 = 0$.

Theorem 3.6. Let $G \in \pounds$. The following statements are equivalent:

- (1) G is component projective in \pounds .
- (2) $Ext(G, X)_0 = 0$ for all $X \in \mathcal{L}$.
- (3) $G \cong \mathbb{R}^n \bigoplus C \bigoplus A$ where C is a compact connected group having a cotorsion dual and A a discrete free group.

Proof. (1) \Rightarrow (2): It is clear. (2) \Rightarrow (3): Let $G \in \pounds$ and $Ext(G, X)_0 = 0$ for all $X \in \pounds$. Let X be a totally disconnected group. Consider the following exact sequence

$$0 \to Ext(G/G_0, X) \xrightarrow{\pi^*} Ext(G, X) \xrightarrow{i^*} Ext(G_0, X) \to 0$$

Since $Ext(G, X)_0 = 0$, so $Ext(G/G_0, X)_0 = 0$. Hence $Ext(G/G_0, X) = 0$ for all totally disconnected groups X. By [4, Theorem 4.1], G/G_0 is a free group. So $G \cong G_0 \bigoplus G/G_0$. By Lemma 2.4, $Ext(G, C) = Ext(G, C)_0 = 0$ for all connected groups $C \in \pounds$. So $Ext(G_0, C) = 0$ for all connected groups $C \in \pounds$. So $Ext(G_0, C) = 0$ for all connected group A where C is a compact group having a cotorsion dual. (3) \Rightarrow (2): Let $G \cong \mathbb{R}^n \bigoplus C \bigoplus A$ where C is a compact connected group. By [11, Theorem 3.3], $Ext(\mathbb{R}^n \bigoplus A, X) = 0$ for all $X \in \pounds$. Let $X \in \pounds$. Now, we show that $Ext(C, X)_0 = 0$. Consider the following exact sequence

$$0 \to Ext(C, X_0) \to Ext(C, X) \xrightarrow{\pi_*} Ext(C, X/X_0) \to 0$$

Since \hat{C} is a cotorsion group, so $Ext(C, X_0) \cong Ext((X_0), \hat{C}) = 0$. By Theorem 2.12, $Ext(C, X/X_0)_0 = 0$. Hence $\pi_*(Ext(C, X)_0) = 0$. So $Ext(C, X)_0 = 0$. Hence, by Lemma 3.5, $Ext(\mathbb{R}^n \bigoplus C \bigoplus A, X)_0 = 0$. (2) \Rightarrow (1): Let $0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ be a component extension and $f: G \to C$ a morphism. Consider the pullback diagram

$$0 \longrightarrow A \xrightarrow{\phi'} B' \xrightarrow{\psi'} G \longrightarrow 0$$
$$\downarrow^{1_A} \qquad \qquad \downarrow^{\beta} \qquad \qquad \downarrow^{f} \\ 0 \longrightarrow A \xrightarrow{\phi} B \xrightarrow{\psi} C \longrightarrow 0$$

By Lemma 2.9, Ef is a component extension. So by assumption, Ef splits. Hence, there is a morphism $h: C \to B'$ such that $\psi'h = f$. Now, βh is a morphism of G to B and $\psi\beta h = f$. So G is component projective in \pounds .

Acknowledgments

The authors would like to thank the referee for his/her valuable remarks.

10

ON COMPONENT EXTENSIONS

References

- 1. L. Fuchs, Infinite abelian groups, Academic Press, New York, 1970.
- R. O. Fulp, Homological study of purity in locally compact groups, Proc. London Math. Soc, 21 (1970), 501-512.
- R. O. Fulp, Splitting locally compact abelian groups, Michigan Math. J, 19 (1972), 47-55.
- R. O. Fulp and P. Griffith, Extensions of locally compact abelian groups I, Trans. Amer. Math. Soc, 154 (1971), 341-356.
- R. O. Fulp and P. Griffith, *Extensions of locally compact abelian groups II*, Trans. Amer. Math. Soc, **154** (1971), 357-363.
- E. Hewitt and K. Ross, Abstract harmonic analysis, Springer-Verlag, Berlin, 1979. 154 (1971), 341-356.
- P. Loth, Topologically pure extensions abelian groups, rings and modules, Proceedings of the AGRAM 2000 Conference in Perth, Western Australia, July 9-15, 2000, Contemporary Mathematics 273, American Mathematical Society (2001), 191-201.
- P. Loth, Pure extensions of locally compact abelian groups, Rend. Sem. Mat. Univ. Padova, 116 (2006), 31-40.
- P. Loth, On t-pure and almost pure exact sequences of LCA groups, J. Group Theory, 9 (2006), 799-808.
- S. MacLane, *Homology*, Die Grundlehren der mathematischen Wissenschaften, Bd. 114. Springer-Verlag, Berlin, 1963.
- M. Moskowitz, Homological algebra in locally compact abelian groups, Trans. Amer. Math. Soc, 127 (1967), 361-404.
- H. Sahleh and A. A. Alijani, Splitting of extensions in the category of locally compact abelian groups, Int. J. Group Theory, 3 (2014), 39-45.
- H. Sahleh and A. A. Alijani, S-pure etensions of locally compact abelian groups, HJMS, 44 (2015), 1125-1132.

Hossein Sahleh

Department of Mathematics, University of Guilan, P.O.Box 1914, Rasht, Iran. Email: sahleh@guilan.ac.ir

Ali Akbar Alijani

Email: alijanialiakbar@gmail.com