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RESULTS ON HILBERT COEFFICIENTS OF A
COHEN-MACAULAY MODULE

H. SAREMI AND A. MAFI ∗

Abstract. Let (R,m) be a commutative Noetherian local ring,
M a finitely generated R-module of dimension d, and let I be an
ideal of definition for M . In this paper, we extend [7, Corollary
10(4)] and also we show that if M is a Cohen-Macaulay R-module

and d = 2, then λ( ĨnM

J ˜In−1M
) does not depend on J for all n ≥ 1,

where J is a minimal reduction of I.

1. Introduction

Throughout this note, we assume that (R,m) is a commutative Noe-
therian local ring with residue field k = R/m, M a finitely generated R-
module of dimension d and I an ideal of definition for M ; i.e. λ(M/IM)
is finite. Here λ(−) denotes length. Let GI(R) =

⊕
n≥0 I

n/In+1

and GI(M) =
⊕

n≥0 I
nM/In+1M be the associated graded ring of

R and the associated graded module of M with respect to I, re-
spectively. In [8] the Ratliff-Rush closure of M with respect to I

is defined by ĨM = ∪k≥1(Ik+1M :M Ik) (see also [10] or [9]). Let

G̃I(M) =
⊕

n≥0 Ĩ
nM/Ĩn+1M be the associated graded module of the

Ratliff-Rush filtration. Recall that an ideal J ⊆ I is said to be a reduc-
tion of I if Ir+1 = JIr for some r ≥ 0, and a reduction J of I is called
a minimal reduction of I if J is minimal with respect to inclusion. The
concepts of reduction and minimal reduction were first introduced by
Northcott and Rees [6].
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The formal power series

HI
M(z) =

∑
n≥0

λ(InM/In+1M)zn =
hIM(z)

(1− z)d
,

where hIM(z) = hI0(M) + hI1(M)z + ...+ hIr(M)zr ∈ Z[z]. This series is
called the Hilbert series of M and the polynomial hIM(z) is called the
h-polynomial of M .

An element x ∈ I is called superficial for M with respect to I if
there exists an integer k > 0 such that (In+1M :M x)∩IkM = InM for
all n ≥ k. It is known that if depthM > 0, then every M -superficial
element is M -regular (see [4, Lemma 2.1]). Also, if x is superficial and
M -regular, then by using the Artin-Rees lemma for M and xM one
gets (In+1M :M x) = InM for all large n (see [12] or [11]).

The aim of this paper is to generalized [7, Corollary 10(4)] and also
we extend Proposition 2.3 [2] for a Cohen-Macaulay mdules of dimen-
sion 2. We end the paper with some examples. For any unexplained
notation or terminology, we refer the reader to [1] and [5].

2. Main results

Lemma 2.1. Let M be a finitely generated R-module of dimension d.
Then hI0(M) = λ(M/IM) and for all 1 ≤ i ≤ r we have hIi (M) =

λ(I iM/I i+1M)−
∑i−1

n=0

(
d+n
d−1

)
hIi−1−n(M).

Proof. Since
∑∞

n=0 λ(InM/In+1M)zn = hIM(z)/(1− z)d, where hIM(z) =∑r
i=0 h

I
i (M)zi, by easily calculation the result follows. �

Theorem 2.2. Let (R,m) be a Noetherian local ring, M a finitely
generated R-module of dimension d and I an ideal of definition for M .
Let x ∈ I be both M-superficial and M-regular sequence and t ∈ N0.
Set N = M/xM , K = I/xI. Then hIi (M) = hKi (N) for all i ≤ t if
and only if I i+1M : x = I iM for all i ≤ t.

Proof. (=⇒). We proceed by induction on t. If t = 0, 1, then by [7,
Corollary 10(4)] there is nothing to prove. We assume that the result
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hold for all i < t and prove it for i = t. By using Lemma 2.1, we have

hKt (N) =λ(KtN/Kt+1N)−
t−1∑
n=0

(
n+ d− 1

d− 2

)
hKt−1−n(N)

=λ(I tM + xM/I t+1M + xM)−
t−1∑
n=0

(
n+ d− 1

d− 2

)
hIt−1−n(M)

=λ(I tM/I t+1M + I tM ∩ xM)−
t−1∑
n=0

(
n+ d− 1

d− 2

)
hIt−1−n(M).

Now, by induction hypothesis, we have

hKt (N) =λ(I tM/I t+1M)− λ(xI t−1M/x(I t+1M :M x))

−
t−1∑
n=0

(
n+ d− 1

d− 2

)
hIt−1−n(M)

=λ(I tM/I t+1M)− λ(I t−1M/(I t+1M :M x))

−
t−1∑
n=0

(
n+ d− 1

d− 2

)
hIt−1−n(M)

=λ(I tM/I t+1M)− λ(I t−1M/I tM) + λ(I t+1M :M x/I tM)

−
t−1∑
n=0

(
n+ d− 1

d− 2

)
hIt−1−n(M)

=λ(I tM/I t+1M)− hIt−1(M)−
t−2∑
n=0

(
n+ d

d− 1

)
hIt−2−n(M)

+ λ(I t+1M :M x/I tM)−
t−1∑
n=0

(
n+ d− 1

d− 2

)
hIt−1−n(M)

=λ(I tM/I t+1M)−
t−1∑
n=0

(
n+ d

d− 1

)
hIt−1−n(M) + λ(I t+1M :M x/I tM)

=hIt (M) + λ(I t+1M :M x/I tM).

Therefore I t+1M :M x = I tM , as desired.
(⇐=) Again by using induction and the same method the result easily
seen. �

Theorem 2.3. Let M be a finitely generated R-module of dimension 2

and J a minimal reduction of I. Then λ( ĨnM

J ˜In−1M
) does not depend on

J for all n ≥ 0.
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Proof. By using [11, Page 28], we have Ĩn+1M :M I = ĨnM for all n ≥
0. Therefore depthG̃I(M) ≥ 1. Thus by an argument similar to that

used in [13, Corollary 1.2] we have hIM(z) = hI0(M) +
∑r

i=1(λ( ĨiM

JĨiM
)−

λ(
˜Ii+1M

JĨiM
))zi which is a polynomial with coefficients independent from

J . �

The computation of the following examples are performed by using
Macaulay 2 and the ground field k is assumed to be characteristic zero
(see [3]).

Example 2.4. Let I = (x3, y3, z3, x2y, xy2, yz2, xyz) be an ideal of
R = k[x, y, z]. The Hilbert series of I is

HI
R(t) =

14 + 7t+ 7t2 − t3

(1− t)3
.

Since x3 + y3 ∈ I is a superficial element and In+1 : x3 + y3 = In for

all n ≥ 0, we have H
I/(x3+y3)

R/(x3+y3)(t) = 14+7t+7t2−t3
(1−t)2 .

Example 2.5. Let I = (x, y2, z2, yw, zw) be an ideal of R = k[x, y, z
, w]/(w3). The Hilbert series of I is

HI
R(t) =

6 + 3t+ 4t2 − t3

(1− t)3
.

The element x ∈ I is a superficial element and In+1 : x = In for all

n ≥ 0, so it follows H
I/(x)
R/(x)(t) = 6+3t+4t2−t3

(1−t)2 .

Example 2.6. LetR = k[x, y, z, u, v, w]/(z2, zu.zv, uv, yz − u3, xz − v3).
The Hilbert series of the maximal ideal m = (x, y, z, u, v, w) is

Hm
R (t) =

1 + 3t+ 3t3 − t4

(1− t)3

. Since mn+1 : w = mn, it follows H
m/(w)
R/(w) (t) = 1+3t+3t3−t4

(1−t)2 .
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