RESULTS ON HILBERT COEFFICIENTS OF A COHEN-MACAULAY MODULE

H. SAREMI AND A. MAFI *

ABSTRACT. Let (R,m) be a commutative Noetherian local ring, M a finitely generated R-module of dimension d, and let I be an ideal of definition for M. In this paper, we extend [7, Corollary 10(4)] and also we show that if M is a Cohen-Macaulay R-module and d=2, then $\lambda(\frac{\widehat{I^nM}}{J\widehat{I^{n-1}M}})$ does not depend on J for all $n\geq 1$, where J is a minimal reduction of I.

1. Introduction

Throughout this note, we assume that (R, m) is a commutative Noetherian local ring with residue field k = R/m, M a finitely generated R-module of dimension d and I an ideal of definition for M; i.e. $\lambda(M/IM)$ is finite. Here $\lambda(-)$ denotes length. Let $G_I(R) = \bigoplus_{n \geq 0} I^n/I^{n+1}$ and $G_I(M) = \bigoplus_{n \geq 0} I^n M/I^{n+1}M$ be the associated graded ring of R and the associated graded module of M with respect to I, respectively. In [8] the Ratliff-Rush closure of M with respect to I is defined by $\widehat{IM} = \bigcup_{k \geq 1} (I^{k+1}M) :_M I^k$ (see also [10] or [9]). Let $\widetilde{G}_I(M) = \bigoplus_{n \geq 0} \widehat{I^n M}/\widehat{I^{n+1}M}$ be the associated graded module of the Ratliff-Rush filtration. Recall that an ideal $J \subseteq I$ is said to be a reduction of I if $I^{r+1} = JI^r$ for some $r \geq 0$, and a reduction J of I is called a minimal reduction of I if J is minimal with respect to inclusion. The concepts of reduction and minimal reduction were first introduced by Northcott and Rees [6].

MSC(2010): Primary: 13C14; Secondary: 13H10, 13D40.

Keywords: Cohen-Macaulay rings, Hilbert series. Received: 6 March 2016, Accepted: 13 June 2016.

*Corresponding author .

The formal power series

$$H_M^I(z) = \sum_{n \ge 0} \lambda(I^n M / I^{n+1} M) z^n = \frac{h_M^I(z)}{(1-z)^d},$$

where $h_M^I(z) = h_0^I(M) + h_1^I(M)z + ... + h_r^I(M)z^r \in \mathbb{Z}[z]$. This series is called the *Hilbert series* of M and the polynomial $h_M^I(z)$ is called the h-polynomial of M.

An element $x \in I$ is called superficial for M with respect to I if there exists an integer k > 0 such that $(I^{n+1}M:_M x) \cap I^kM = I^nM$ for all $n \geq k$. It is known that if depthM > 0, then every M-superficial element is M-regular (see [4, Lemma 2.1]). Also, if x is superficial and M-regular, then by using the Artin-Rees lemma for M and xM one gets $(I^{n+1}M:_M x) = I^nM$ for all large n (see [12] or [11]).

The aim of this paper is to generalized [7, Corollary 10(4)] and also we extend Proposition 2.3 [2] for a Cohen-Macaulay mdules of dimension 2. We end the paper with some examples. For any unexplained notation or terminology, we refer the reader to [1] and [5].

2. Main results

Lemma 2.1. Let M be a finitely generated R-module of dimension d. Then $h_0^I(M) = \lambda(M/IM)$ and for all $1 \leq i \leq r$ we have $h_i^I(M) = \lambda(I^iM/I^{i+1}M) - \sum_{n=0}^{i-1} \binom{d+n}{d-1} h_{i-1-n}^I(M)$.

Proof. Since $\sum_{n=0}^{\infty} \lambda(I^n M/I^{n+1} M) z^n = h_M^I(z)/(1-z)^d$, where $h_M^I(z) = \sum_{i=0}^r h_i^I(M) z^i$, by easily calculation the result follows.

Theorem 2.2. Let (R,m) be a Noetherian local ring, M a finitely generated R-module of dimension d and I an ideal of definition for M. Let $x \in I$ be both M-superficial and M-regular sequence and $t \in \mathbb{N}_0$. Set N = M/xM, K = I/xI. Then $h_i^I(M) = h_i^K(N)$ for all $i \leq t$ if and only if $I^{i+1}M: x = I^iM$ for all $i \leq t$.

Proof. (\Longrightarrow). We proceed by induction on t. If t = 0, 1, then by [7, Corollary 10(4)] there is nothing to prove. We assume that the result

hold for all i < t and prove it for i = t. By using Lemma 2.1, we have

$$\begin{split} h_t^K(N) = &\lambda(K^t N/K^{t+1} N) - \sum_{n=0}^{t-1} \binom{n+d-1}{d-2} h_{t-1-n}^K(N) \\ = &\lambda(I^t M + x M/I^{t+1} M + x M) - \sum_{n=0}^{t-1} \binom{n+d-1}{d-2} h_{t-1-n}^I(M) \\ = &\lambda(I^t M/I^{t+1} M + I^t M \cap x M) - \sum_{n=0}^{t-1} \binom{n+d-1}{d-2} h_{t-1-n}^I(M). \end{split}$$

Now, by induction hypothesis, we have

$$\begin{split} h_t^K(N) = &\lambda(I^t M/I^{t+1} M) - \lambda(xI^{t-1} M/x(I^{t+1} M:_M x)) \\ &- \sum_{n=0}^{t-1} \binom{n+d-1}{d-2} h_{t-1-n}^I(M) \\ = &\lambda(I^t M/I^{t+1} M) - \lambda(I^{t-1} M/(I^{t+1} M:_M x)) \\ &- \sum_{n=0}^{t-1} \binom{n+d-1}{d-2} h_{t-1-n}^I(M) \\ = &\lambda(I^t M/I^{t+1} M) - \lambda(I^{t-1} M/I^t M) + \lambda(I^{t+1} M:_M x/I^t M) \\ &- \sum_{n=0}^{t-1} \binom{n+d-1}{d-2} h_{t-1-n}^I(M) \\ = &\lambda(I^t M/I^{t+1} M) - h_{t-1}^I(M) - \sum_{n=0}^{t-2} \binom{n+d}{d-1} h_{t-2-n}^I(M) \\ &+ \lambda(I^{t+1} M:_M x/I^t M) - \sum_{n=0}^{t-1} \binom{n+d-1}{d-2} h_{t-1-n}^I(M) \\ = &\lambda(I^t M/I^{t+1} M) - \sum_{n=0}^{t-1} \binom{n+d-1}{d-2} h_{t-1-n}^I(M) \\ = &\lambda(I^t M/I^{t+1} M) - \sum_{n=0}^{t-1} \binom{n+d}{d-1} h_{t-1-n}^I(M) + \lambda(I^{t+1} M:_M x/I^t M) \\ = &h_t^I(M) + \lambda(I^{t+1} M:_M x/I^t M). \end{split}$$

Therefore $I^{t+1}M:_M x=I^tM$, as desired.

 (\Leftarrow) Again by using induction and the same method the result easily seen.

Theorem 2.3. Let M be a finitely generated R-module of dimension 2 and J a minimal reduction of I. Then $\lambda(\underbrace{\widehat{I^nM}}_{JI^{n-1}M})$ does not depend on J for all $n \geq 0$.

Proof. By using [11, Page 28], we have $\widetilde{I^{n+1}M}:_MI=\widetilde{I^nM}$ for all $n\geq 0$. Therefore $\operatorname{depth}\widetilde{G_I(M)}\geq 1$. Thus by an argument similar to that used in [13, Corollary 1.2] we have $h^I_M(z)=h^I_0(M)+\sum_{i=1}^r(\lambda(\frac{\widetilde{I^iM}}{J\widetilde{I^iM}})-\lambda(\frac{\widetilde{I^{i+1}M}}{J\widetilde{I^{i}M}}))z^i$ which is a polynomial with coefficients independent from J.

The computation of the following examples are performed by using Macaulay 2 and the ground field k is assumed to be characteristic zero (see [3]).

Example 2.4. Let $I = (x^3, y^3, z^3, x^2y, xy^2, yz^2, xyz)$ be an ideal of R = k[x, y, z]. The Hilbert series of I is

$$H_R^I(t) = \frac{14 + 7t + 7t^2 - t^3}{(1-t)^3}.$$

Since $x^3 + y^3 \in I$ is a superficial element and $I^{n+1}: x^3 + y^3 = I^n$ for all $n \ge 0$, we have $H_{R/(x^3+y^3)}^{I/(x^3+y^3)}(t) = \frac{14+7t+7t^2-t^3}{(1-t)^2}$.

Example 2.5. Let $I = (x, y^2, z^2, yw, zw)$ be an ideal of $R = k[x, y, z, w]/(w^3)$. The Hilbert series of I is

$$H_R^I(t) = \frac{6+3t+4t^2-t^3}{(1-t)^3}.$$

The element $x \in I$ is a superficial element and $I^{n+1}: x = I^n$ for all $n \ge 0$, so it follows $H_{R/(x)}^{I/(x)}(t) = \frac{6+3t+4t^2-t^3}{(1-t)^2}$.

Example 2.6. Let $R = k[x, y, z, u, v, w]/(z^2, zu.zv, uv, yz - u^3, xz - v^3)$. The Hilbert series of the maximal ideal m = (x, y, z, u, v, w) is

$$H_R^m(t) = \frac{1 + 3t + 3t^3 - t^4}{(1 - t)^3}$$

. Since $m^{n+1}: w=m^n$, it follows $H^{m/(w)}_{R/(w)}(t)=\frac{1+3t+3t^3-t^4}{(1-t)^2}$.

Acknowledgments

The authors are deeply grateful to the referee for his or her careful reading of the manuscript.

References

- 1. W. Bruns and J. Herzog, *Cohen-Macaulay rings*, Cambridge University Press, Cambridge, 1998.
- A. Corso, C. Polini and M. V. Pinto, Sally modules and associated graded trings, Comm. Algebra, 26 (1998), 2689-2708.
- 3. D. R. Grayson and M. E. Stillman, *Macaulay2*, a software system for research in algebraic geomet Available at http://www.math.uiuc.edu/Macaulay2.
- 4. S. Huckaba and T. Marley, *Hilbert coefficients and the depths of associated graded rings*, J. London Math. Soc., **56** (1997), 64-76.
- 5. S. McAdam, Asymptotic prime divisors, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1983.
- D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Philos. Soc., 50 (1954), 145-158.
- T. J. Puthenpurakal, Hilbert coefficients of a Cohen-Macaulay module, J. Algebra, 264 (2003), 82-97.
- 8. T. J. Puthenpurakal, Ratliff-Rush filtration, regularity and depth of higher associated graded modules part I, J. Pure and Appl. Algebra, 208 (2007), 159-176.
- 9. T. J. Puthenpurakal, Ratliff-Rush filtration, regularity and depth of higher associated graded modules part II, ArXiv:0808.3258v1.
- L. J. Ratliff and D. Rush, Two notes on reductions of ideals, Indiana Uni. Math. J., 27 (1978), 929-934.
- 11. M. E. Rossi and G. Valla, *The Hilbert function of the Ratliff-Rush filtration*, J. Pure and Appl. Algebra, **201** (2005), 25-41.
- 12. J. D. Sally, *Number of generators of ideals in local rings*, Lecture Notes in Pure and Appl. Math., **35**, Dekker, 1978.
- M. V. Pinto, Hilbert functions and Sally modules, J. Algebra, 192 (1997), 504-523.

Hero Saremi

Department of Mathematics, Sanandaj Branch Islamic Azad University, Sanandaj, Iran.

Email:hero.saremi@gmail.com

Amir Mafi

Department of Mathematics, University of Kurdistan, P.O. Box: 416, Sanandaj, Iran

Email:a_mafi@ipm.ir