A NOTE ON THE EXTENDED TOTAL GRAPH OF COMMUTATIVE RINGS

F. ESMAEILI KHALIL SARAEEI * AND E. NAVIDINIA

Abstract. Let R be a commutative ring and H a nonempty proper subset of R. In this paper, the extended total graph, denoted by $ET_H(R)$, is presented, where H is a multiplicative-prime subset of R. It is the graph with all elements of R as vertices, and for distinct $p, q \in R$, the vertices p and q are adjacent if and only if $rp + sq \in H$ for some $r, s \in R \setminus H$. We also study the two (induced) subgraphs $ET_H(H)$ and $ET_H(R \setminus H)$, with vertices H and $R \setminus H$, respectively. Among other things, the diameter and the girth of $ET_H(R)$ are also studied.

1. Introduction

Throughout this paper R is a commutative ring with nonzero identity. Recently, there has been considerable attention in the work to associating graphs with algebraic structures (see [4],[5],[6], [8], [9] and [10]). Anderson and Badawi in [3] defined a nonempty proper subset H of R to be a multiplicative-prime subset of R if the following two conditions hold: (i) $ab \in H$ for every $a \in H$ and $b \in R$; (ii) if $rs \in H$ for some $r, s \in R$, then either $r \in H$ or $s \in H$. They introduced the notion of the generalized total graph of a commutative ring $GT_H(R)$ with the vertices of this graph are all elements of R and two vertices $x, y \in R$ are adjacent if and only if $x + y \in H$ where H is a multiplicative-prime subset of R. In this paper, we introduce an extension of the graph $GT_H(R)$, denoted by $ET_H(R)$, such that its vertex set consist of all

MSC(2010): Primary: 13C13; Secondary: 05C75, 13A15
Keywords: Total graph, prime ideal, multiplicative-prime subset.
*Corresponding author.
elements of \(R \) and for distinct \(p, q \in R \), the vertices \(p \) and \(q \) are adjacent if and only if \(rp + sq \in H \) for some \(r, s \in R \setminus H \), where \(H \) is a multiplicative-prime subset of \(R \). Let \(ET_H(H) \) be the (induced) subgraph of \(ET_H(R) \) with vertex set \(H \), and let \(ET_H(R \setminus H) \) be the (induced) subgraph \(ET_H(R) \) with vertices consisting of \(R \setminus H \). Obviously, the total graph \(GT_H(R) \) is a subgraph of \(ET_H(R) \). It follows that each edge (path) of \(GT_H(R) \) is an edge (path) of \(ET_H(R) \).

The study of \(ET_H(R) \) breaks naturally into two cases depending on whether or not \(H \) is an ideal of \(R \). In the second section, we handle the case when \(H \) is an ideal of \(R \); in the third section, we do the case when \(H \) is not an ideal of \(R \). For every case, we characterize the girths and diameters of \(ET_H(R) \), \(ET_H(H) \) and \(ET_H(R \setminus H) \).

We begin with some notation and definitions. For a graph \(\Gamma \), by \(E(\Gamma) \) and \(V(\Gamma) \), we mean the set of all edges and vertices, respectively. We recall that a graph is connected if there exists a path connecting any two of its distinct vertices. At the other extreme, we say that a graph is totally disconnected if no two vertices of this graph are adjacent. The distance between two distinct vertices \(a \) and \(b \), denoted by \(d(a, b) \), is the length of a shortest path connecting them (if such a path does not exist, then \(d(a, b) = \infty \)). We also define \(d(a, a) = 0 \). The diameter of a graph \(\Gamma \), denoted by \(\text{diam}(\Gamma) \), is equal to \(\sup \{ d(a, b) : a, b \in V(\Gamma) \} \). A graph is complete if it is connected with diameter less than or equal to one. The girth of a graph \(\Gamma \), denoted \(\text{gr}(\Gamma) \), is the length of a shortest cycle in \(\Gamma \), provided \(\Gamma \) contains a cycle; otherwise; \(\text{gr}(\Gamma) = \infty \). We denote the complete graph on \(n \) vertices by \(K^n \) and the complete bipartite graph on \(m \) and \(n \) vertices by \(K^{m,n} \) (we allow \(m \) and \(n \) to be infinite cardinals). For a graph \(\Gamma \), the degree of a vertex \(v \) in \(\Gamma \), denoted \(\text{deg}(v) \), is the number of edges of \(\Gamma \) incident with \(v \). We say that two (induced) subgraphs \(\Gamma_1 \) and \(\Gamma_2 \) of \(\Gamma \) are disjoint if \(\Gamma_1 \) and \(\Gamma_2 \) have no common vertices and no vertices of \(\Gamma_1 \) is adjacent (in \(\Gamma \)) to some vertex of \(\Gamma_2 \).

2. The case when \(H \) is an ideal of \(R \)

In this section, we study the case when \(H \) is an ideal of \(R \). It is clear that if \(H \) an ideal of \(R \), then \(H \) is a prime ideal of \(R \). If \(H = R \), then it is clear that \(ET_H(R) \) is a complete graph and \(ET_H(R) \) is disconnected when \(H = 0 \) and \(|R| \geq 2 \). So we may assume that \(H \neq 0 \) and \(H \neq R \).

First we begin with the following example that shows \(ET_H(R) \neq GT_H(R) \).
Example 2.1. Let $R = \mathbb{Z}_8$. Set $H = \{0, 4\}$. It is clear that H is an ideal of R. Since $7 + 3 = 2 \notin H$, so $7 - 3$ is not an edge in $G_{T_H(R)}$. But $\overline{1}(7) + 3(3) = 0 \in H$ and $\overline{1}, 3 \in R \setminus H$. Then $7 - 3$ is an edge in $E_{T_H(R)}$. Hence $E_{T_H(R)} \neq G_{T_H(R)}$.

The main goal of this section is a general structure theorem (Theorem 2.4) for $E_{T_H(R \setminus H)}$ when H is an ideal of R. But first, we record the trivial observation that H is an ideal of R, the $E_{T_H(H)}$ is a complete subgraph of $E_{T_H(R)}$ and is disjoint from $E_{T_H(R \setminus H)}$. Thus we will concentrate on the subgraph $E_{T_H(R \setminus H)}$ throughout this section.

Theorem 2.2. Let R be a commutative ring and H be a prime ideal of R. Then $E_{T_H(H)}$ is a complete subgraph of $E_{T_H(R)}$ and is disjoint from $E_{T_H(R \setminus H)}$. In particular, $E_{T_H(H)}$ is connected and $E_{T_H(R)}$ is disconnected.

Proof. Let $p, q \in H$. Then it is clear that $p + q \in H$ since H is an ideal of R. If $x \in H$ is adjacent to $y \in R \setminus H$, then $rx + sy \in H$ for some $r, s \in R \setminus H$. This implies that $sy \in H$, so either $y \in H$ or $s \in H$ since H is a prime ideal which is a contradiction. The ”in particular” state is clear.

Theorem 2.3. Let R be a commutative ring and H be a prime ideal of R. Then the following hold:

(1) Suppose that G is an induced subgraph of $E_{T_H(R \setminus H)}$ and let x and y be distinct vertices of G that are connected by a path in G. Then there exists a path in G of length 2 between x and y. In particular, if $E_{T_H(R \setminus H)}$ is connected, then $diam(E_{T_H(R \setminus H)}) \leq 2$.

(2) Let x and y be distinct elements of $E_{T_H(R \setminus H)}$ that are connected by a path. If $x + y \notin H$ then $x - (-x) - y$ and $x - (-y) - y$ are paths of length 2 between x and y in $E_{T_H(R \setminus H)}$.

Proof. (1) Let x_1, x_2, x_3 and x_4 are distinct vertices of G. It suffices to show that if there is a path $x_1 - x_2 - x_3 - x_4$ from x_1 to x_4, then x_1 and x_4 are adjacent. Now, $r_1x_1 + r_2x_2 + r_4^3x_3 + r_3x_3 + r_4x_4 \in H$ for some $r_1, r_2, r_3, r_4, r_4' \in R \setminus H$. Hence $(r_1r_3r_2^3)\{x_1 + (r_2r_3r_4)x_4 \in r_3r_2^3(r_1x_1 + r_2x_2) - r_2r_3^3(r_2x_2 + r_3x_3) + r_2r_3^3(r_3x_3 + r_4x_4) \in H$. Since H is a prime ideal of R, so $r_1r_3r_2, r_2r_3^3x_4 \notin H$. Then x_1 and x_4 are adjacent. So if $E_{T_H(R \setminus H)}$ is connected, then $diam(E_{T_H(R \setminus H)}) \leq 2$.

(2) Since $x, y \in R \setminus H$ and $x + y \notin H$, there exists $z \in R \setminus H$ such that $x - z - y$ is a path of length 2 by part (1) above. So $rx + sz, s'z + r'y \in H$ for some $r, s, r', s' \in R \setminus H$. Therefore $rs', r's \notin H$ since H is a prime ideal of R. Then $rs'x - r'y = s'(rx + sz) - s(s'z + r'y) \in H$ and x is adjacent to y. So $x - (-x) - y$ and $x - (-y) - y$ are paths of length 2 between x and y in $E_{T_H(R \setminus H)}$.

\[\square\]
Now, we give the main theorem of this section. Since $ET_H(H)$ is a complete subgraph of $ET_H(R)$ by Theorem 2.2, the next theorem gives a complete description of $ET_H(R \setminus H)$. Let $|H| = \alpha$. We allow α to be infinite cardinal. Compare the next theorem with [3, Theorem 2.2].

Theorem 2.4. Let R be a commutative ring and H be a prime ideal of R and let $|H| = \alpha$.

1. If $r + s \in H$ for some $r, s \in R \setminus H$, then $ET_H(R \setminus H)$ is the union of complete subgraphs.

2. If $r + s \notin H$ for all $r, s \in R \setminus H$, then $ET_H(R \setminus H)$ is the union of totally disconnected subgraphs and some connected subgraphs.

Proof. (1) Suppose that $r + s \in H$ for some $r, s \in R \setminus H$. For $x, x' \in R \setminus H$, we write $x \sim x'$ if and only if $tx + t'x' \in H$ and $t + t' \in H$ for some $t, t' \in R \setminus H$. It is straightforward to check that \sim is an equivalence relation on $R \setminus H$, since H is a prime ideal. For $x \in R \setminus H$, we denote the equivalence class which contains x by $[x]$. Now let $x \in R \setminus H$. If $[x] = \{x\}$, then $r(x + h_1) + s(x + h_2) = (r + s)x + rh_1 + sh_2 \in H$ for every $h_1, h_2 \in H$ since $r + s \in H$. Then $x + H$ is a complete subgraph of $ET_H(R \setminus H)$ with at most α vertices. Now let $|\{x\}| = \nu$ and $x' \in [x]$. Then $tx + t'x' \in H$ and $t + t' \in H$ for some $t, t' \in R \setminus H$. So $t(x + h_1) + t'(x' + h_2) = tx + t'x' + th_1 + t'h_2 \in H$ for every $h_1, h_2 \in H$. Thus $x + H$ is a part of complete graph k^μ where $\mu \leq \alpha \nu$.

(2) Assume that $r + s \notin H$ for all $r, s \in R \setminus H$. Set

$$A_x = \{x' \in R \setminus H : rx + sx' \in H \text{ for some } r, s \in R \setminus H\}$$

be the set of all adjacent vertices to x. If $A_x = \emptyset$, then $px + qx' \notin H$ for every $x' \in R \setminus H$ and every $p, q \in R \setminus H$. In this case, we show that $x + H$ is a totally disconnected subgraph of $ET_H(R \setminus H)$. If $r(x + x_1) + s(x + x_2) \in H$ for some $r, s \in R \setminus H$ and $x_1, x_2 \in H$, then $(r + s)x \in H$. Since H is a prime ideal of R and $x \notin H$, then $r + s \in H$ which is a contradiction. Therefore $x + H$ is a totally disconnected subgraph of $ET_H(R \setminus H)$. Now, we may assume that $A_x \neq \emptyset$. Then $rx + sx' \in H$ for some $r, s \in R \setminus H$ and $x' \in R \setminus H$. Hence $r(x + h_1) + s(x' + h_2) = rx + sx' + rh_1 + sh_2 \in H$ for every $h_1, h_2 \in H$; hence each element of $x + H$ is adjacent to each element of $x' + H$. If $|A_x| = \nu$, then we have a connected subgraph of $ET_H(R \setminus H)$ with at most $\alpha \nu$ vertices. So $ET_H(R \setminus H)$ is the union of totally disconnected subgraphs and some connected subgraphs. \qed

Now it is easy to compute the girth of $ET_H(R \setminus H)$ using Theorem 2.4.
Theorem 2.5. Let R be a commutative ring and H be a prime ideal of R. Then $gr(ET_H(R \setminus H)) = 3, 4$ or ∞. In particular, $gr(ET_H(R \setminus H)) \leq 4$ if $ET_H(R \setminus H)$ contains a cycle.

Proof. Let $ET_H(R \setminus H)$ contains a cycle. Then $ET_H(R \setminus H)$ is not a totally disconnected graph, so by the proof of Theorem 2.4, $ET_H(R \setminus H)$ has either a complete or a complete bipartite subgraph. Therefore it must contain either a 3-cycle or 4-cycle. Thus $gr(ET_H(R \setminus H)) \leq 4$. \qed

Theorem 2.6. Let R be a commutative ring and H be a prime ideal of R.

1. $gr(ET_H(R \setminus H)) = 3$ if and only if $r + s \in H$ and $|y + H| \geq 3$ for some $r, s \in R \setminus H$ and $y \in R \setminus H$.
2. $gr(ET_H(R \setminus H)) = 4$ if and only if $r + s \notin H$ for every $r, s \in R \setminus H$ and $px + qx' \in H$ for some $x, x' \in R \setminus H$ and $p, q \in R \setminus H$.
3. Otherwise, $gr(ET_H(R \setminus H)) = \infty$.

Proof. (1) Assume that $gr(ET_H(R \setminus H)) = 3$. Then by Theorem 2.4, $ET_H(R \setminus H)$ is a complete graph K^λ where $\lambda \geq 3$. Then $r + s \in H$ for some $r, s \in R \setminus H$ and $|y + H| \geq 3$ for some $y \in R \setminus H$ by Theorem 2.4.

2. If $gr(ET_H(R \setminus H)) = 4$, then $ET_H(R \setminus H)$ has a complete bipartite subgraph. So $r + s \notin H$ for every $r, s \in R \setminus H$ and $px + qx' \in H$ for some $x, x' \in R \setminus H$ and $p, q \in R \setminus H$ by Theorem 2.4.

The other implications of (1) and (2) follow directly from Theorem 2.4. \qed

We end this section with the following theorem.

Theorem 2.7. Let R be a commutative ring and H be a prime ideal of R.

1. $gr(ET_H(R)) = 3$ if and only if $|H| \geq 3$.
2. $gr(ET_H(R)) = 4$ if and only if $r + s \notin H$ for every $r, s \in R \setminus H$, $|H| < 3$ and $px + qx' \in U$ for some $x, x' \in R \setminus H$ and $p, q \in R \setminus H$.
3. Otherwise, $gr(ET_H(R)) = \infty$.

Proof. (1) This follows from Theorem 2.2.

2. Assume that $gr(ET_H(R)) = 4$. Since $gr(ET_H(H)) = 3$ or ∞, then $gr(ET_H(R \setminus H)) = 4$. Therefore $r + s \notin H$ for every $r, s \in R \setminus H$ and $px + qx' \in H$ for some $x, x' \in R \setminus H$ and $p, q \in R \setminus H$ by Theorem 2.6. On the other hand, $gr(ET_H(R)) \neq 3$; so $|H| < 3$. The other implication follows from Theorem 2.4. \qed
3. The Case When \(H \) is Not an Ideal of \(R \)

In this section, we study \(ET_H(R) \), when the multiplicative-prime subset \(H \) is not an ideal of \(R \). Since \(H \) is always closed under multiplication by elements of \(R \), this just means that \(0 \in H \) and there are distinct \(x, y \in H \) such that \(x + y \in R \setminus H \).

First we begin with the following example that shows \(ET_H(R) \neq GT_H(R) \).

Example 3.1. Let \(R = \mathbb{Z} \). Set \(H = 4\mathbb{Z} \cup 6\mathbb{Z} \). It is clear that \(H \) is not an ideal of \(R \) since \(4, 6 \in H \), but \(4 + 6 = 10 \notin H \). So \(4 - 6 \) is not an edge in \(GT_H(R) \). But \(2(4) + 2(6) = 20 \in H \) and \(2 \in R \setminus H \). Then \(4 - 6 \) is an edge in \(ET_H(R) \). Hence \(ET_H(R) \neq GT_H(R) \).

Now, we have the following theorem that shows \(ET_H(H) \) is always connected (but never complete), \(ET_H(H) \) and \(ET_H(R \setminus H) \) are never disjoint subgraphs of \(ET_H(R) \) and \(ET_H(R) \) is connected when \(ET_H(R \setminus H) \) is connected.

Theorem 3.2. Let \(R \) be a commutative ring such that \(H \) is a multiplicative-prime subset of \(R \) that is not an ideal of \(R \). Then the following hold:

1. \(ET_H(H) \) is connected with \(diam(ET_H(H)) = 2 \).
2. Some vertex of \(ET_H(H) \) is adjacent to a vertex of \(ET_H(R \setminus H) \). In particular, the subgraphs \(ET_H(H) \) and \(ET_H(R \setminus H) \) are not disjoint.
3. If \(ET_H(R \setminus H) \) is connected, then \(ET_H(R) \) is connected.

Proof.
1. Let \(x \in H^* = H \setminus \{0\} \). Then \(x \) is adjacent to 0. Thus \(x - 0 - x' \) is a path in \(ET_H(H) \) of length two between any two distinct \(x, x' \in H^* \). Moreover, there exist nonadjacent \(x, x' \in H^* \) since \(H \) is not an ideal of \(R \); thus \(diam(ET_H(H)) = 2 \).
2. Since \(H \) is not an ideal of \(R \), there exist distinct \(x, y \in H^* \) such that \(x + y \notin H \). Then \(-x \in H \) and \(x + y \in H \) are adjacent vertices in \(ET_H(R) \). Finally, the ”in particular” statement is clear.
3. Since \(ET_H(H) \) and \(ET_H(R \setminus H) \) are connected and there is an edge between \(ET_H(H) \) and \(ET_H(R \setminus H) \), so \(ET_H(R) \) is connected. \(\Box \)

We determine when \(ET_H(R) \) is connected and compute \(diam(ET_H(R)) \) with the following theorem. Compare the next theorem with [3, Theorem 3.2].

Theorem 3.3. Let \(R \) be a commutative ring such that \(H \) is a multiplicative-prime subset of \(R \) that is not an ideal of \(R \). Then \(ET_H(R) \) is connected if and only if for every \(x \in R \) there exists \(r \in R \setminus H \) such that \(rx \in \langle H \rangle \).

Proof. Suppose that \(ET_H(R) \) is connected, and \(x \in R \). Then there exists a path \(0 - x_1 - x_2 - \ldots - x_n - x \) from 0 to \(x \) in \(ET_H(R) \).
Thus \(r_1x_1, r_2x_1 + r_3x_2, \ldots, r_{2n-2}x_{n-1} + r_{2n-1}x_n, r_{2n}x_n + sx \in H \) for some \(r_1, r_2, \ldots, r_{2n}, s \in R \setminus H \). Then

\[
\begin{align*}
\text{sr}_1r_3r_5^\ldots r_{2n-1}x &= (r_1r_3r_5^\ldots r_{2n-1})(sx + r_{2n}x_n) - \\
&= (r_1r_3r_5^\ldots r_{2n-3}r_{2n})(r_{2n-2}x_{n-1} + r_{2n-1}x_n) + \\
&\quad - (r_1r_3^\ldots r_{2n-2}r_{2n-2k-5}r_{2n-2k-3}r_{2n-2k-2}r_{2n-2k-2}r_{2n})(r_{2n-2k-1}x_n + r_{2n-2k-2}x_n - (k+1)) \\
&\quad + (r_1r_3^\ldots r_{2n-2k-5}r_{2n-2k-3}r_{2n-2k-2}r_{2n-2k-2}r_{2n})(r_{2n-2k-3}x_n - (k+1) + r_{2n-2k-4}x_n - (k+2)) \\
&\quad - (r_2r_4^\ldots r_{2n})(r_1x_1) \in \langle H \rangle.
\end{align*}
\]

Since \(H \) is a multiplicative-prime subset of \(R \), so \(r = sr_1r_3r_5^\ldots r_{2n-1} \in R \setminus H \) and \(rx \in \langle H \rangle \). Conversely, suppose that for every \(x \in R \) there exists \(r \in R \setminus H \) such that \(rx \in \langle H \rangle \). We show that for each \(0 \neq x \in R \), there exists a path in \(ET_H(R) \) from 0 to \(x \). By assumption, there are elements \(h_1, h_2, \ldots, h_n \in H \) such that \(rx = h_1 + h_2 + \ldots + h_n \). Set \(y_0 = 0 \) and \(y_k = (-1)^{n+k}(h_1 + h_2 + \ldots + h_k) \) for each integer \(k \) with \(1 \leq k \leq n \). Then \(y_k + y_{k+1} = (-1)^{n+k+1}h_{k+1} \in H \) for each integer \(1 \leq k \leq n - 1 \). Also, \(y_{n-1} + rx = y_{n-1} + y_n = h_n \in H \). Thus \(0 - y_1 - y_2 - \ldots - y_{n-1} - x \) is a path from 0 to \(x \) in \(ET_H(R) \). Now, let \(0 \neq x, y \in R \). Then by the preceding argument, there are paths from \(x \) to 0 and 0 to \(y \) in \(ET_H(R) \). Hence there is a path from \(x \) to \(y \) in \(ET_H(R) \). So \(ET_H(R) \) is connected.

\[\Box\]

Theorem 3.4. Let \(R \) be a commutative ring such that \(H \) is a multiplicative-prime subset of \(R \) that is not an ideal of \(R \), and let for every \(x \in R \) there exists \(r \in R \setminus H \) such that \(rx \in \langle H \rangle \). Let \(n \geq 2 \) be the least integer such that \(\langle H \rangle = \langle h_1, h_2, \ldots, h_n \rangle \) for some \(h_1, h_2, \ldots, h_n \in H \). Then \(\text{diam}(ET_H(R)) \leq n \).

Proof. Let \(x \) and \(x' \) be distinct elements in \(R \). We show that there exists a path from \(x \) to \(x' \) in \(ET_H(R) \) with length at most \(n \). By hypothesis, \(rx, r'x' \in \langle H \rangle \) for some \(r, r' \in R \setminus H \), so we can write \(rx = \sum_{i=1}^n r_ih_i \) and \(r'x' = \sum_{i=1}^n s_ih_i \) for some \(r_i, s_i \in R \). Define \(x_0 = x \) and \(x_k = (-1)^k(\sum_{i=k+1}^n r_ih_i + \sum_{i=1}^k s_ih_i) \), so \(x_k + x_{k+1} = (-1)^k h_{k+1}(r_{k+1} - s_{k+1}) \in H \) for each integer \(k \) with \(1 \leq k \leq n - 1 \). On the other hand, \(rx + x_1 = (r_1 - s_1)h_1 \in H \) and \(r'x' + (-1)^nx_{n-1} = (s_n - r_n)h_n \in H \). So \(x - x_1 - x_2 - \ldots - x_{n-1} - x' \) is a path from \(x \) to \(x' \) in \(ET_H(R) \) with length at most \(n \) since \(1, (-1)^n \notin H \). \[\Box\]

We end the paper with the following theorem.

Theorem 3.5. Let \(R \) be a commutative ring such that \(H \) is a multiplicative-prime subset of \(R \) that is not an ideal of \(R \). Then the following hold:

1. Either \(\text{gr}(ET_H(H)) = 3 \) or \(\text{gr}(ET_H(H)) = \infty \).
2. If \(\text{gr}(ET_H(R)) = 4 \), then \(\text{gr}(ET_H(H)) = \infty \).
Proof. (1) If \(rx + sx' \in H\) for some distinct \(x, x' \in H\) and \(r, s \in R \setminus H\), then \(-x - x' - 0\) is a cycle of length 3 in \(ET_H(H)\), so \(gr(ET_H(H)) = 3\). Otherwise, \(rx + sx' \in R \setminus H\) for all distinct \(x, x' \in H\) and all elements \(r, s \in R \setminus H\). Therefore in this case, each nonzero element \(x \in H\) is adjacent to 0, and no two distinct \(x, x' \in H\) are adjacent. Thus \(gr(ET_H(H)) = \infty\).

(2) If \(gr(ET_H(R)) = 4\), then it is clear \(gr(ET_H(H)) \neq 3\). So \(gr(ET_H(H)) = \infty\) by part (1) above.

\[\square\]

Acknowledgments

The authors are deeply grateful to the referee for careful reading and his valuable suggestions.

References

Fatemeh Esmaeili Khalil Saraei
Fouman Faculty of Engineering, College of Engineering, University of Tehran, P.O.Box 43515-1155, Fouman, Iran.
Email: f.esmaeili.kh@ut.ac.ir
Elnaz Navidinia
Department of Mathematics, Faculty of mathematical sciences, University of Guilan,
P.O.Box 1914, Rasht, Iran.
Email: elnaz.navidinia@yahoo.com