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A NOTE ON THE EXTENDED TOTAL GRAPH OF
COMMUTATIVE RINGS

F. ESMAEILI KHALIL SARAEI ∗ AND E. NAVIDINIA

Abstract. Let R be a commutative ring and H a nonempty
proper subset of R. In this paper, the extended total graph, de-
noted by ETH(R) is presented, where H is a multiplicative-prime
subset of R. It is the graph with all elements of R as vertices, and
for distinct p, q ∈ R, the vertices p and q are adjacent if and only if
rp+sq ∈ H for some r, s ∈ R\H. We also study the two (induced)
subgraphs ETH(H) and ETH(R \H), with vertices H and R \H,
respectively. Among other things, the diameter and the girth of
ETH(R) are also studied.

1. Introduction

Throughout this paper R is a commutative ring with nonzero iden-
tity. Recently, there has been considerable attention in the work to
associating graphs with algebraic structures (see [4],[5],[6], [8], [9] and
[10]). Anderson and Badawi in [3] defined a nonempty proper subset H
of R to be a multiplicative-prime subset of R if the following two con-
ditions hold: (i) ab ∈ H for every a ∈ H and b ∈ R; (ii) if rs ∈ H for
some r, s ∈ R, then either r ∈ H or s ∈ H. They introduced the notion
of the generalized total graph of a commutative ring GTH(R) with the
vertices of this graph are all elements of R and two vertices x, y ∈ R
are adjacent if and only if x+ y ∈ H where H is a multiplicative-prime
subset of R. In this paper, we introduce an extension of the graph
GTH(R), denoted by ETH(R), such that its vertex set consist of all
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elements of R and for distinct p, q ∈ R, the vertices p and q are ad-
jacent if and only if rp + sq ∈ H for some r, s ∈ R \ H, where H
is a multiplicative-prime subset of R. Let ETH(H) be the (induced)
subgraph of ETH(R) with vertex set H, and let ETH(R \ H) be the
(induced) subgraph ETH(R) with vertices consisting of R \H.
Obviously, the total graph GTH(R) is a subgraph of ETH(R). It fol-
lows that each edge (path) of GTH(R) is an edge (path) of ETH(R).
The study of ETH(R) breaks naturally into two cases depending on
whether or not H is an ideal of R. In the second section, , we handle
the case when H is an ideal of R; in the third section, we do the case
when H is not an ideal of R. For every case, we characterize the girths
and diameters of ETH(R), ETH(H) and ETH(R \H).

We begin with some notation and definitions. For a graph Γ, by E(Γ)
and V (Γ), we mean the set of all edges and vertices, respectively. We
recall that a graph is connected if there exists a path connecting any
two of it’s distinct vertices. At the other extreme, we say that a graph
is totally disconnected if no two vertices of this graph are adjacent. The
distance between two distinct vertices a and b, denoted by d(a, b), is the
length of a shortest path connecting them (if such a path does not exist,
then d(a, b) =∞. We also define d(a, a) = 0. The diameter of a graph
Γ, denoted by diam(Γ), is equal to sup{d(a, b) : a, b ∈ V (Γ)}. A graph
is complete if it is connected with diameter less than or equal to one.
The girth of a graph Γ, denoted gr(Γ), is the length of a shortest cycle
in Γ, provided Γ contains a cycle; otherwise; gr(Γ) = ∞. We denote
the complete graph on n vertices by Kn and the complete bipartite
graph on m and n vertices by Km,n (we allow m and n to be infinite
cardinals). For a graph Γ, the degree of a vertex v in Γ, denoted deg(v),
is the number of edges of Γ incident with v. We say that two (induced)
subgraphs Γ1 and Γ2 of Γ are disjoint if Γ1 and Γ2 have no common
vertices and no vertices of Γ1 is adjacent(in Γ) to some vertex of Γ2.

2. The case when H is an ideal of R

In this section, we study the case when H is a an ideal of R. It is
clear that if H an ideal of R, then H is a prime ideal of R. If H = R,
then it is clear that ETH(R) is a complete graph and ETH(R) is dis-
connected when H = 0 and |R| ≥ 2. So we may assume that H 6= 0
and H 6= R.
First we begin with the following example that shows ETH(R) 6=
GTH(R).
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Example 2.1. Let R = Z8. Set H = {0̄, 4̄}. It is clear that H is an
ideal of R. Since 7̄ + 3̄ = 2̄ /∈ H, so 7̄ − 3̄ is not an edge in GTH(R).
But 1̄(7̄) + 3̄(3̄) = 0̄ ∈ H and 1̄, 3̄ ∈ R \ H. Then 7̄ − 3̄ is an edge in
ETH(R). Hence ETH(R) 6= GTH(R).

The main goal of this section is a general structure theorem (Theorem
2.4) for ETH(R \H) when H is an ideal of R. But first, we record the
trivial observation that H is an ideal of R, the ETH(H) is a complete
subgraph of ETH(R) and is disjoint from ETH(R \ H). Thus we will
concentrate on the subgraph ETH(R \H) throughout this section.

Theorem 2.2. Let R be a commutative ring and H be a prime ideal
of R. Then ETH(H) is a complete subgraph of ETH(R) and is disjoint
from ETH(R \ H). In particular, ETH(H) is connected and ETH(R)
is disconnected.

Proof. Let p, q ∈ H. Then it is clear that p+ q ∈ H since H is an ideal
of R. If x ∈ H is adjacent to y ∈ R \ H, then rx + sy ∈ H for some
r, s ∈ R \H. This implies that sy ∈ H, so either y ∈ H or s ∈ H since
H is a prime ideal which is a contradiction. The ”in particular” state
is clear. �

Theorem 2.3. Let R be a commutative ring and H be a prime ideal
of R. Then the following hold:
(1) Suppose that G is an induced subgraph of ETH(R \ H) and let x
and y be distinct vertices of G that are connected by a path in G. Then
there exists a path in G of length 2 between x and y. In particular, if
ETH(R \H) is connected, then diam(ETH(R \H)) ≤ 2.
(2) Let x and y be distinct elements of ETH(R \H) that are connected
by a path. If x+ y 6∈ H then x− (−x)− y and x− (−y)− y are paths
of length 2 between x and y in ETH(R \H).

Proof. (1) Let x1, x2, x3 and x4 are distinct vertices of G. It suffices to
show that if there is a path x1 − x2 − x3 − x4 from x1 to x4, then x1
and x4 are adjacent. Now, r1x1 + r2x2, r

′
2x2 + r′3x3, r3x3 + r4x4 ∈ H

for some r1, r2, r3, r4, r
′
2, r
′
3 ∈ R \ H. Hence (r1r3r

′
2)x1 + (r2r

′
3r4)x4 =

r3r
′
2(r1x1+r2x2)−r2r3(r′2x2+r′3x3)+r2r

′
3(r3x3+r4x4) ∈ H. Since H is

a prime ideal of R, so r1r3r
′
2, r2r

′
3r4 /∈ H. Then x1 and x4 are adjacent.

So if ETH(R \H) is connected, then diam(ETH(R \H)) ≤ 2.
(2) Since x, y ∈ R \H and x+ y /∈ H, there exists z ∈ R \H such that
x−z−y is a path of length 2 by part (1) above. So rx+sz, s′z+r′y ∈ H
for some r, s, r′, s′ ∈ R \H. Therefore rs′, r′s /∈ H since H is a prime
ideal of R. Then rs′x− r′sy = s′(rx+ sz)− s(s′z + r′y) ∈ H and x is
adjacent to y. So x− (−x)− y and x− (−y)− y are paths of length 2
between x and y in ETH(R \H). �
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Now, we give the main theorem of this section. Since ETH(H) is a
complete subgraph of ETH(R) by Theorem 2.2, the next theorem gives
a complete description of ETH(R \H). Let |H| = α. We allow α to be
infinite cardinal. Compare the next theorem with [3, Theorem 2.2].

Theorem 2.4. Let R be a commutative ring and H be a prime ideal
of R and let |H| = α.
(1) If r + s ∈ H for some r, s ∈ R \H, then ETH(R \H) is the union
of complete subgraphs.
(2) If r + s /∈ H for all r, s ∈ R \H, then ETH(R \H) is the union of
totally disconnected subgraphs and some connected subgraphs.

Proof. (1) Suppose that r + s ∈ H for some r, s ∈ R \H. For x, x′ ∈
R\H, we write x ∼ x′ if and only if tx+t′x′ ∈ H and t+t′ ∈ H for some
t, t′ ∈ R \ H. It is straightforward to check that ∼ is an equivalence
relation on R \H, since H is a prime ideal. For x ∈ R \H, we denote
the equivalence class which contains x by [x]. Now let x ∈ R \ H. If
[x] = {x}, then r(x + h1) + s(x + h2) = (r + s)x + rh1 + sh2 ∈ H
for every h1, h2 ∈ H since r + s ∈ H. Then x + H is a complete
subgraph of ETH(R \ H) with at most α vertices. Now let |[x]| = ν
and x′ ∈ [x]. Then tx+ t′x′ ∈ H and t+ t′ ∈ H for some t, t′ ∈ R \H.
So t(x+h1)+t′(x′+h2) = tx+t′x′+th1+t′h2 ∈ H for every h1, h2 ∈ H.
Thus x+H is a part of complete graph kµ where µ ≤ αν.
(2) Assume that r + s /∈ H for all r, s ∈ R \H. Set

Ax = {x′ ∈ R \H : rx+ sx′ ∈ H for some r, s ∈ R \H}

be the set of all adjacent vertices to x. If Ax = ∅, then px + qx′ /∈ H
for every x′ ∈ R \ H and every p, q ∈ R \ H. In this case, we show
that x + H is a totally disconnected subgraph of ETH(R \ H). If
r(x + x1) + s(x + x2) ∈ H for some r, s ∈ R \ H and x1, x2 ∈ H,
then (r + s)x ∈ H. Since H is a prime ideal of R and x /∈ H, then
r + s ∈ H which is a contradiction. Therefore x + H is a totally
disconnected subgraph of ETH(R \ H). Now, we may assume that
Ax 6= ∅. Then rx+sx′ ∈ H for some r, s ∈ R\H and x′ ∈ R\H. Hence
r(x+ h1) + s(x′+ h2) = rx+ sx′+ rh1 + sh2 ∈ H for every h1, h2 ∈ H;
hence each element of x+H is adjacent to each element of x′ +H. If
| Ax |= ν, then we have a connected subgraph of ETH(R \H) with at
most αν vertices. So ETH(R \H) is the union of totally disconnected
subgraphs and some connected subgraphs. �

Now it is easy to compute the girth of ETH(R \H) using Theorem
2.4.
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Theorem 2.5. Let R be a commutative ring and H be a prime ideal
of R. Then gr(ETH(R \H)) = 3, 4 or ∞. In particular, gr(ETH(R \
H)) ≤ 4 if ETH(R \H) contains a cycle.

Proof. Let ETH(R \ H) contains a cycle. Then ETH(R \ H) is not a
totally disconnected graph, so by the proof of Theorem 2.4, ETH(R\H)
has either a complete or a complete bipartite subgraph. Therefore it
must contain either a 3-cycle or 4-cycle. Thus gr(ETH(R\H)) ≤ 4. �

Theorem 2.6. Let R be a commutative ring and H be a prime ideal
of R.
(1) gr(ETH(R \H)) = 3 if and only if r + s ∈ H and |y +H| ≥ 3 for
some r, s ∈ R \H and y ∈ R \H.
(2) gr(ETH(R \H)) = 4 if and only if r+ s 6∈ H for every r, s ∈ R \H
and px+ qx′ ∈ H for some x, x′ ∈ R \H and p, q ∈ R \H.
(3) Otherwise, gr(ETH(R \H)) =∞.

Proof. (1) Assume that gr(ETH(R \ H)) = 3. Then by Theorem 2.4,
ETH(R \H) is a complete graph Kλ where λ ≥ 3. Then r+ s ∈ H for
some r, s ∈ R \H and |y+H| ≥ 3 for some y ∈ R \H by Theorem 2.4.
(2) If gr(ETH(R \H)) = 4, then ETH(R \H) has a complete bipartite
subgraph. So r + s 6∈ H for every r, s ∈ R \ H and px + qx′ ∈ H for
some x, x′ ∈ R \H and p, q ∈ R \H by Theorem 2.4.
The other implications of (1) and (2) follow directly from Theorem
2.4. �

We end this section with the following theorem.

Theorem 2.7. Let R be a commutative ring and H be a prime ideal
of R.
(1) gr(ETH(R)) = 3 if and only if |H| ≥ 3.
(2) gr(ETH(R)) = 4 if and only if r + s 6∈ H for every r, s ∈ R \ H,
|H| < 3 and px+ qx′ ∈ U for some x, x′ ∈ R \H and p, q ∈ R \H.
(3) Otherwise, gr(ETH(R)) =∞.

Proof. (1) This follows from Theorem 2.2.
(2) Assume that gr(ETH(R)) = 4. Since gr(ETH(H)) = 3 or ∞, then
gr(ETH(R \H)) = 4. Therefore r + s 6∈ H for every r, s ∈ R \H and
px + qx′ ∈ H for some x, x′ ∈ R \ H and p, q ∈ R \ H by Theorem
2.6. On the other hand, gr(ETH(R)) 6= 3; so |H| < 3. The other
implication follows from Theorem 2.4. �
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3. The case when H is not an ideal of R

In this section, we study ETH(R), when the multiplicative-prime
subset H is not an ideal of R. Since H is always closed under multi-
plication by elements of R, this just means that 0 ∈ H and there are
distinct x, y ∈ H such that x+ y ∈ R \H.
First we begin with the following example that shows ETH(R) 6=
GTH(R).

Example 3.1. Let R = Z. Set H = 4Z ∪ 6Z. It is clear that H is not
an ideal of R since 4, 6 ∈ H, but 4 + 6 = 10 /∈ H. So 4 − 6 is not an
edge in GTH(R). But 2(4) + 2(6) = 20 ∈ H and 2 ∈ R \H. Then 4− 6
is an edge in ETH(R). Hence ETH(R) 6= GTH(R).

Now, we have the following theorem that shows ETH(H) is always
connected (but never complete), ETH(H) and ETH(R \ H) are never
disjoint subgraphs of ETH(R) and ETH(R) is connected when ETH(R\
H) is connected.

Theorem 3.2. Let R be a commutative ring such that H is a multiplicative-
prime subset of R that is not an ideal of R. Then the following hold:
(1) ETH(H) is connected with diam(ETH(H)) = 2.
(2) Some vertex of ETH(H) is adjacent to a vertex of ETH(R \H). In
particular, the subgraphs ETH(H) and ETH(R \H) are not disjoint.
(3) If ETH(R \H) is connected, then ETH(R) is connected.

Proof. (1) Let x ∈ H∗ = H \ {0}. Then x is adjacent to 0. Thus
x− 0− x′ is a path in ETH(H) of length two between any two distinct
x, x′ ∈ H∗. Moreover, there exist nonadjacent x, x′ ∈ H∗ since H is
not an ideal of R; thus diam(ETH(H)) = 2.
(2) Since H is not an ideal of R, there exist distinct x, y ∈ H∗ such
that x+ y 6∈ H. Then −x ∈ H and x+ y ∈ H are adjacent vertices in
ETH(R). Finally, the ”in particular” statement is clear.
(3) Since ETH(H) and ETH(R\H) are connected and there is an edge
between ETH(H) and ETH(R \H), so ETH(R) is connected. �

We determine when ETH(R) is connected and compute diam(ETH(R))
with the following theorem. Compare the next theorem with [3, The-
orem 3.2].

Theorem 3.3. Let R be a commutative ring such that H is a multiplicative-
prime subset of R that is not an ideal of R. Then ETH(R) is connected
if and only if for every x ∈ R there exists r ∈ R\H such that rx ∈ 〈H〉.

Proof. Suppose that ETH(R) is connected, and x ∈ R. Then there
exists a path 0− x1 − x2 − . . .− xn − x from 0 to x in ETH(R).
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Thus r1x1, r2x1 +r3x2, ..., r2n−2xn−1 +r2n−1xn, r2nxn+sx ∈ H for some
r1, r2, ..., r2n, s ∈ R \H. Then

sr1r3r5...r2n−1x = (r1r3r5...r2n−1)(sx+ r2nxn)−
(r1r3r5...r2n−3r2n)(r2n−2xn−1 + r2n−1xn) + ...

−(r1r3...r2n−2k−5r2n−2k−3r2n−2kr2n−2k−2...r2n)(r2n−2k−1xn−k+r2n−2k−2xn−(k+1))

+(r1r3...r2n−2k−5r2n−2k−2r2n−2kr2n−2k−2...r2n)(r2n−2k−3xn−(k+1)+r2n−2k−4xn−(k+2))

...− (r2r4r6...r2n)(r1x1) ∈ 〈H〉
Since H is a multiplicative-prime subset of R, so r = sr1r3r5...r2n−1 ∈
R \H and rx ∈ 〈H〉. Conversely, suppose that for every x ∈ R there
exists r ∈ R\H such that rx ∈ 〈H〉. We show that for each 0 6= x ∈ R,
there exists a path in ETH(R) from 0 to x. By assumption, there are
elements h1, h2, ..., hn ∈ H such that rx = h1 +h2 + ...+hn. Set y0 = 0
and yk = (−1)n+k(h1 +h2 + ...+hk) for each integer k with 1 ≤ k ≤ n.
Then yk + yk+1 = (−1)n+k+1hk+1 ∈ H for each integer 1 ≤ k ≤ n− 1.
Also, yn−1 + rx = yn−1 + yn = hn ∈ H. Thus 0− y1− y2− ...− yn−1−x
is a path from 0 to x in ETH(R). Now, let 0 6= x, y ∈ R. Then by
the preceding argument, there are paths from x to 0 and 0 to y in
ETH(R). Hence there is a path from x to y in ETH(R). So ETH(R) is
connected. �

Theorem 3.4. Let R be a commutative ring such that H is a multiplicative-
prime subset of R that is not an ideal of R, and let for every x ∈ R
there exists r ∈ R \ H such that rx ∈ 〈H〉. Let n ≥ 2 be the least
integer such that 〈H〉 =< h1, h2, ..., hn > for some h1, h2, ..., hn ∈ H.
Then diam(ETH(R)) ≤ n.

Proof. Let x and x′ be distinct elements in R. We show that there
exists a path from x to x′ in ETH(R) with length at most n. By
hypothesis, rx, r′x′ ∈ 〈H〉 for some r, r′ ∈ R \H, so we can write rx =∑n

i=1 rihi and r′x′ =
∑n

i=1 sihi for some ri, si ∈ R. Define x0 = x and

xk = (−1)k(
∑n

i=k+1 rihi +
∑k

i=1 sihi), so xk +xk+1 = (−1)khk+1(rk+1−
sk+1) ∈ H for each integer k with 1 ≤ k ≤ n− 1. On the other hand,
rx + x1 = (r1 − s1)h1 ∈ H and r′x′ + (−1)nxn−1 = (sn − rn)hn ∈ H.
So x− x1 − x2 − ...− xn−1 − x′ is a path from x to x′ in ETH(R) with
length at most n since 1, (−1)n /∈ H. �

We end the paper with the following theorem.

Theorem 3.5. Let R be a commutative ring such that H is a multiplicative-
prime subset of R that is not an ideal of R. Then the following hold:
(1) Either gr(ETH(H)) = 3 or gr(ETH(H)) =∞.
(2) If gr(ETH(R)) = 4, then gr(ETH(H)) =∞.
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Proof. (1) If rx+ sx′ ∈ H for some distinct x, x′ ∈ H and r, s ∈ R \H,
then 0−x−x′−0 is a cycle of length 3 in ETH(H), so gr(ETH(H)) = 3.
Otherwise rx + sx′ ∈ R \H for all distinct x, x′ ∈ H and all elements
r, s ∈ R \ H. Therefore in this case, each nonzero element x ∈ H
is adjacent to 0, and no two distinct x, x′ ∈ H are adjacent. Thus
gr(ETH(H)) =∞.
(2) If gr(ETH(R)) = 4, then it is clear gr(ETH(H)) 6= 3. So gr(ETH(H)) =
∞ by part (1) above. �
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