Journal of Algebra and Related Topics

Vol. 6, No 1, (2018), pp 25-33

A NOTE ON THE EXTENDED TOTAL GRAPH OF COMMUTATIVE RINGS

F. ESMAEILI KHALIL SARAEI * AND E. NAVIDINIA

Abstract

Let R be a commutative ring and H a nonempty proper subset of R. In this paper, the extended total graph, denoted by $E T_{H}(R)$ is presented, where H is a multiplicative-prime subset of R. It is the graph with all elements of R as vertices, and for distinct $p, q \in R$, the vertices p and q are adjacent if and only if $r p+s q \in H$ for some $r, s \in R \backslash H$. We also study the two (induced) subgraphs $E T_{H}(H)$ and $E T_{H}(R \backslash H)$, with vertices H and $R \backslash H$, respectively. Among other things, the diameter and the girth of $E T_{H}(R)$ are also studied.

1. Introduction

Throughout this paper R is a commutative ring with nonzero identity. Recently, there has been considerable attention in the work to associating graphs with algebraic structures (see [4],[5],[6], [8], [9] and [10]). Anderson and Badawi in [3] defined a nonempty proper subset H of R to be a multiplicative-prime subset of R if the following two conditions hold: (i) $a b \in H$ for every $a \in H$ and $b \in R$; (ii) if $r s \in H$ for some $r, s \in R$, then either $r \in H$ or $s \in H$. They introduced the notion of the generalized total graph of a commutative ring $G T_{H}(R)$ with the vertices of this graph are all elements of R and two vertices $x, y \in R$ are adjacent if and only if $x+y \in H$ where H is a multiplicative-prime subset of R. In this paper, we introduce an extension of the graph $G T_{H}(R)$, denoted by $E T_{H}(R)$, such that its vertex set consist of all

[^0]elements of R and for distinct $p, q \in R$, the vertices p and q are adjacent if and only if $r p+s q \in H$ for some $r, s \in R \backslash H$, where H is a multiplicative-prime subset of R. Let $E T_{H}(H)$ be the (induced) subgraph of $E T_{H}(R)$ with vertex set H, and let $E T_{H}(R \backslash H)$ be the (induced) subgraph $E T_{H}(R)$ with vertices consisting of $R \backslash H$.
Obviously, the total graph $G T_{H}(R)$ is a subgraph of $E T_{H}(R)$. It follows that each edge (path) of $G T_{H}(R)$ is an edge (path) of $E T_{H}(R)$. The study of $E T_{H}(R)$ breaks naturally into two cases depending on whether or not H is an ideal of R. In the second section, , we handle the case when H is an ideal of R; in the third section, we do the case when H is not an ideal of R. For every case, we characterize the girths and diameters of $E T_{H}(R), E T_{H}(H)$ and $E T_{H}(R \backslash H)$.

We begin with some notation and definitions. For a graph Γ, by $E(\Gamma)$ and $V(\Gamma)$, we mean the set of all edges and vertices, respectively. We recall that a graph is connected if there exists a path connecting any two of it's distinct vertices. At the other extreme, we say that a graph is totally disconnected if no two vertices of this graph are adjacent. The distance between two distinct vertices a and b, denoted by $\mathrm{d}(a, b)$, is the length of a shortest path connecting them (if such a path does not exist, then $d(a, b)=\infty$. We also define $d(a, a)=0$. The diameter of a graph Γ, denoted by $\operatorname{diam}(\Gamma)$, is equal to $\sup \{d(a, b): a, b \in V(\Gamma)\}$. A graph is complete if it is connected with diameter less than or equal to one. The girth of a graph Γ, denoted $\operatorname{gr}(\Gamma)$, is the length of a shortest cycle in Γ, provided Γ contains a cycle; otherwise; $\operatorname{gr}(\Gamma)=\infty$. We denote the complete graph on n vertices by K^{n} and the complete bipartite graph on m and n vertices by $K^{m, n}$ (we allow m and n to be infinite cardinals). For a graph Γ, the degree of a vertex v in Γ, denoted $\operatorname{deg}(v)$, is the number of edges of Γ incident with v. We say that two (induced) subgraphs Γ_{1} and Γ_{2} of Γ are disjoint if Γ_{1} and Γ_{2} have no common vertices and no vertices of Γ_{1} is adjacent(in Γ) to some vertex of Γ_{2}.

2. The case when H is an ideal of R

In this section, we study the case when H is a an ideal of R. It is clear that if H an ideal of R, then H is a prime ideal of R. If $H=R$, then it is clear that $E T_{H}(R)$ is a complete graph and $E T_{H}(R)$ is disconnected when $H=0$ and $|R| \geq 2$. So we may assume that $H \neq 0$ and $H \neq R$.
First we begin with the following example that shows $E T_{H}(R) \neq$ $G T_{H}(R)$.

Example 2.1. Let $R=\mathbb{Z}_{8}$. Set $H=\{\overline{0}, \overline{4}\}$. It is clear that H is an ideal of R. Since $\overline{7}+\overline{3}=\overline{2} \notin H$, so $\overline{7}-\overline{3}$ is not an edge in $G T_{H}(R)$. But $\overline{1}(\overline{7})+\overline{3}(\overline{3})=\overline{0} \in H$ and $\overline{1}, \overline{3} \in R \backslash H$. Then $\overline{7}-\overline{3}$ is an edge in $E T_{H}(R)$. Hence $E T_{H}(R) \neq G T_{H}(R)$.

The main goal of this section is a general structure theorem (Theorem 2.4) for $E T_{H}(R \backslash H)$ when H is an ideal of R. But first, we record the trivial observation that H is an ideal of R, the $E T_{H}(H)$ is a complete subgraph of $E T_{H}(R)$ and is disjoint from $E T_{H}(R \backslash H)$. Thus we will concentrate on the subgraph $E T_{H}(R \backslash H)$ throughout this section.
Theorem 2.2. Let R be a commutative ring and H be a prime ideal of R. Then $E T_{H}(H)$ is a complete subgraph of $E T_{H}(R)$ and is disjoint from $E T_{H}(R \backslash H)$. In particular, $E T_{H}(H)$ is connected and $E T_{H}(R)$ is disconnected.

Proof. Let $p, q \in H$. Then it is clear that $p+q \in H$ since H is an ideal of R. If $x \in H$ is adjacent to $y \in R \backslash H$, then $r x+s y \in H$ for some $r, s \in R \backslash H$. This implies that $s y \in H$, so either $y \in H$ or $s \in H$ since H is a prime ideal which is a contradiction. The "in particular" state is clear.

Theorem 2.3. Let R be a commutative ring and H be a prime ideal of R. Then the following hold:
(1) Suppose that G is an induced subgraph of $E T_{H}(R \backslash H)$ and let x and y be distinct vertices of G that are connected by a path in G. Then there exists a path in G of length 2 between x and y. In particular, if $E T_{H}(R \backslash H)$ is connected, then $\operatorname{diam}\left(E T_{H}(R \backslash H)\right) \leq 2$.
(2) Let x and y be distinct elements of $E T_{H}(R \backslash H)$ that are connected by a path. If $x+y \notin H$ then $x-(-x)-y$ and $x-(-y)-y$ are paths of length 2 between x and y in $E T_{H}(R \backslash H)$.
Proof. (1) Let x_{1}, x_{2}, x_{3} and x_{4} are distinct vertices of G. It suffices to show that if there is a path $x_{1}-x_{2}-x_{3}-x_{4}$ from x_{1} to x_{4}, then x_{1} and x_{4} are adjacent. Now, $r_{1} x_{1}+r_{2} x_{2}, r_{2}^{\prime} x_{2}+r_{3}^{\prime} x_{3}, r_{3} x_{3}+r_{4} x_{4} \in H$ for some $r_{1}, r_{2}, r_{3}, r_{4}, r_{2}^{\prime}, r_{3}^{\prime} \in R \backslash H$. Hence $\left(r_{1} r_{3} r_{2}^{\prime}\right) x_{1}+\left(r_{2} r_{3}^{\prime} r_{4}\right) x_{4}=$ $r_{3} r_{2}^{\prime}\left(r_{1} x_{1}+r_{2} x_{2}\right)-r_{2} r_{3}\left(r_{2}^{\prime} x_{2}+r_{3}^{\prime} x_{3}\right)+r_{2} r_{3}^{\prime}\left(r_{3} x_{3}+r_{4} x_{4}\right) \in H$. Since H is a prime ideal of R, so $r_{1} r_{3} r_{2}^{\prime}, r_{2} r_{3}^{\prime} r_{4} \notin H$. Then x_{1} and x_{4} are adjacent. So if $E T_{H}(R \backslash H)$ is connected, then $\operatorname{diam}\left(E T_{H}(R \backslash H)\right) \leq 2$.
(2) Since $x, y \in R \backslash H$ and $x+y \notin H$, there exists $z \in R \backslash H$ such that $x-z-y$ is a path of length 2 by part (1) above. So $r x+s z, s^{\prime} z+r^{\prime} y \in H$ for some $r, s, r^{\prime}, s^{\prime} \in R \backslash H$. Therefore $r s^{\prime}, r^{\prime} s \notin H$ since H is a prime ideal of R. Then $r s^{\prime} x-r^{\prime} s y=s^{\prime}(r x+s z)-s\left(s^{\prime} z+r^{\prime} y\right) \in H$ and x is adjacent to y. So $x-(-x)-y$ and $x-(-y)-y$ are paths of length 2 between x and y in $E T_{H}(R \backslash H)$.

Now, we give the main theorem of this section. Since $E T_{H}(H)$ is a complete subgraph of $E T_{H}(R)$ by Theorem 2.2, the next theorem gives a complete description of $E T_{H}(R \backslash H)$. Let $|H|=\alpha$. We allow α to be infinite cardinal. Compare the next theorem with [3, Theorem 2.2].

Theorem 2.4. Let R be a commutative ring and H be a prime ideal of R and let $|H|=\alpha$.
(1) If $r+s \in H$ for some $r, s \in R \backslash H$, then $E T_{H}(R \backslash H)$ is the union of complete subgraphs.
(2) If $r+s \notin H$ for all $r, s \in R \backslash H$, then $E T_{H}(R \backslash H)$ is the union of totally disconnected subgraphs and some connected subgraphs.

Proof. (1) Suppose that $r+s \in H$ for some $r, s \in R \backslash H$. For $x, x^{\prime} \in$ $R \backslash H$, we write $x \sim x^{\prime}$ if and only if $t x+t^{\prime} x^{\prime} \in H$ and $t+t^{\prime} \in H$ for some $t, t^{\prime} \in R \backslash H$. It is straightforward to check that \sim is an equivalence relation on $R \backslash H$, since H is a prime ideal. For $x \in R \backslash H$, we denote the equivalence class which contains x by $[x]$. Now let $x \in R \backslash H$. If $[x]=\{x\}$, then $r\left(x+h_{1}\right)+s\left(x+h_{2}\right)=(r+s) x+r h_{1}+s h_{2} \in H$ for every $h_{1}, h_{2} \in H$ since $r+s \in H$. Then $x+H$ is a complete subgraph of $E T_{H}(R \backslash H)$ with at most α vertices. Now let $|[x]|=\nu$ and $x^{\prime} \in[x]$. Then $t x+t^{\prime} x^{\prime} \in H$ and $t+t^{\prime} \in H$ for some $t, t^{\prime} \in R \backslash H$. So $t\left(x+h_{1}\right)+t^{\prime}\left(x^{\prime}+h_{2}\right)=t x+t^{\prime} x^{\prime}+t h_{1}+t^{\prime} h_{2} \in H$ for every $h_{1}, h_{2} \in H$. Thus $x+H$ is a part of complete graph k^{μ} where $\mu \leq \alpha \nu$.
(2) Assume that $r+s \notin H$ for all $r, s \in R \backslash H$. Set

$$
A_{x}=\left\{x^{\prime} \in R \backslash H: r x+s x^{\prime} \in H \text { for some } r, s \in R \backslash H\right\}
$$

be the set of all adjacent vertices to x. If $A_{x}=\emptyset$, then $p x+q x^{\prime} \notin H$ for every $x^{\prime} \in R \backslash H$ and every $p, q \in R \backslash H$. In this case, we show that $x+H$ is a totally disconnected subgraph of $E T_{H}(R \backslash H)$. If $r\left(x+x_{1}\right)+s\left(x+x_{2}\right) \in H$ for some $r, s \in R \backslash H$ and $x_{1}, x_{2} \in H$, then $(r+s) x \in H$. Since H is a prime ideal of R and $x \notin H$, then $r+s \in H$ which is a contradiction. Therefore $x+H$ is a totally disconnected subgraph of $E T_{H}(R \backslash H)$. Now, we may assume that $A_{x} \neq \emptyset$. Then $r x+s x^{\prime} \in H$ for some $r, s \in R \backslash H$ and $x^{\prime} \in R \backslash H$. Hence $r\left(x+h_{1}\right)+s\left(x^{\prime}+h_{2}\right)=r x+s x^{\prime}+r h_{1}+s h_{2} \in H$ for every $h_{1}, h_{2} \in H ;$ hence each element of $x+H$ is adjacent to each element of $x^{\prime}+H$. If $\left|A_{x}\right|=\nu$, then we have a connected subgraph of $E T_{H}(R \backslash H)$ with at most $\alpha \nu$ vertices. So $E T_{H}(R \backslash H)$ is the union of totally disconnected subgraphs and some connected subgraphs.

Now it is easy to compute the girth of $E T_{H}(R \backslash H)$ using Theorem 2.4 .

Theorem 2.5. Let R be a commutative ring and H be a prime ideal of R. Then $\operatorname{gr}\left(E T_{H}(R \backslash H)\right)=3,4$ or ∞. In particular, $\operatorname{gr}\left(E T_{H}(R \backslash\right.$ $H)) \leq 4$ if $E T_{H}(R \backslash H)$ contains a cycle.

Proof. Let $E T_{H}(R \backslash H)$ contains a cycle. Then $E T_{H}(R \backslash H)$ is not a totally disconnected graph, so by the proof of Theorem 2.4, ET $T_{H}(R \backslash H)$ has either a complete or a complete bipartite subgraph. Therefore it must contain either a 3-cycle or 4-cycle. Thus $\operatorname{gr}\left(E T_{H}(R \backslash H)\right) \leq 4$.

Theorem 2.6. Let R be a commutative ring and H be a prime ideal of R.
(1) $\operatorname{gr}\left(E T_{H}(R \backslash H)\right)=3$ if and only if $r+s \in H$ and $|y+H| \geq 3$ for some $r, s \in R \backslash H$ and $y \in R \backslash H$.
(2) $\operatorname{gr}\left(E T_{H}(R \backslash H)\right)=4$ if and only if $r+s \notin H$ for every $r, s \in R \backslash H$ and $p x+q x^{\prime} \in H$ for some $x, x^{\prime} \in R \backslash H$ and $p, q \in R \backslash H$.
(3) Otherwise, $\operatorname{gr}\left(E T_{H}(R \backslash H)\right)=\infty$.

Proof. (1) Assume that $\operatorname{gr}\left(E T_{H}(R \backslash H)\right)=3$. Then by Theorem 2.4, $E T_{H}(R \backslash H)$ is a complete graph K^{λ} where $\lambda \geq 3$. Then $r+s \in H$ for some $r, s \in R \backslash H$ and $|y+H| \geq 3$ for some $y \in R \backslash H$ by Theorem 2.4.
(2) If $\operatorname{gr}\left(E T_{H}(R \backslash H)\right)=4$, then $E T_{H}(R \backslash H)$ has a complete bipartite subgraph. So $r+s \notin H$ for every $r, s \in R \backslash H$ and $p x+q x^{\prime} \in H$ for some $x, x^{\prime} \in R \backslash H$ and $p, q \in R \backslash H$ by Theorem 2.4.
The other implications of (1) and (2) follow directly from Theorem 2.4.

We end this section with the following theorem.
Theorem 2.7. Let R be a commutative ring and H be a prime ideal of R.
(1) $\operatorname{gr}\left(E T_{H}(R)\right)=3$ if and only if $|H| \geq 3$.
(2) $\operatorname{gr}\left(E T_{H}(R)\right)=4$ if and only if $r+s \notin H$ for every $r, s \in R \backslash H$,
$|H|<3$ and $p x+q x^{\prime} \in U$ for some $x, x^{\prime} \in R \backslash H$ and $p, q \in R \backslash H$.
(3) Otherwise, $\operatorname{gr}\left(E T_{H}(R)\right)=\infty$.

Proof. (1) This follows from Theorem 2.2.
(2) Assume that $\operatorname{gr}\left(E T_{H}(R)\right)=4$. Since $\operatorname{gr}\left(E T_{H}(H)\right)=3$ or ∞, then $\operatorname{gr}\left(E T_{H}(R \backslash H)\right)=4$. Therefore $r+s \notin H$ for every $r, s \in R \backslash H$ and $p x+q x^{\prime} \in H$ for some $x, x^{\prime} \in R \backslash H$ and $p, q \in R \backslash H$ by Theorem 2.6. On the other hand, $\operatorname{gr}\left(E T_{H}(R)\right) \neq 3$; so $|H|<3$. The other implication follows from Theorem 2.4.

3. The case when H is not an ideal of R

In this section, we study $E T_{H}(R)$, when the multiplicative-prime subset H is not an ideal of R. Since H is always closed under multiplication by elements of R, this just means that $0 \in H$ and there are distinct $x, y \in H$ such that $x+y \in R \backslash H$.
First we begin with the following example that shows $E T_{H}(R) \neq$ $G T_{H}(R)$.
Example 3.1. Let $R=\mathbb{Z}$. Set $H=4 \mathbb{Z} \cup 6 \mathbb{Z}$. It is clear that H is not an ideal of R since $4,6 \in H$, but $4+6=10 \notin H$. So $4-6$ is not an edge in $G T_{H}(R)$. But $2(4)+2(6)=20 \in H$ and $2 \in R \backslash H$. Then $4-6$ is an edge in $E T_{H}(R)$. Hence $E T_{H}(R) \neq G T_{H}(R)$.

Now, we have the following theorem that shows $E T_{H}(H)$ is always connected (but never complete), $E T_{H}(H)$ and $E T_{H}(R \backslash H)$ are never disjoint subgraphs of $E T_{H}(R)$ and $E T_{H}(R)$ is connected when $E T_{H}(R \backslash$ $H)$ is connected.

Theorem 3.2. Let R be a commutative ring such that H is a multiplicativeprime subset of R that is not an ideal of R. Then the following hold:
(1) $E T_{H}(H)$ is connected with $\operatorname{diam}\left(E T_{H}(H)\right)=2$.
(2) Some vertex of $E T_{H}(H)$ is adjacent to a vertex of $E T_{H}(R \backslash H)$. In particular, the subgraphs $E T_{H}(H)$ and $E T_{H}(R \backslash H)$ are not disjoint.
(3) If $E T_{H}(R \backslash H)$ is connected, then $E T_{H}(R)$ is connected.

Proof. (1) Let $x \in H^{*}=H \backslash\{0\}$. Then x is adjacent to 0 . Thus $x-0-x^{\prime}$ is a path in $E T_{H}(H)$ of length two between any two distinct $x, x^{\prime} \in H^{*}$. Moreover, there exist nonadjacent $x, x^{\prime} \in H^{*}$ since H is not an ideal of R; thus $\operatorname{diam}\left(E T_{H}(H)\right)=2$.
(2) Since H is not an ideal of R, there exist distinct $x, y \in H^{*}$ such that $x+y \notin H$. Then $-x \in H$ and $x+y \in H$ are adjacent vertices in $E T_{H}(R)$. Finally, the "in particular" statement is clear.
(3) Since $E T_{H}(H)$ and $E T_{H}(R \backslash H)$ are connected and there is an edge between $E T_{H}(H)$ and $E T_{H}(R \backslash H)$, so $E T_{H}(R)$ is connected.

We determine when $E T_{H}(R)$ is connected and compute $\operatorname{diam}\left(E T_{H}(R)\right)$ with the following theorem. Compare the next theorem with $[3$, Theorem 3.2].

Theorem 3.3. Let R be a commutative ring such that H is a multiplicativeprime subset of R that is not an ideal of R. Then $E T_{H}(R)$ is connected if and only if for every $x \in R$ there exists $r \in R \backslash H$ such that $r x \in\langle H\rangle$.

Proof. Suppose that $E T_{H}(R)$ is connected, and $x \in R$. Then there exists a path $0-x_{1}-x_{2}-\ldots-x_{n}-x$ from 0 to x in $E T_{H}(R)$.

Thus $r_{1} x_{1}, r_{2} x_{1}+r_{3} x_{2}, \ldots, r_{2 n-2} x_{n-1}+r_{2 n-1} x_{n}, r_{2 n} x_{n}+s x \in H$ for some $r_{1}, r_{2}, \ldots, r_{2 n}, s \in R \backslash H$. Then

$$
\begin{gathered}
s r_{1} r_{3} r_{5} \ldots r_{2 n-1} x=\left(r_{1} r_{3} r_{5} \ldots r_{2 n-1}\right)\left(s x+r_{2 n} x_{n}\right)- \\
\left(r_{1} r_{3} r_{5} \ldots r_{2 n-3} r_{2 n}\right)\left(r_{2 n-2} x_{n-1}+r_{2 n-1} x_{n}\right)+\ldots \\
-\left(r_{1} r_{3} \ldots r_{2 n-2 k-5} r_{2 n-2 k-3} r_{2 n-2 k} r_{2 n-2 k-2} \ldots r_{2 n}\right)\left(r_{2 n-2 k-1} x_{n-k}+r_{2 n-2 k-2} x_{n-(k+1)}\right) \\
+\left(r_{1} r_{3} \ldots r_{2 n-2 k-5} r_{2 n-2 k-2} r_{2 n-2 k} r_{2 n-2 k-2} \ldots r_{2 n}\right)\left(r_{2 n-2 k-3} x_{n-(k+1)}+r_{2 n-2 k-4} x_{n-(k+2)}\right) \\
\ldots-\left(r_{2} r_{4} r_{6} \ldots r_{2 n}\right)\left(r_{1} x_{1}\right) \in\langle H\rangle
\end{gathered}
$$

Since H is a multiplicative-prime subset of R, so $r=s r_{1} r_{3} r_{5} \ldots r_{2 n-1} \in$ $R \backslash H$ and $r x \in\langle H\rangle$. Conversely, suppose that for every $x \in R$ there exists $r \in R \backslash H$ such that $r x \in\langle H\rangle$. We show that for each $0 \neq x \in R$, there exists a path in $E T_{H}(R)$ from 0 to x. By assumption, there are elements $h_{1}, h_{2}, \ldots, h_{n} \in H$ such that $r x=h_{1}+h_{2}+\ldots+h_{n}$. Set $y_{0}=0$ and $y_{k}=(-1)^{n+k}\left(h_{1}+h_{2}+\ldots+h_{k}\right)$ for each integer k with $1 \leq k \leq n$. Then $y_{k}+y_{k+1}=(-1)^{n+k+1} h_{k+1} \in H$ for each integer $1 \leq k \leq n-1$. Also, $y_{n-1}+r x=y_{n-1}+y_{n}=h_{n} \in H$. Thus $0-y_{1}-y_{2}-\ldots-y_{n-1}-x$ is a path from 0 to x in $E T_{H}(R)$. Now, let $0 \neq x, y \in R$. Then by the preceding argument, there are paths from x to 0 and 0 to y in $E T_{H}(R)$. Hence there is a path from x to y in $E T_{H}(R)$. So $E T_{H}(R)$ is connected.

Theorem 3.4. Let R be a commutative ring such that H is a multiplicativeprime subset of R that is not an ideal of R, and let for every $x \in R$ there exists $r \in R \backslash H$ such that $r x \in\langle H\rangle$. Let $n \geq 2$ be the least integer such that $\langle H\rangle=<h_{1}, h_{2}, \ldots, h_{n}>$ for some $h_{1}, h_{2}, \ldots, h_{n} \in H$. Then $\operatorname{diam}\left(E T_{H}(R)\right) \leq n$.

Proof. Let x and x^{\prime} be distinct elements in R. We show that there exists a path from x to x^{\prime} in $E T_{H}(R)$ with length at most n. By hypothesis, $r x, r^{\prime} x^{\prime} \in\langle H\rangle$ for some $r, r^{\prime} \in R \backslash H$, so we can write $r x=$ $\sum_{i=1}^{n} r_{i} h_{i}$ and $r^{\prime} x^{\prime}=\sum_{i=1}^{n} s_{i} h_{i}$ for some $r_{i}, s_{i} \in R$. Define $x_{0}=x$ and $x_{k}=(-1)^{k}\left(\sum_{i=k+1}^{n} r_{i} h_{i}+\sum_{i=1}^{k} s_{i} h_{i}\right)$, so $x_{k}+x_{k+1}=(-1)^{k} h_{k+1}\left(r_{k+1}-\right.$ $\left.s_{k+1}\right) \in H$ for each integer k with $1 \leq k \leq n-1$. On the other hand, $r x+x_{1}=\left(r_{1}-s_{1}\right) h_{1} \in H$ and $r^{\prime} x^{\prime}+(-1)^{n} x_{n-1}=\left(s_{n}-r_{n}\right) h_{n} \in H$. So $x-x_{1}-x_{2}-\ldots-x_{n-1}-x^{\prime}$ is a path from x to x^{\prime} in $E T_{H}(R)$ with length at most n since $1,(-1)^{n} \notin H$.

We end the paper with the following theorem.
Theorem 3.5. Let R be a commutative ring such that H is a multiplicativeprime subset of R that is not an ideal of R. Then the following hold:
(1) Either $\operatorname{gr}\left(E T_{H}(H)\right)=3$ or $\operatorname{gr}\left(E T_{H}(H)\right)=\infty$.
(2) If $\operatorname{gr}\left(E T_{H}(R)\right)=4$, then $\operatorname{gr}\left(E T_{H}(H)\right)=\infty$.

Proof. (1) If $r x+s x^{\prime} \in H$ for some distinct $x, x^{\prime} \in H$ and $r, s \in R \backslash H$, then $0-x-x^{\prime}-0$ is a cycle of length 3 in $E T_{H}(H)$, so $\operatorname{gr}\left(E T_{H}(H)\right)=3$. Otherwise $r x+s x^{\prime} \in R \backslash H$ for all distinct $x, x^{\prime} \in H$ and all elements $r, s \in R \backslash H$. Therefore in this case, each nonzero element $x \in H$ is adjacent to 0 , and no two distinct $x, x^{\prime} \in H$ are adjacent. Thus $\operatorname{gr}\left(E T_{H}(H)\right)=\infty$.
(2) If $\operatorname{gr}\left(E T_{H}(R)\right)=4$, then it is clear $\operatorname{gr}\left(E T_{H}(H)\right) \neq 3$. So $\operatorname{gr}\left(E T_{H}(H)\right)=$ ∞ by part (1) above.

Acknowledgments

The authors are deeply gratful to the referee for careful reading and his valuable suggestions.

References

1. D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra, 159 (1993), 500-514.
2. D. F. Anderson, M. C. Axtell and J. A. Stickles, Jr., Zero-divisor graphs in commutative rings, commutative Algebra, (2011), 23-45.
3. D. F. Anderson and A. Badawi, The generalized total graph of a commutative ring, J. Algebra Appl., 12 (2013), 1250212 (18 pages).
4. D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra, 320 (2008), 2706-2719.
5. D. F. Anderson and P. F. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 437-447.
6. D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra, 210 (2007), 543-550.
7. I. Beck, Coloring of a commutative ring, J. Algebra, 116 (1988), 208-226.
8. F. Esmaeili Khalil Saraei, The total torsion element graph without the zero element of modules over commutative rings, J. Korean Math. Sco, 51(4) (2014), 721-734.
9. F. Esmaeili Khalil Saraei, H. Heydarinejad Astaneh, R. Navidinia, The total graph of a module with respect to multiplicative-prime subsets, Romanian Journal of Mathematics and Computer Science, 14(2) (2014), 151-166.
10. N. K. Tohidi, F. Esmaeili Khalil Saraei and S. A. Jalili, The generalized total graph of modules respect to proper submodules over commutative rings, Journal of Algebra and Related Topics, 2(1) (2014), 27-42.

Fatemeh Esmaeili Khalil Saraei

Fouman Faculty of Engineering, College of Engineering, University of Tehran, P.O.Box 43515-1155, Fouman, Iran.

Email: f.esmaeili.kh@ut.ac.ir

Elnaz Navidinia

Department of Mathematics, Faculty of mathematical sciences, University of Guilan, P.O.Box 1914, Rasht,Iran.

Email: elnaz.navidinia@yahoo.com

[^0]: MSC(2010): Primary: 13C13; Secondary: 05C75, 13A15
 Keywords: Total graph, prime ideal, multiplicative-prime subset.
 Received: 25 April 2018, Accepted: 3 July 2018.
 $*$ Corresponding author .

