Journal of Algebra and Related Topics

Vol. 6, No 1, (2018), pp 35-44

NON-REDUCED RINGS OF SMALL ORDER AND THEIR MAXIMAL GRAPH

A. SHARMA * AND A. GAUR

Abstract

Let R be a commutative ring with nonzero identity. Let $\Gamma(R)$ denotes the maximal graph corresponding to the non-unit elements of R , that is, $\Gamma(R)$ is a graph with vertices the non-unit elements of R, where two distinct vertices a and b are adjacent if and only if there is a maximal ideal of R containing both. In this paper, we investigate that for a given positive integer n, is there a non-reduced ring R with n non-units? For $n \leq 100$, a complete list of non-reduced decomposable rings $R=\prod_{i=1}^{k} R_{i}$ (up to cardinalities of constituent local rings R_{i} 's) with n non-units is given. We also show that for which $n,(1 \leq n \leq 7500),|\operatorname{Center}(\Gamma(R))|$ attains the bounds in the inequality $1 \leq|\operatorname{Center}(\Gamma(R))| \leq n$ and for which $n,(2 \leq n \leq 100),|\operatorname{Center}(\Gamma(R))|$ attains the value between the bounds.

1. Introduction

The maximal graph $G(R)$ associated to R was introduced by the authors [3] in 2013. The authors considered $G(R)$ as a simple graph whose vertices are elements of R, and two distinct vertices a and b are adjacent if and only if there is a maximal ideal of R containing both. In [4], the authors defined $\Gamma(R)$ as the restriction of $G(R)$ to the nonunit elements of R, that is, $\Gamma(R)$ is a simple graph whose vertices are the non-unit elements of R such that two distinct vertices a and b are adjacent if and only if $a, b \in \mathfrak{m}$ for some maximal ideal \mathfrak{m} of $R . \Gamma(R)$

[^0]was also named as maximal graph of R as the units in R are just the isolated vertices in $G(R)$.

This paper is inspired by a simple question: Given any positive integer n, is there a commutative ring with nonzero identity having n non-units? One can easily verify that a ring R has a finite number $n \geq 2$ of non-units only if R is finite. So, to answer this question, we need to consider finite rings only.

Of course, the question is somewhat trivial if one removes the requirement that the ring must have an identity. Letting A_{k} denote the additive group \mathbb{Z}_{k} with the trivial multiplication $\left(x y=0\right.$ for all $\left.x, y \in A_{k}\right)$, then A_{k} has k non-units. Thus, for this paper, all rings considered will be finite with nonzero identity. We use \mathbb{F}_{k} to denote the finite field with k elements.

Restricting the question to local rings (rings which have a unique maximal ideal, including fields) can give examples only for certain values of n. For a finite local ring R with \mathfrak{m} its maximal ideal, $|R|=p^{k \alpha}$ and $|\mathfrak{m}|=p^{(k-1) \alpha}$ for some prime p and some positive integer k. Hence, one must look beyond local rings to answer this question in general.

For finite commutative rings with nonzero identity, every non-unit is zero-divisor. In [6], it was shown that there is no commutative ring with nonzero identity and 1210 non-units. Moreover, for $1 \leq n \leq 7500$, $n=1210, n=3342$, and $n=5466$ are the only positive integers for which there is no commutative ring R with nonzero identity and n non-units [6]. Now, there are few other questions:

- For which positive integer n, do there exist only reduced rings with n non-units?
- Given a positive integer n, do there exist non-reduced rings with n non-units?
- If we determine a non-reduced ring R with n non-units, then what is the value of $|J(R)|$, where $J(R)$ denotes the Jacobson radical of R. Whether it depends on prime factorization of n or not?

In Section 2, we find some conditions on $|J(R)|$ such that for a given positive integer n, there does not exist a non-reduced ring with n nonunits. In Section 3, we present tables listing all non-reduced decomposable rings $R=\prod_{i=1}^{k} R_{i}$ (up to cardinalities of constituent local rings R_{i} 's) with n non-unit elements, where $2 \leq n \leq 100$. In Section 4, we discuss that for which positive integer $n, 1 \leq n \leq 7500,|\operatorname{Center}(\Gamma(R))|$ attains the bounds in the inequality $1 \leq|\operatorname{Center}(\Gamma(R))| \leq n$ and for which $n, 2 \leq n \leq 100$, $|\operatorname{Center}(\Gamma(R))|$ attains the value between the
bounds. Throughout the paper, ring shall mean a finite commutative ring with nonzero identity.

2. Non-Reduced Rings

We begin the section with some results which are established for zero-divisors. In view of the fact that every non-unit is a zero-divisor in a finite ring R, we are restating them for non-units.

- [5, Theorem 2] Let R be a commutative ring of cardinality α having n non-units, where $1<n \leq \alpha$. Then $\alpha<n^{2}$.
- [5, Theorem 3] Suppose that p is prime and s and t are integers such that $0<s<t$. Then there exists a local ring of order p^{t} having maximal ideal of cardinality p^{s} if and only if $t-s$ divides s.
- [7, Proposition 2.1] Let R be a finite commutative reduced ring.
(1) If k is the smallest positive integer such that $|R|<2^{k}$, then R is a product of $k-1$ or fewer fields.
(2) Suppose R has n non-units. Let k be the smallest positive integer such that $n<2^{k}-1$. Then R is a product of $k-1$ or fewer fields.
If R is a finite ring with maximal ideals $\mathfrak{m}_{1}, \mathfrak{m}_{2}, \ldots, \mathfrak{m}_{k}$, then $R \cong$ $\prod_{i=1}^{k} R_{i}$, where R_{i} is a finite local ring with maximal ideal, say \mathfrak{n}_{i} for all i. Also, $\left|R_{i}\right|=p_{i}^{m_{i} \alpha_{i}}$ for some prime p_{i}, where m_{i} is the length of R_{i} and $\left|R_{i} / \mathfrak{n}_{i}\right|=p_{i}^{\alpha_{i}}$ for all i. If $\mathfrak{m}_{i}=R_{1} \times \cdots \times R_{i-1} \times \mathfrak{n}_{i} \times R_{i+1} \times \cdots \times R_{k}$, then

$$
\left|\mathfrak{m}_{i}\right|=p_{i}^{\left(m_{i}-1\right) \alpha_{i}} \prod_{\substack{j=1 \\ j \neq i}}^{k} p_{j}^{m_{j} \alpha_{j}}=p_{i}^{-\alpha_{i}}|R|
$$

for all i, and

$$
|J(R)|=\left|\cap_{i=1}^{k} \mathfrak{m}_{i}\right|=\prod_{i=1}^{k} p_{i}^{\left(m_{i}-1\right) \alpha_{i}} .
$$

Also

$$
\begin{equation*}
\left|\cup_{i=1}^{k} \mathfrak{m}_{i}\right|=|J(R)|\left\{\prod_{i=1}^{k} p_{i}^{\alpha_{i}}-\prod_{i=1}^{k}\left(p_{i}^{\alpha_{i}}-1\right)\right\} \tag{2.1}
\end{equation*}
$$

In the next two propositions we show that under certain conditions there does not exist any finite, non-reduced ring R with n non-units.

Proposition 2.1. Let p and q be distinct primes, $p^{l}<q$ and $n=p^{l} q$ for some $l \in \mathbb{N}$. Then there does not exist any finite, non-reduced ring R with n non-units and $|J(R)|=q$.

Proof. Suppose that R is a finite ring with $p^{l} q$ non-units. Let $|J(R)|=q$ and $p^{l}<q$. Since R is a finite ring, it will have finitely many maximal ideals, say k. Then, in the decomposition of R as a finite direct product of finite local rings, that is, $R \cong \prod_{i=1}^{k} R_{i}$, all R_{i} 's are field except one, say R_{k}, which is a local ring with maximal ideal of cardinality q, and hence by [5, Theorem 3], $\left|R_{k}\right|=q^{2}$.

Thus, equation (2.1) becomes

$$
\begin{equation*}
p^{l}=q \prod_{i=1}^{k-1} p_{i}^{\alpha_{i}}-(q-1) \prod_{i=1}^{k-1}\left(p_{i}^{\alpha_{i}}-1\right) \tag{2.2}
\end{equation*}
$$

which is not possible as $p^{l}<q$. Thus there does not exist a nonreduced ring with $p^{l} q$ non-units and $|J(R)|=q$.

Proposition 2.2. Let p, q, and r be distinct primes, $p<q<r$ and $n=p q r$. Then there does not exist any finite, non-reduced ring R with n non-units satisfying the following:
(i) $|J(R)|=r$ if $p q<r$;
(ii) $|J(R)|=q r$;
(iii) $|J(R)|=p r$.

Proof. Suppose that R is a finite ring with pqr non-units. Since R is a finite ring, it will have finitely many maximal ideals, say k.

Let us assume that $|J(R)|=r$. Then, in the decomposition of R as a finite direct product of finite local rings, that is, $R \cong \prod_{i=1}^{k} R_{i}$, all R_{i} 's are field except one, say R_{k}, which is a local ring with maximal ideal of cardinality r, and hence by $[5$, Theorem 3$],\left|R_{k}\right|=r^{2}$.

Thus, equation (2.1) becomes

$$
\begin{equation*}
p q=r \prod_{i=1}^{k-1} p_{i}^{\alpha_{i}}-(r-1) \prod_{i=1}^{k-1}\left(p_{i}^{\alpha_{i}}-1\right) \tag{2.3}
\end{equation*}
$$

which is not possible as $p q<r$.
Next assume that $|J(R)|=q r$. Then, in the decomposition of R as a finite direct product of finite local rings, that is, $R \cong \prod_{i=1}^{k} R_{i}$, all R_{i} 's are field except two, say R_{k-1}, R_{k}, which are local rings with maximal ideals of cardinality q and r, respectively and hence by [5, Theorem 3], $\left|R_{k-1}\right|=q^{2},\left|R_{k}\right|=r^{2}$.

Thus, equation (2.1) becomes

$$
\begin{equation*}
p=q r \prod_{i=1}^{k-2} p_{i}^{\alpha_{i}}-(q-1)(r-1) \prod_{i=1}^{k-2}\left(p_{i}^{\alpha_{i}}-1\right) \tag{2.4}
\end{equation*}
$$

which is not possible as $p<q, p<r$. Thus there does not exist a non-reduced ring with $p q r$ non-units and $|J(R)|=q r$. Similarly for $|J(R)|=p r$, there does not exist a non-reduced ring.

Remark 2.3. Thus equation (2.1) gives a useful criteria to determine the non-existence of a non-reduced ring with $n=p_{1} p_{2} \cdots p_{m}$ non-units and appropriate $|J(R)|$.

3. The List

In this section, we present tables listing all non-reduced decomposable rings $R=\prod_{i=1}^{k} R_{i}$ (up to cardinalities of constituent local rings R_{i} 's) having n non-units, where $2 \leq n \leq 100$. For $n=1$, we have a field, which is a reduced ring. Next, if $n=p^{s}$, where p is prime and s is a positive integer, then by [2, Theorem 2], we have either local rings of order $p^{t}, 0<s<t$ or reduced ring for $1 \leq s<3$. For $s \geq 3$, we have non-reduced decomposable rings listed in the table:

TABLE 1. $n=p^{s}$

Non-units	R	Non-units	R	Non-units	R
$2^{3}=8$	$\mathbb{F}_{3} \times \mathbb{Z}_{4}$	$2^{4}=16$	$\mathbb{F}_{3} \times \mathbb{Z}_{8}$	$2^{5}=32$	$\mathbb{F}_{3} \times \mathbb{Z}_{16}$
			$\mathbb{Z}_{4} \times \mathbb{F}_{7}$		$\mathbb{F}_{5} \times \mathbb{F}_{4}(x] /\left(x^{2}\right)$
					$\mathbb{F}_{7} \times \mathbb{Z}_{8}$
					$\mathbb{F}_{2} \times \mathbb{Z}_{4} \times \mathbb{F}_{5}$
$2^{6}=64$	$\mathbb{F}_{3} \times \mathbb{Z}_{32}$	$3^{3}=27$	$\mathbb{F}_{7} \times \mathbb{Z}_{9}$	$3^{4}=81$	$\mathbb{F}_{7} \times \mathbb{Z}_{27}$
	$\mathbb{Z}_{4} \times \mathbb{F}_{31}$				$\mathbb{Z}_{9} \times \mathbb{F}_{25}$
	$\mathbb{F}_{4}[x] /\left(x^{2}\right) \times \mathbb{F}_{13}$				
	$\mathbb{F}_{7} \times \mathbb{Z}_{16}$				
	$\mathbb{F}_{2} \times \mathbb{F}_{5} \times \mathbb{Z}_{8}$				
	$\mathbb{Z}_{4} \times \mathbb{Z}_{4} \times \mathbb{F}_{5}$				
	$\mathbb{F}_{2} \times \mathbb{F}_{3} \times \mathbb{F}_{3} \times \mathbb{Z}_{4}$				

Now, suppose n is not a prime power. First we consider simple prime factorization $n=p q$. We may also assume that $p<q$. Then by Proposition 2.1, there does not exist a non-reduced ring with $|J(R)|=$ q. Let us find a non-reduced ring with $|J(R)|=p$. Now, if $|J(R)|=p$, then the equation (2.1) becomes

$$
\begin{equation*}
q=p \prod_{i=1}^{k-1} p_{i}^{\alpha_{i}}-(p-1) \prod_{i=1}^{k-1}\left(p_{i}^{\alpha_{i}}-1\right) \tag{3.1}
\end{equation*}
$$

Thus, for the existence of a non-reduced ring with $p q$ non-units and $|J(R)|=p<q, p$ and q should satisfy the equation (3.1). To elaborate this, consider the following example:

Suppose $n=2 \cdot 3=6$. Since $n \leq 2^{3}-1$, by [7, Proposition 2.1], we have $k \leq 2$. Thus, the equation (3.1) becomes

$$
3=p_{1}^{\alpha_{1}}+1
$$

This implies that $p_{1}=2$ and $\alpha_{1}=1$. Thus $\mathbb{F}_{2} \times \mathbb{Z}_{4}$ is non-reduced ring with $n=6$ and $|J(R)|=2$.

By applying the same argument to $n \in\{22,38,51,69,74,78,82,94,95\}$, we conclude that there does not exist a non-reduced ring with n nonunits.

We now give a list of non-reduced decomposable rings with $n(2 \leq$ $n \leq 100)$ non-units, where $n \notin\{22,38,51,69,74,78,82,94,95\}$ and is not a prime power.

TABLE 2. $n=p q$

Non-units	R	Non-units	R	Non-units	R
$2 \cdot 3=6$	$\mathbb{F}_{2} \times \mathbb{Z}_{4}$	$2 \cdot 5=10$	$\mathbb{Z}_{4} \times \mathbb{F}_{4}$	$2 \cdot 7=14$	$\mathbb{F}_{2} \times \mathbb{F}_{2} \times \mathbb{Z}_{4}$
$2 \cdot 13=26$	$\mathbb{F}_{2} \times \mathbb{F}_{4} \times \mathbb{Z}_{4}$	$2 \cdot 17=34$	$\mathbb{Z}_{4} \times \mathbb{F}_{16}$	$2 \cdot 23=46$	$\mathbb{Z}_{4} \times \mathbb{F}_{4} \times \mathbb{F}_{4}$
$2 \cdot 29=58$	$\mathbb{F}_{2} \times \mathbb{F}_{2} \times \mathbb{Z}_{4} \times \mathbb{F}_{4}$	$2 \cdot 31=62$	$\mathbb{F}_{2} \times \mathbb{F}_{2} \times \mathbb{F}_{2} \times \mathbb{F}_{2} \times \mathbb{Z}_{4}$	$2 \cdot 43=86$	$\mathbb{F}_{4} \times \mathbb{Z}_{4} \times \mathbb{F}_{8}$
$3 \cdot 5=15$	$\mathbb{F}_{3} \times \mathbb{Z}_{9}$	$3 \cdot 7=21$	$\mathbb{F}_{5} \times \mathbb{Z}_{9}$	$3 \cdot 11=33$	$\mathbb{F}_{9} \times \mathbb{Z}_{9}$
$3 \cdot 13=39$	$\mathbb{Z}_{9} \times \mathbb{F}_{11}$	$3 \cdot 19=57$	$\mathbb{Z}_{9} \times \mathbb{F}_{17}$	$3 \cdot 29=87$	$\mathbb{Z}_{9} \times \mathbb{F}_{27}$
			$\mathbb{F}_{3} \times \mathbb{F}_{3} \times \mathbb{Z}_{9}$		$\mathbb{F}_{3} \times \mathbb{F}_{5} \times \mathbb{Z}_{9}$
$3 \cdot 31=93$	$\mathbb{Z}_{9} \times \mathbb{F}_{29}$	$5 \cdot 7=35$	$\mathbb{F}_{3} \times \mathbb{Z}_{25}$	$5 \cdot 11=55$	$\mathbb{F}_{7} \times \mathbb{Z}_{25}$
$5 \cdot 13=65$	$\mathbb{F}_{9} \times \mathbb{Z}_{25}$	$5 \cdot 17=85$	$\mathbb{F}_{13} \times \mathbb{Z}_{25}$	$7 \cdot 11=77$	$\mathbb{F}_{5} \times \mathbb{Z}_{49}$
$7 \cdot 13=91$	$\mathbb{F}_{7} \times \mathbb{Z}_{49}$				

TABLE 3. $n=p^{2} q$

Non-units	R	Non-units	R	Non-units	R
$2^{2} \cdot 3=12$	$\mathbb{F}_{2} \times \mathbb{Z}_{8}$	$2^{2} \cdot 5=20$	$\mathbb{F}_{4} \times \mathbb{Z}_{8}$	$2^{2} \cdot 7=28$	$\mathbb{Z}_{4} \times \mathbb{F}_{13}$
	$\mathbb{Z}_{4} \times \mathbb{Z}_{4}$		$\mathbb{F}_{2} \times \mathbb{F}_{4}[x] /\left(x^{2}\right)$		$\mathbb{F}_{4} \times \mathbb{F}_{4}[x] /\left(x^{2}\right)$
	$\mathbb{Z}_{4} \times \mathbb{F}_{5}$		$\mathbb{Z}_{4} \times \mathbb{F}_{9}$		$\mathbb{F}_{2} \times \mathbb{F}_{2} \times \mathbb{Z}_{8}$
	$\mathbb{F}_{2} \times \mathbb{Z}_{9}$		$\mathbb{F}_{2} \times \mathbb{F}_{3} \times \mathbb{Z}_{4}$		$\mathbb{F}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{4}$
				$\mathbb{F}_{3} \times \mathbb{F}_{3} \times \mathbb{Z}_{4}$	
$2^{2} \cdot 11=44$	$\mathbb{F}_{8} \times \mathbb{F}_{4}[x] /\left(x^{2}\right)$	$2^{2} \cdot 13=52$	$\mathbb{Z}_{4} \times \mathbb{F}_{25}$	$2^{2} \cdot 17=68$	$\mathbb{Z}_{8} \times \mathbb{F}_{16}$
	$\mathbb{F}_{2} \times \mathbb{Z}_{4} \times \mathbb{F}_{7}$		$\mathbb{F}_{2} \times \mathbb{F}_{4} \times \mathbb{Z}_{8}$		$\mathbb{F}_{2} \times \mathbb{Z}_{4} \times \mathbb{F}_{11}$
	$\mathbb{F}_{3} \times \mathbb{Z}_{4} \times \mathbb{F}_{5}$		$\mathbb{Z}_{4} \times \mathbb{Z}_{4} \times \mathbb{F}_{4}$		$\mathbb{F}_{3} \times \mathbb{Z}_{4} \times \mathbb{F}_{8}$
	$\mathbb{F}_{2} \times \mathbb{F}_{2} \times \mathbb{F}_{3} \times \mathbb{Z}_{4}$		$\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{F}_{4}[x] /\left(x^{2}\right)$		$\mathbb{Z}_{4} \times \mathbb{F}_{5} \times \mathbb{F}_{5}$
$2^{2} \cdot 19=76$	$\mathbb{Z}_{4} \times \mathbb{F}_{37}$	$2^{2} \cdot 23=92$	$\mathbb{F}_{2} \times \mathbb{F}_{4} \times \mathbb{F}_{4}[x] /\left(x^{2}\right)$	$3^{2} \cdot 2=18$	$\mathbb{Z}_{4} \times \mathbb{F}_{8}$
	$\mathbb{F}_{4}[x] /\left(x^{2}\right) \times \mathbb{F}_{16}$		$\mathbb{F}_{4} \times \mathbb{F}_{4} \times \mathbb{Z}_{8}$		$\mathbb{F}_{4} \times \mathbb{Z}_{9}$
	$\mathbb{F}_{3} \times \mathbb{Z}_{4} \times \mathbb{F}_{9}$		$\mathbb{Z}_{4} \times \mathbb{F}_{5} \times \mathbb{F}_{7}$		
	$\mathbb{Z}_{4} \times \mathbb{F}_{4} \times \mathbb{F}_{7}$		$\mathbb{Z}_{4} \times \mathbb{F}_{3} \times \mathbb{F}_{11}$		
		$\mathbb{F}_{3} \times \mathbb{F}_{3} \times \mathbb{F}_{3} \times \mathbb{Z}_{4}$			
$3^{2} \cdot 5=45$	$\mathbb{F}_{3} \times \mathbb{Z}_{27}$	$3^{2} \cdot 7=63$	$\mathbb{F}_{2} \times \mathbb{F}_{2} \times \mathbb{F}_{3} \times \mathbb{Z}_{4}$		$\mathbb{F}_{3} \times \mathbb{Z}_{49}$
	$\mathbb{F}_{5} \times \mathbb{Z}_{25}$		$\mathbb{F}_{5} \times \mathbb{Z}_{27}$		
	$\mathbb{Z}_{9} \times \mathbb{F}_{13}$		$\mathbb{Z}_{9} \times \mathbb{F}_{19}$		$\mathbb{F}_{3} \times \mathbb{F}_{9}[x] /\left(x^{2}\right)$
	$\mathbb{Z}_{9} \times \mathbb{Z}_{9}$			$\mathbb{F}_{9} \times \mathbb{Z}_{27}$	
			$\mathbb{Z}_{9} \times \mathbb{F}_{23}$	$7^{2} \cdot 2=98$	$\mathbb{F}_{8} \times \mathbb{Z}_{49}$
		$\mathbb{F}_{11} \times \mathbb{Z}_{25}$		$\mathbb{F}_{2} \times \mathbb{Z}_{4} \times \mathbb{F}_{16}$	
$5^{2} \cdot 2=50$	$\mathbb{F}_{2} \times \mathbb{Z}_{4} \times \mathbb{F}_{8}$	$5^{2} \cdot 3=75$			

TABLE 4. $n=p^{3} q$

Non-units	R	Non-units	R	Non-units	R
$2^{3} \cdot 3=24$	$\mathbb{F}_{2} \times \mathbb{Z}_{16}$	$2^{3} \cdot 5=40$	$\mathbb{F}_{4} \times \mathbb{Z}_{25}$	$2^{3} \cdot 7=56$	$\mathbb{F}_{2} \times \mathbb{Z}_{49}$
	$\mathbb{Z}_{4} \times \mathbb{Z}_{9}$		$\mathbb{F}_{4} \times \mathbb{Z}_{16}$		$\mathbb{Z}_{4} \times \mathbb{F}_{27}$
	$\mathbb{Z}_{4} \times \mathbb{F}_{11}$		$\mathbb{Z}_{4} \times \mathbb{F}_{19}$		$\mathbb{Z}_{8} \times \mathbb{F}_{13}$
	$\mathbb{F}_{5} \times \mathbb{Z}_{8}$		$\mathbb{Z}_{8} \times \mathbb{F}_{9}$		$\mathbb{F}_{4}[x] /\left(x^{2}\right) \times \mathbb{F}_{11}$
	$\mathbb{F}_{3} \times \mathbb{F}_{4}[x] /\left(x^{2}\right)$		$\mathbb{Z}_{4} \times \mathbb{F}_{4}[x] /\left(x^{2}\right)$	$\mathbb{F}_{2} \times \mathbb{F}_{2} \times \mathbb{Z}_{16}$	
	$\mathbb{Z}_{4} \times \mathbb{Z}_{8}$		$\mathbb{F}_{4}[x] /\left(x^{2}\right) \times \mathbb{F}_{7}$	$\mathbb{F}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{8}$	
		$\mathbb{F}_{2} \times \mathbb{F}_{3} \times \mathbb{Z}_{8}$	$\mathbb{F}_{2} \times \mathbb{Z}_{4} \times \mathbb{F}_{9}$		
		$\mathbb{F}_{3} \times \mathbb{Z}_{4} \times \mathbb{Z}_{4}$		$\mathbb{F}_{3} \times \mathbb{F}_{3} \times \mathbb{Z}_{8}$	
			$\mathbb{Z}_{4} \times \mathbb{Z}_{4} \times \mathbb{Z}_{4}$		
$2^{3} \cdot 11=88$			$\mathbb{F}_{4} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5}$		
	$\mathbb{Z}_{4} \times \mathbb{F}_{43}$	$3^{3} \cdot 2=54$	$\mathbb{F}_{4} \times \mathbb{Z}_{27}$		
	$\mathbb{F}_{19} \times \mathbb{F}_{4}[x] /\left(x^{2}\right) /\left(x^{2}\right)$		$\mathbb{Z}_{9} \times \mathbb{F}_{16}$		
	$\mathbb{F}_{2} \times \mathbb{F}_{7} \times \mathbb{Z}_{8}$		$\mathbb{F}_{2} \times \mathbb{F}_{4} \times \mathbb{Z}_{9}$		
	$\mathbb{F}_{3} \times \mathbb{F}_{5} \times \mathbb{Z}_{8}$				
	$\mathbb{Z}_{4} \times \mathbb{Z}_{4} \times \mathbb{Z}_{7}$				
	$\mathbb{F}_{2} \times \mathbb{F}_{3} \times \mathbb{Z}_{4} \times \mathbb{Z}_{4}$				
	$\mathbb{F}_{2} \times \mathbb{F}_{2} \times \mathbb{F}_{3} \times \mathbb{Z}_{8}$				

TABLE 5. $n=p^{4} q, p^{5} q$

Non-units	R	Non-units	R	Non-units	R
$2^{4} .3=48$	$\mathbb{F}_{2} \times \mathbb{Z}_{32}$	$2^{4} .5=80$	$\mathbb{F}_{9} \times \mathbb{Z}_{16}$	$2^{5} \cdot 3=96$	$\mathbb{F}_{2} \times \mathbb{Z}_{64}$
	$\mathbb{Z}_{4} \times \mathbb{F}_{23}$		$\mathbb{F}_{4} \times \mathbb{Z}_{32}$		$\mathbb{Z}_{4} \times \mathbb{F}_{47}$
	$\mathbb{F}_{5} \times \mathbb{Z}_{16}$		$\mathbb{Z}_{8} \times \mathbb{F}_{19}$		$\mathbb{F}_{5} \times \mathbb{Z}_{32}$
	$\mathbb{Z}_{8} \times \mathbb{Z}_{9}$		$\mathbb{F}_{4}[x] /\left(x^{2}\right) \times \mathbb{F}_{17}$		$\mathbb{Z}_{8} \times \mathbb{F}_{23}$
	$\mathbb{Z}_{8} \times \mathbb{F}_{11}$		$\mathbb{Z}_{8} \times \mathbb{F}_{4}[x] /\left(x^{2}\right)$	$\mathbb{Z}_{9} \times \mathbb{Z}_{16}$	
$\mathbb{Z}_{8} \times \mathbb{Z}_{8}$		$\mathbb{F}_{3} \times \mathbb{F}_{8}[x] /\left(x^{2}\right)$	$\mathbb{F}_{11} \times \mathbb{Z}_{16}$		
	$\mathbb{F}_{4}[x] /\left(x^{2}\right) \times \mathbb{F}_{9}$	$\mathbb{F}_{2} \times \mathbb{F}_{4}(+) \mathbb{F}_{4}[x] /\left(x^{2}\right)$	$\mathbb{Z}_{4} \times \mathbb{Z}_{32}$		
	$\mathbb{Z}_{4} \times \mathbb{Z}_{16}$	$\mathbb{F}_{2} \times \mathbb{F}_{2} \times \mathbb{Z}_{25}$	$\mathbb{Z}_{8} \times \mathbb{Z}_{16}$		
		$\mathbb{F}_{2} \times \mathbb{Z}_{4} \times \mathbb{F}_{13}$	$\mathbb{F}_{3} \times \mathbb{F}_{4}(+) \mathbb{F}_{4}[x] /\left(x^{2}\right)$		
		$\mathbb{F}_{2} \times \mathbb{F}_{3} \times \mathbb{Z}_{16}$	$\mathbb{F}_{5} \times \mathbb{F}_{8}[x] /\left(x^{2}\right)$		
	$\mathbb{F}_{3} \times \mathbb{Z}_{4} \times \mathbb{Z}_{8}$	$\mathbb{F}_{3} \times \mathbb{F}_{3} \times \mathbb{F}_{4}[x] /\left(x^{2}\right)$			
			$\mathbb{F}_{4} \times \mathbb{Z}_{4} \times \mathbb{F}_{9}$		
			$\mathbb{F}_{2} \times \mathbb{F}_{2} \times \mathbb{F}_{3} \times \mathbb{Z}_{9}$		

TABLE 6. $n=p^{2} q^{2}, p^{3} q^{2}$

Non-units	R	Non-units	R	Non-units	R
$2^{2} \cdot 3^{2}=36$	$\mathbb{F}_{2} \times \mathbb{Z}_{27}$	$2^{2} \cdot 5^{2}=100$	$\mathbb{Z}_{4} \times \mathbb{F}_{49}$	$2^{3} \cdot 3^{2}=72$	$\mathbb{Z}_{4} \times \mathbb{Z}_{27}$
	$\mathbb{Z}_{4} \times \mathbb{F}_{17}$		$\mathbb{F}_{16} \times \mathbb{Z}_{25}$		$\mathbb{F}_{8} \times \mathbb{Z}_{16}$
	$\mathbb{F}_{8} \times \mathbb{Z}_{8}$		$\mathbb{F}_{2} \times \mathbb{F}_{8} \times \mathbb{Z}_{8}$		$\mathbb{F}_{4}[x] /\left(x^{2}\right) \times \mathbb{Z}_{9}$
	$\mathbb{Z}_{4} \times \mathbb{F}_{3} \times \mathbb{F}_{4}$		$\mathbb{Z}_{4} \times \mathbb{Z}_{4} \times \mathbb{F}_{8}$		$\mathbb{Z}_{8} \times \mathbb{F}_{17}$
				$\mathbb{F}_{2} \times \mathbb{F}_{2} \times \mathbb{Z}_{4} \times \mathbb{F}_{7}$	
				$\mathbb{F}_{2} \times \mathbb{F}_{8}[x] /\left(x^{2}\right)$	
				$\mathbb{F}_{3} \times \mathbb{F}_{4} \times \mathbb{Z}_{9}$	
				$\mathbb{F}_{3} \times \mathbb{F}_{4} \times \mathbb{Z}_{8}$	
				$\mathbb{F}_{2} \times \mathbb{F}_{3} \times \mathbb{F}_{4}[x] /\left(x^{2}\right)$	
			$\mathbb{F}_{2} \times \mathbb{F}_{2} \times \mathbb{Z}_{4} \times \mathbb{F}_{5}$		

TABLE 7. $n=p q r, p^{2} q r$

Non-units	R	Non-units	R
$2 \cdot 3 \cdot 5=30$	$\mathbb{F}_{2} \times \mathbb{Z}_{25}$	$2^{2} \cdot 3 \cdot 5=60$	$\mathbb{Z}_{4} \times \mathbb{Z}_{25}$
	$\mathbb{F}_{8} \times \mathbb{Z}_{9}$		$\mathbb{Z}_{4} \times \mathbb{F}_{29}$
	$\mathbb{F}_{2} \times \mathbb{F}_{2} \times \mathbb{Z}_{9}$		$\mathbb{F}_{8} \times \mathbb{Z}_{25}$
	$\mathbb{F}_{2} \times \mathbb{F}_{2} \times \mathbb{F}_{2} \times \mathbb{Z}_{4}$		$\mathbb{F}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{9}$
			$\mathbb{F}_{3} \times \mathbb{Z}_{4} \times \mathbb{F}_{7}$
			$\mathbb{F}_{2} \times \mathbb{F}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{4}$
			$\mathbb{F}_{2} \times \mathbb{F}_{2} \times \mathbb{Z}_{8}$
$2 \cdot 3 \cdot 7=42$	$\mathbb{F}_{2} \times \mathbb{F}_{3} \times \mathbb{Z}_{9}$	$2^{2} \cdot 3 \cdot 7=84$	$\mathbb{Z}_{4} \times \mathbb{F}_{41}$
			$\mathbb{F}_{3} \times \mathbb{Z}_{4} \times \mathbb{Z}_{9}$
			$\mathbb{F}_{2} \times \mathbb{F}_{3} \times \mathbb{F}_{4} \times \mathbb{Z}_{4}$
$2 \cdot 3 \cdot 11=66$	$\mathbb{Z}_{4} \times \mathbb{F}_{32}$	$3^{2} \cdot 2 \cdot 5=90$	$\mathbb{F}_{2} \times \mathbb{F}_{9}[x] /\left(x^{2}\right)$
	$\mathbb{F}_{2} \times \mathbb{F}_{5} \times \mathbb{Z}_{9}$		$\mathbb{F}_{8} \times \mathbb{Z}_{27}$
	$\mathbb{F}_{2} \times \mathbb{F}_{2} \times \mathbb{F}_{2} \times \mathbb{Z}_{9}$		$\mathbb{F}_{2} \times \mathbb{F}_{2} \times \mathbb{Z}_{27}$
			$\mathbb{F}_{2} \times \mathbb{F}_{7} \times \mathbb{Z}_{9}$
			$\mathbb{F}_{4} \times \mathbb{F}_{4} \times \mathbb{Z}_{9}$
$2 \cdot 5 \cdot 7=70$	$\mathbb{F}_{4} \times \mathbb{Z}_{49}$		

4. Center and Median

4.1. Center. We begin this section with the following definition from [1].

Definition 4.1. Center : The set of vertices with minimum eccentricity of a graph G is called the center of G. It is denoted by $\operatorname{Center}(G)$.

Note that if R is a commutative ring with nonzero identity having n non-units, then maximal graph $\Gamma(R)$ has n vertices. As $\Gamma(R)$ may be a complete graph for some n, we have the following inequality:

$$
\begin{equation*}
1 \leq|\operatorname{Center}(\Gamma(R))| \leq n \tag{4.1}
\end{equation*}
$$

In the view of (6), the following question may arises:
Question 4.2. Given a positive integer n do there exist maximal graphs $\Gamma(R)$ of order n such that
(1) $|\operatorname{Center}(\Gamma(R))|$ attains the bounds in the Inequality (6)?
(2) $1<|\operatorname{Center}(\Gamma(R))|<n$?

Note that for any maximal graph $\Gamma(R)$ of order n, the following are equivalent:
(i) $|\operatorname{Center}(\Gamma(R))|=n$.
(ii) $\Gamma(R)$ is a complete graph.
(iii) R is a local ring.

Similarly, the following are equivalent:
(i) $|\operatorname{Center}(\Gamma(R))|=1$.
(ii) There exists exactly one vertex $v \in V((\Gamma(R)))$ such that $\operatorname{deg}(v)=$ $n-1$.
(iii) R is a reduced ring.

Therefore, for $1<|\operatorname{Center}(\Gamma(R))|<n, R$ must be a non-reduced and non-local ring.

If $n=p^{s}$, where p is prime and s is a positive integer, then by [5, Theorem 3], there exists a local ring R with maximal ideal of cardinality p^{s} and hence $|\operatorname{Center}(\Gamma(R))|=p^{s}$. If n is not a prime power, then there is no ring R with n non-units and $|\operatorname{Center}(\Gamma(R))|=n$.

In [6], it was shown that for $1 \leq n \leq 7500$, there always exist a reduced ring except $n \in\{2,1206,1210,1806,3342,5466,6462,6534,6546$, $7430\}$. Thus for $1 \leq n \leq 7500, n \notin\{2,1206,1210,1806,3342,5466,6462$, $6534,6546,7430\}$ there always exist ring R such that $\Gamma(R)$ is of order n and $|\operatorname{Center}(\Gamma(R))|=1$.

In general, we cannot say that there always exist a maximal graph whose center attains the value between the bounds, that is, there exists a non-reduced ring having n non-units. However, from the list given in Section 3, we conclude that there does not exist a ring R for which $\Gamma(R)$ is of order n and $1<|\operatorname{Center}(\Gamma(R))|<n$ for $n \in\{22,38,51,69,74,78,82,94,95\}$. Clearly, for all the rings R listed in Section 3, we have $1<|\operatorname{Center}(\Gamma(R))|<n$.
4.2. Median. Let G be a connected graph. For any vertex x of G, the status of x, is the sum of the distances from x to all the other vertices of G, and is denoted by $s(x)$, that is, $s(x)=\sum\{d(x, y): y \in V(G)\}$. The set of vertices with minimal status is called the median of the graph. If G has no edges, then we shall say the median of G is $V(G)$.

Although both the center and the median relate to the topic of centrality in a graph, they need not coincide. One can easily construct examples where the center is a proper subset of the median, or the median is a proper subset of the center. In general, finding the median of a graph is more involved than finding the center. However, the following theorem gives a relationship between the center and median, in the case of maximal graphs of finite commutative rings with identity.

Theorem 4.3. Let R be a finite commutative ring with nonzero identity. Then the median and center of $\Gamma(R)$ are equal.

Proof. Let $|V(\Gamma(R))|=n$. Then for any $x \in V(\Gamma(R)), s(x) \geq n-1$ as $\Gamma(R)$ is a connected graph. Also, for all $x \in J(R), s(x)=n-1$, and
for all $x \in V(\Gamma(R)) \backslash J(R), s(x) \geq n$. Since $\operatorname{Center}(\Gamma(R))=J(R)$, by [4, Proposition 2.8], the result follows.

Remark 4.4. Note that $\operatorname{Center}(\Gamma(R))=J(R)=\operatorname{Median}(\Gamma(R))$, by Theorem 4.3 and [4, Proposition 2.8].

Acknowledgements

The first author was supported by a grant from CSIR India, No. 09/045 (1142)/2011-EMR-I and the second author was supported by R \& D grant, University of Delhi, Delhi. The authors would like to thank the referee for the careful reading.

References

1. R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Springer, 2012.
2. M. Behboodi and R. Beyranvand, On the Structure of Commutative Rings with $p_{1}^{k_{1}} \cdots p_{n}^{k_{n}}\left(1 \leq k_{i} \leq 7\right)$ Zero-Divisors, Eur. J. Pure Appl. Math., (2) 3 (2010), 303-316.
3. A. Gaur and A. Sharma, Maximal graph of a commutative ring, Int. J. Algebra, (12) 7 (2013), 581-588.
4. A. Gaur and A. Sharma, Eulerian graphs and automorphisms of a maximal graph, Indian J. Pure Appl. Math., (2) 48 (2017), 233-244.
5. R. Gilmer, Zero-divisors in commutative rings, Amer. Math. Monthly, (5) 93 (1986), 382-387.
6. S. P. Redmond, Counting zero-divisors, In: Lee, J., ed. Commutative Rings: New Research. Hauppauge, NY: Nova Science Publishers, 2009.
7. S. P. Redmond, On zero-divisor graphs of small finite commutative rings, Discrete Math., 307 (2007), 1155-1166.

Arti Sharma

Department of Mathematics, University of Delhi, Delhi, India.
Email: anjanaarti@gmail.com

Atul Gaur

Department of Mathematics, University of Delhi, Delhi, India. Email: gaursatul@gmail.com

[^0]: MSC(2010): Primary: 13M99; Secondary: 05C99
 Keywords: Non-reduced ring, Jacobson radical, maximal graphs, center, median. Received: 17 April 2018, Accepted: 12 June 2018.
 $*$ Corresponding author .

