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SEMI n-ABSORBING IDEALS IN THE SEMIRING Z;
J. N. CHAUDHARI*, M. D. SURYAWANSHI AND D. R. BONDE

ABSTRACT. In this paper, all principal (m,n)-closed ideals and
principal semi n-absorbing ideals in the semiring of non-negative
integers are investigated.

1. INTRODUCTION

The concept of 2-absorbing ideals in a commutative ring R with 1 # 0
was introduced by Ayman Badawi [2] and extended to n-absorbing
ideals in R by Anderson and Badawi [3]. Chaudhari [!] introduced the
concept of 2-absorbing ideals in commutative semiring R with 1 # 0,
which is a generalization of prime ideals in R. All 2-absorbing ideals in
the semiring of non-negative integers are investigated by Chaudhari [5].
Chaudhari and Ingale [%] have introduced the notion of n-absorbing
ideals in commutative semiring R with 1 # 0 and investigated all
n-absorbing ideals in the semiring (Zg, gcd, lem) and all n-absorbing
principal ideals in the semiring of non-negative integers. Several other
authors used these concepts and some other relative concepts which are
generalizations of prime ideals. Anderson and Ayman Badawi [I] in-
troduced the concept of semi-n-absorbing ideal and (m, n)-closed ideal
in a commutative ring R with 1 # 0 which are generalizations of n-
absorbing ideals in R. Chaudhari and Ingale [7] have characterized
prime ideals, semi prime ideals, irreducible k-ideals and irreducible
principal T-ideals in the ternary semiring of non-positive integers. For
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the definition of semiring we refer [9]. We assume throughout that all
semirings are commutative with 1 # 0.

Denote the sets of all non-negative integers, positive integers and
non-negative real numbers respectively by Z¢, N and R;j. Then under
usual addition and multiplication of nonnegative integers, Z forms a
commutative semiring with identity 1 but it is not a ring.

In this paper we introduce the concept of (m,n)-closed ideal and
semi n-absorbing ideal in commutative semiring R with 1 # 0 and
study some generalizations of n-absorbing ideals in the semiring Z .

Throughout this paper we use the following notations:
alb(afb): adivides b (a does not divide b) where a,b € Z; .

{a): the principal ideal generated by a where a € Z .

(my,my, -+ ,my): the ideal generated by my, mo, - -+ ,my in Z7, where
my < mg < --- <my and m; { m; for all ¢ < j.

(my,ma, -+ ,my): the ged of my, my, -+ ,my, in Z§, where m; < my <
e <My,

[z];: the largest integer < x, where x € Ry .

[z]s: the smallest integer > z, where z € Ry

a1y - - @+ - - ay: the term a; is excluded from the product ajas -+ - a; - - - a,
If a € Z§ and a > 2, then a = pi'ph? - - p;* is the prime power fac-

torization (ppf) of a where py,po,- - - , pr are pair wise distinct primes,

r; >1, k>1and p;1 <ps <--+ < pp.

Definition 1.1. A proper ideal I of a semiring R is called semi-n-
absorbing ideal of R, if 2"*! € I implies 2" € I, where n € N,z € R.

Clearly an n-absorbing ideal of a semiring R is a semi-n-absorbing
ideal of R and a semi-1-absorbing ideal of R is just a semi prime ideal
of R. The following example shows that the converse is not true.

Example 1.2. Let [ = 18Z7 = (2-3%). Then I is a semi-2-absorbing
ideal of Z§ but not a 2-absorbing ideal of ZJ as 2x 3x 3 =18 € I and
2x3=6¢1,3x3=9¢1.

Example 1.3. Let [ = 47} = (4). Then [ is a semi-2-absorbing ideal
of Z§ but not a semiprime ideal of Z; as 22 =4 € T and 2 ¢ I.

Clearly an m-absorbing ideal of a semiring R is also an (n + 1)-
absorbing ideal of R but this may not be true for semi n-absorbing
ideals of R.

Example 1.4. Let I = 16Z¢ = (16). Then [ is a semi-2-absorbing
ideal of Z§ but it is not a semi 3-absorbing ideal of Zj as 2* =16 € I
and 25 =8 ¢ I.
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Now the following theorem gives a characterization of non-zero prin-
cipal semi n-absrobing ideals of the type (p*) where p is a prime number
and k € N, in the semirng Z .

Theorem 1.5. Let I = (p*) where p is a prime number and k € N.
Then I is a semi-n-absorbing ideal of Zg if and only if k = (n+1)a+r
where a,r are integers such that a > 0,1 <r <n anda-+r <n.

Proof. Let I = (p*) be a semi-n-absorbing ideal of ZJ, where p is a
prime number and k£ € N. By applying division algomthm to k and
n + 1 there exist integers a and r such that ¢« > 0, 0 < r < n and
k= mn+1a+r. Ifr=0,then £ = (n+ 1)a. Therefore a > 0
as k > 0 and n +1 > 0. Therefore (p?)"*! = (pntt)e = prthae —
p* € I and hence (p*)* = p™® € I, since I is semi-n-absorbing ideal.
It is a contradiction as n < n+ 1 = na < (n+ 1)a = k. Therefore
r# 0. Hence 1l < r <nandn+1< kask = (n+ 1)a+r.
Choose the smallest positive integer d such that p®™*Y € I. Now
(m+1)(a+1l)=Mn+1)a+(n+1)=k—r+n+l=k+n+1l—-r>k
asr <n<n-+1. Sochoose d=a+ 1. Now d = a + 1 is the smallest
positive integer such that p?™*Y ¢ I. That is (p®*!)"*! € I. Now
platr = (pat)m ¢ [ since I is a semi-n-absorbing ideal. Therefore
(a+1)n=na+n>k=(n+1)a+r and hence na+n > na+a—+r.
Therefore, n > a +r. Thus k = (n + 1)a + r where a,r are integers
such that a > 0,1 <r<nanda+r <n.

Conversely, suppose that k = (n+1)a+r, where a and r are integers
such that @ >0, 1 <r <n and a +7 < n. To show that I = (p*) is a
semi-n-absorbing ideal of Z§. Let 2" € I.

Case (I): @ = 0. Then k = r and hence 1 < k < n. Now, 2" €
I—<k>:>p|.7c. So p* | 2* and hence p* | 2" as k < n. Thus
a" e (pF) = I.
Case (I1): @ # 0. Then a > 0. Now we have p*|z" as 2"t € T = (pF).
If p*|x, then p¥|z™ and hence 2™ € I. Assume that p* { 2. Choose the
largest positive integer ¢ such that p’lz,1 < i < k. Then (n + 1)i is
the largest positive integer such that p™*Viz"*! Now z"*! € [ =
(p¥) = n+1 > k. Therefore (n + 1)i > n+ 1 > k. This implies
0>k—(n+1)i=M0m+La+r—(mn+1)i=m+1)(a—1)+r.
Therefore ¢ > a, since 1 < r <mn. Thus ¢ = a + b for some b > 1. Then
k= (n+1)a+r gives & = (Hletr _ matasr _ 4 atr < a+1 as
a+r <n. Since b > 1, we havez =a+b>a+1 > . Therefore
ni > k. Thus p™|z" as p'|lz and hence p*|z™ as ni > k. Thus 2" €
and hence [ is a semi-n-absorbing ideal. 0
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Definition 1.6. Let m,n € N. A proper ideal I of a semiring R is
called an (m,n)-closed ideal of R if ™ € I where x € R implies that
x" e l.

Thus an ideal I of a semiring R is a semi n-absorbing ideal of R if
and only if it is a (n+ 1, n)-closed ideal of R and I is a semiprime ideal
of R if and only if it is a (2, 1)-closed ideal of R. Clearly, every proper
ideal of R is an (m,n)-closed ideal for 1 < m < n. Thus we generally
assume that 1 < n < m. Clearly if I is an n-absorbing ideal of R, then
it is (m, n)-closed for every m € N.

Now the following theorem gives a characterization of non-zero prin-
cipal (m,n)-closed ideals of the type (p*) where p is a prime number
and k € N, in the semiring Z .

Theorem 1.7. Let [ = (p*) be an ideal in Z§, where p is a prime
number and k € N. Let 1 < n < m. Then I is an (m,n)-closed
ideal if and only if k = ma + r, where a,r € Z$,1 < r < n and
ac +r < n, where ¢ = m(modn). Further if a # 0, then m = n + ¢
where 1 <c<n-—1.

Proof. Let I = (p*) be an (m,n)-closed ideal, k € N and p is a prime
number. By division algorithm, k = ma +r,a € Z§ and 0 < r < m.

If r =0,a >0as k € N. Now (p*)™ = p™ = p* € I implies
(p¥)" € I, since I is an (m,n)-closed ideal. Therefore, p™® € I = (p*)
implies na > k a contradiction as n < m = na < ma = k. Therefore,
r # 0 and hence 1 < r < m — 1. Choose the smallest positive integer
d such that (pY)™ € I. Then m(a+1) =ma+m=k—r+m >k
as 7 < m. Also, ma < k as r > 0. Therefore ma < k < ma +m =
m(a + 1). Thus d = a + 1 is the smallest positive integer such that
pmath) = (pathym ¢ [ implies (p®*!)" € I as I is an (m,n)-closed
ideal. Therefore n(a + 1) = na +n > k = ma + r. This implies
n>ma+r—na=alm—n)+r>rasalm—n)>0. Thus1 <r <n.
Now, since n < m, by division algorithm, we have m = bn + ¢ where
b>1,0 <c<n—1. Therefore n > a(bn+c—n)+r = a(b—1)n+ac+r
where ac +r > 1. Since n > a(b— 1)n+ ac+r and ac+1r > 1, we
have a(b—1) = 0. For if a(b—1) # 0, b > 1, then ac +r > 1 implies
a(b—1)n+ac+r > a(b—1)n+1 and this implies n > a(b— 1)n + 1
which is not true. Thus a(b — 1) = 0 and hence n > ac + r where
¢ =m(modn). Nowifa #0,b—1=0. i.e. b=1. Thusm=n+c
wherea <c<n—-—1asn<m.

Conversely, assume that k = ma+r,a € Zsr, 1<r<nandactr <n
where ¢ = m(modn). Also, assume that if a # 0, then m = n+ ¢ where
1 <e¢<n-—1. To show that I is an (m,n)-closed ideal. Let 2™ € [
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Case (I): @ =0. Then k = 7,1 < r < n. Therefore 1 < k < n. Now,
z™ € I = (p*) = p|z as p is a prime number. Therefore p¥|z*. This
implies p*|2™ as k < n. Therefore 2™ € I.

Case (II): @ # 0. We have 2™ € I = (p*). So that p*|z™ implies p|z.
If p*|z, then p*|2"™ and hence 2™ € I. Assume that p* { 2. Choose
the largest positive integer 7 such that p‘|z,1 < i < k. Then mi is
the largest positive integer such that p™|z™. Therefore mi > k i.e.
0>k—mi=ma+r—mi= m(a—1i)+ r. Therefore a < ¢, thus
t = a + b for some integer b > 1. Now, k = ma +r and m = n+c¢
gives k = (n + ¢)a + r = na + ca + r. Therefore % =a+ T <a+1
as ca +r <n. Therefore i =a+b>a+1> % as b > 1. Therefore
ni > k. Now, p'|lz = p™|a" = pF|a™ as ni > k and hence 2™ € I = (p¥).
Therefore I is an (m, n)-closed ideal of Z . O

Theorem 1.8. Let I = (p*) be an ideal in Z, where p is a prime
number and k € N. Then following statements are equivalent:
(1) I is an (m,n)-closed ideal
(2) Ezxactly one of the following statemants holds
(i) 1<k<n,
(ii) There is a positive integer a such that k = ma+r = na+d
for integers v and d with 1 < r,d <n —1,
(iii) There is a positive integer a such that k = ma+r = n(a+1)
for an integer r with 1 <r <n —1.

Proof. (1) = (2) Suppose that I is an (m,n)-closed ideal of Z;. Then
by Theorem 1.7, k = ma-+r, where a,r € Z$,1 <r < nand ac+r < n,
where ¢ = m(modn). Further if a # 0, then m = n + ¢ with 1 < ¢ <
n—1.

Thus, if a = 0, then & = r and thus 1 < k& < n. This proves (7).

If a # 0,a > 0 and k = ma + r. Also, since ¢ = m(modn),c # 0 as
n<m. Nextac+r <n,1 <r<n. Now,k=ma+rand m=n-+c
=k=(Mn+ca+r=na+ca+r =na+dwhered=ac+r <n.If
d < n,then k = ma+r =na+d with 1 <r,d <n — 1. This proves
(17).

Now if d = n, then k = ma+r =na+n =n(a+1) with1 <r <n-—1.
This proves (iii).

(2) = (1) First suppose that 1 < k < n. Let 2™ € (p¥) = I. Therefore
prla™ = plx = pkla™ as k < n. Therefore 2™ € (p*) = I, and hence [
is an (m, n)-closed ideal of Z .

Now, suppose that @ > 1 such that k =ma+r=na+d,1 <r,d <
n—1. Then ma = na+d—r orm =n+ (%) = n+c, where ¢ = ( —
is an integer with 1 <c¢<n—1. Thus, m=n+cwith1 <c<n-—1.
Therefore by Theorem 1.7, I is (m, n)-closed ideal of Z .

|g|
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Finally, suppose that there is an integer a > 1 such that k = ma+r =
n(a+ 1), where 1 <r <n—1. Now,m:%:n—i-%:n—kc
for an integer c = == < n —1 as a > 1 and hence by theorem 1.7, [ is
an (m,n)-closed ideal. O

Now we give the following lemma which will be used in the subse-
quent theorem.

Lemma 1.9. Intersection of finite number of (m,n)-closed ideals in
the semirng R is an (m,n)-closed ideal.

Proof. Trivial. O

Now the following theorem gives a characterization of non-zero prin-
cipal (m,n)-closed ideals in the semiring Z .

Theorem 1.10. Let I = (pi‘p...p;*) be an ideal in Z and let 1 <
n < m,where n,m € N, py,po, ..., pr_are prime numbers such that p; <
P2 < -+ < pg and ry,ro, ..., are positive integers. Then the following
statements are equivalent:

(1) I is an (m,n)-closed ideal of Zg,

(2) <p§j) is an (m,n)-closed ideal of Z§ , for every 1 < j < k.

Proof. (1) = (2)
Suppose that I is an (m, n)-closed ideal of Zg . Let 2™ € (p;’) where
r€Zi. Lety = xp?p?...p;j...pzk. Then y™ = 2™ <p7{1p72"2...p§j...p2’“) €

I. Since I is an (m, n)-closed ideal, 4" € I. Therefore 2" <p’1”1p§2...p§j...p;’“> €

I = (pi'p2..pif) = pi'p..pf | =™ (p?p?...p;j...pzk) = p;j\:v" =
" e (p?) Therefore (p;j> is an (m,n)-closed ideal, 1 < j < k.
2) = (1 |

Now suppose that each (p?} is an (m,n) closed ideal of Zj, 1 < j <
k. By Lemma 1.9, (pi*) N (p5?) N...N(p}*) is an (m, n)-closed ideal and
hence I = (pi'ph2...p*) is an (m,n)- closed ideal of Z . O

Lemma 1.11. Let I be a semi-n-absorbing ideal in the semiring Zg .
If a € Zg and m is the smallest positive integer such that a™ € I, then
meN\{rn+t:r>11<t<r}.

Proof. Let I be a semi-n-absorbing ideal in the semiring Z;. Let a €
Zg and m be the smallest positive integer such that a™ € I. Suppose
that m € {rm+t:r > 1,1 <t < r}. Now a™ € I. Therefore,
m=rn+tforsomer >1land1<t<r. Sorn+t<rn-+r. Now
a"™) ¢ [ as a’™* € I. Since I is a semi n-absorbing ideal a™ € I,
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a contradiction to rn < rn +t = m and m is the smallest such that
a”€l. Hencem e N\ {rn+t:r>1,1<t<r}. O

Lemma 1.12. Let [ = (a™) be a principal ideal in the semiring Z§ . If
I is a semi n-absorbing ideal, then m € N\ {rn+t:r>1,1 <t <r}.

Proof. Since m is the least positive integer such that " € I, by Lemma
111, me N\ {rn+t:r>1,1 <t <r}. O

Corollary 1.13. Let I be a semi-3-absorbing ideal in the semiring Z .
If a € Z§ and m is the smallest positive integer such that a™ € I, then
m € {1,2,3,5,6,9}.

Proof. Let I be a semi-3-absorbing ideal in the semiring Z. Let a € Z
and m be the smallest positive integer such that a™ € I. Suppose that
m ¢ {1,2,3,5,6,9).

Case i): m = 4. Now a* € I but a® ¢ I, a contradiction.

Case ii): m = 7. Now a” € I. Then a'? = (a®)* € I but (a®)® ¢ I, a
contradiction.

Case iii): m = 8. Now a® = (a*)* € I but (a?)® = a® ¢ I, a contradic-
tion.

Case iv): m = 10. Now a'® € I. Then @° € I, a contradiction.

Case v): m = 11. Now a'! € I. Then a'? = (a®)* € I but (a®)® ¢ I, a
contradiction.

Case vi): If m > 12 and 4 | m, then m = 4t for some t > 3. Take
b=a% =a". Nowb* = (a%) =am el =P =(a%)P=a% €las ]
is a semi-3-absorbing ideal, a contradiction, since 3Tm < m.

Case vii): m > 12 and 4 { m, then m = 4t +r with r = 1,2,3, ¢t > 3.
Clearly, [%], = t Take b = a'*'. Now b* = (a'™)* = o € I =
b = (a'*1)? = a3 € [ as I is a semi-3-absorbing ideal, a contradic-
tion, since 3(t + 1) < m. O

Theorem 1.14. Let I = (p™) be an ideal in the semiring Zs where p
1s a prime number and m € N. Then I is a semi-n-absorbing ideal if

and only if [%L = [nﬂﬂ}s

Proof. First suppose that [%]S = [nﬂﬂ]s Let 2"*! € I for some x €

Z&. Now p™ | 2", Therefore p | ™! as p is a prime number. Choose
largest r € N such that p” | x. Then z = p"y where y € ZJ and y is
relatively prime to p. Now p™ | 2" = p™ | (p"y)"™ = m <r(n+1)
= L <r= [nﬂﬂ}s < 7. Now 2 < [2] = [nﬂﬂ}s < r. Therefore
m < rn. Therefore p™ | (p"y)™. Now p™ | 2. Hence [ is an semi n-
absorbing ideal. Conversely, suppose that [ is an semi n-absorbing ideal

and suppose that [%]S > [nﬂﬂ}s Take b = [nﬂﬂ}s and v = p®. Now
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<] =b=m < (b=t e Now [2] < [2] =

b+1= [n’il]s—i—l < [%}S and bn + n < [%]Sn<m—l—n. This shows

that bn < m, so p™ { 2", a contradiction to I is an semi n-absorbing
ideal. Hence [%} = [ﬂ] . 0J
s n+llg

Theorem 1.15. Let I = (a) be an ideal in the semiring Z; and
Py - -pt be the ppf of a. Then I is a semi-n-absorbing ideal if
and only if [%]S = [ L ]S for all i.

n-+

Proof. First suppose that [%L = [nT—HL for all i. Let "' € I for some
x € Zg. Now pi'py - --pi | 2™ = pipo - py [ 2™ = pi | @, po |
-+« pg | x as each p; is a prime number. Therefore x = pf1p§2 = -pf’“ -
for some y € Zg such that y is relatively prime to each p;. Now a | 2!

= pipR o | (0P )T S < (1B = S5 < B =

[nr—il}s < B, for all 2. Now = < [%]S = [n’_’il}s < B;. Therefore
r; < np;, for all i. Therefore pi'py*...p}t (pflp'g?...p’g’“ -y)". Now
a | ™. Hence I is an semi n-absorbing ideal. Conversely suppose that

I is an semi n-absorbing ideal and suppose that [%]s > [nfil}s for

some i. Take b; = [n+1]s and z = p [1p;. Now Lo < [n’“—HL = b
J#

implies r; < (n + 1)b;, and hence 2" € I. Now [n’:ﬁl}s < [%]S —

bi+1 = [Z5] +1 < [%] and bn +n < [%] n < r; +n This
shows that bn < r;, so pi'py?---piF 1 2™, a contradiction to I is an
semi n-absorbing ideal. Hence [%]5 = [n”—H]s for all i. 0

Theorem 1.16. Let I be an ideal of the semiring Zg and I = (p™)
where p 1s a prime number and m € N. Then I is a semi n-absorbing
ideal if and only if m e N\ {rn+t:r>1,1<t<r}.

Proof. Let I be a semi n-absorbing ideal of Z; and I = (p™) where p
is a prime number and m € N. By Lemma 1.12, m € N\ {rn + ¢ :
r>1,1 <t <r}. Conversely, let I = (p™) where m € N\ {rn+1¢:
r>1,1<t<r} Ifm=1,23,---n, then I is a n-absorbing ideal
(Theorem 2.5, [8]) and hence it is a semi n-absorbing ideal. Now assume
that m = r'n+ ¢ where 1 <7 <n—1and r'n <t < (' + 1)n. Then
[%L =r+1= [nﬂﬂ}s and hence I is a semi n-absorbing ideal of

O]
Theorem 1.17. (Theorem 2.4, [6]) Let I be a non-zero principal ideal
in the semiring Zg. Then I is an irreducible ideal if and only if I =
(p™) for some prime number p and some m € N.
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From Theorem 1.16 and Theorem 1.17, we have the following corol-
lary in which a characterization of principal irreducible semi n-absorbing
ideals in the semiring Zg is obtained.

Corollary 1.18. Let I be a non-zero principal ideal in the semiring
Zg. Then following statements are equivalent:

1) I is irreducible and semi n-absorbing ideal;
2) I = (p™) for some prime number p where m € N\ {rn+t:r >
1,1 <t<r}.

Now the following Theorem gives a characterization of principal semi
n-absorbing ideals in the semiring Z .

Theorem 1.19. A principal ideal I of Zg is semi n-absorbing if and
only if I = {0} or I = (m) where m = pi*p4? - - - pi* is the ppf of m and
ri € N\ {rn+t:r>1,1<t<r} foralli.

Proof. Let I be a principal semi n-absorbing ideal of ZS and I # {0}.
Let I = (m) where m = pi'p5?---p,* is the ppf of m. Suppose that
ri ¢ N\{rn+t:r>1,1 <t <r} for some i. We may assume that
g N\{rn+t:r>1,1<t<r}

Case i): 11 = rn+t where 1l <r <nm—1and 1 <t < r. Now
a = pitpy? - -pr € Z is such that a"™ € I but a" ¢ I, a contradic-
tion.

Case ii): n* <r; < n(n+1). Now a = pi'py? - - pi* € Zg is such that
a1 = (g™ e I but (a")* = o ¢ I, a contradiction.

Case iii): If r; > n(n+1) and (n + 1) | ry, then 1 = (n + 1)t. Now
a = pipy?---p* € Z is such that a"™ € I but a™ ¢ I, a contradiction.
Caseiv): If r; > n(n+1) and (n+1) { ry, then r = (n+ 1)t 4 r where
1 <r<nandt>n. Clearly [-75]; = t. Now (n+1)([-25]i+1) = (n+

+1 n+1
D(t+1) = (n+1)t+(n+1) > rand n([;25i+1) = n(t+1) = nt+n <
"

nt+t+1=(n+1)t+1<ry;. Thena = 10[1"“h+1pg2 ---pik € Z¢ is such

that a1 — (p[ln%l]l“)nﬂpgnﬂ)m .. .pl(c”+1)7“k — pgnﬂ)([n%]l“)pgnﬂ)rz
(n+1)ry I 1 1 1 b n __ [n%lh"'l n, nro nry

"D € Ias (n+1)([;55]+1) > ri but a” = (p )"ps"? e py

n "1

— pl(["+1]l+1)pg”2 cooprt T as n([n’il]l—l—l) < r1, a contradiction. Thus

in any case we get a contradiction. Hence r; € N\ {rn+1¢:1<r <
n—1,1 <t <r} foralli. Conversely, if I = {0}, then clearly I is a semi

n-absorbing ideal. Now suppose that I = (m) where m = pi'p5* - - - pi*

is the ppfof mand r; e N\ {rn+t:1<r <n—-1,1 <t <r} for all
i. Ifr;p € {1,2,3,---n}, then [%]S =1= [nT—HL Now we may assume
that r; = In+m where 1 <[ <n—1landl+1<m < (l+1)m.
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Then [r—n’L =[+1= [nT—;JS Thus [%L = [nr—il]s for all 7 and hence

by theorem 1.14, I is a semi n-absorbing ideal of R. U
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