ARENS REGULARITY AND DERIVATIONS OF HILBERT MODULES WITH THE CERTAIN PRODUCT

A. SAHLEH * AND L. NAJARPISHEH

Abstract. Let A be a C^*-algebra and E be a left Hilbert A-module. In this paper we define a product on E that making it into a Banach algebra and show that under the certain conditions E is Arens regular. We also study the relationship between derivations of A and E.

1. Introduction and preliminaries

The notion of Hilbert C^*-module is a natural generalization that of Hilbert space arising by replacing of the field of scalars \mathbb{C} by a C^*-algebra. For commutative C^*-algebras, such generalization was described for the first time in the work of I. Kaplansky [6] and the general theory of Hilbert C^*-modules appeared in the basic papers of W. L. Paschke [10] and M. A. Rieffel [11]. Let us recall these notions with more details.

Let A be a C^*-algebra and E be a linear space which is a left A-module with a compatible scalar multiplication. The space E is called a left pre-Hilbert A-module if there exists an A-valued inner product $E\langle \cdot, \cdot \rangle : E \times E \rightarrow A$ with the following properties:

(i) $E\langle x, x \rangle \geq 0$ and $E\langle x, x \rangle = 0$ if and only if $x = 0$;
(ii) $E\langle \lambda x + y, z \rangle = \lambda E\langle x, z \rangle + E\langle y, z \rangle$;
(iii) $E\langle a.x, y \rangle = a E\langle x, y \rangle$;
(iv) $E\langle x, y \rangle^* = E\langle y, x \rangle$ for all $x, y, z \in E, a \in A, \lambda \in \mathbb{C}$.

MSC(2010): Primary: 46L08; Secondary: 46H20, 46H25
Keywords: C^*-algebra, Hilbert C^*-module, Banach algebra, Arens regular, derivation.
Received: 31 July 2013, Accepted: 27 October 2013.
*Corresponding author.
From the validity of a useful version of the classical Cauchy-Schwartz inequality it follows that \(||x|| = \|\mu(x,x)\|^\frac{1}{2} \) is a norm on \(E \) making it into a normed left \(A \)-module [7]. The left pre-Hilbert module \(E \) is called left Hilbert \(A \)-module if it is complete with respect to the above norm. One interesting example of left Hilbert \(C^* \)-modules is any \(C^* \)-algebra \(A \) as a left Hilbert \(A \)-module via \(_A(a,b) = ab^*(a,b \in A) \).

The left Hilbert \(A \)-module \(E \) is called full if the closed linear span \(\langle E, E \rangle \) of all elements of the form \(\mu(x,y) \) \((x,y \in E)\) is equal to \(A \). Likewise, a right Hilbert \(A \)-module with an \(A \)-valued inner product \(\langle \cdot , \cdot \rangle_E \) can be defined. The reader is referred to [7] for more details on Hilbert \(C^* \)-modules.

For a normed space \(X \), we denote by \(X' \) the topological dual of \(X \). Now, let \(X, Y \) and \(Z \) be normed spaces and let \(f : X \times Y \to Z \) be a bounded bilinear map. In [2], R. Arens showed that \(f \) has two natural but different extensions \(f'' \) and \(f^{'''r} \) from \(X'' \times Y'' \) to \(Z'' \). The adjoint \(f' : Z' \times X \to Y' \) of \(f \) is defined by \(< f'(z',x), y > \geq < z', f(x,y) > \) for all \(x \in X, y \in Y, z' \in Z' \), which is also a bounded bilinear map. By setting \(f'' = (f')' \) and continuing in this way, the mapping \(f'' : Y'' \times Z' \to X' \), \(f''' : Y''' \times Z' \to X' \) may be defined similarly.

We also denote by \(f' \) the reverse map of \(f \), that is, the bounded bilinear map \(f' : Y \times X \to Z \) defined by \(f'(y,x) = f(x,y) \) for all \(x \in X, y \in Y \), and it may be extended as above to \(f''' : X'' \times Y'' \to Z'' \).

The map \(f \) is called Arens regular when the equality \(f''' = f^{'''r} \) holds. Two natural extensions of the multiplication map \(\pi : X \times X \to X \) of a Banach algebra \(X \), \(\pi'' \) and \(\pi^{'''r} \), are actually the so-called first and second Arens products, which will be denoted by \(\Box \) and \(\Diamond \), respectively. The Banach algebra \(X \) is said to be Arens regular if the multiplication map \(\pi \) is Arens regular. For example \(L^1(G) \) is Arens regular if and only if \(G \) is finite [13].

A derivation of an algebra \(A \) is a linear mapping \(D \) from \(A \) into itself such that \(D(ab) = D(a)b + aD(b) \) for all \(a, b \in A \). For a fixed \(b \in A \), the mapping \(a \mapsto ba - ab \) is clearly a derivation, which is called an inner derivation implemented by \(b \).

Throughout this paper \(A \) denotes a \(C^* \)-algebra. We recall that every Hilbert module is a Banach space but the algebraic properties of Hilbert modules are our interesting subject. So in this note we utilize the \(A \)-valued inner product of Hilbert module \(E \) and define a product on \(E \) that making it into a Banach algebra. Our goal is finding the conditions under which \(E \) is Arens regular. We also study derivations of \(E \) and give some conditions under which innerness of derivations on \(A \) implies the innerness of derivations on \(E \) and vice-versa. Finally we
give a necessary and sufficient condition under which every derivation of \(C(X, H) \) is zero.

2. Arens regularity of Hilbert modules

In this section we introduce a product on a left Hilbert \(A \)-module that making it into a Banach algebra and study Arens regularity of this Banach algebra.

Let \(E \) be a left Hilbert \(A \)-module, and let \(e \) be an arbitrary element in \(E \) with \(||e|| = 1 \). Then by a direct calculation the map \(\pi_e : E \times E \rightarrow E \) defined by \(\pi_e(x, y) = \langle x, e \rangle y \) is a product on \(E \) that making it into a Banach algebra. We denote this Banach algebra by \((E, \pi_e)\).

Example 2.1. Let \(X \) be a compact Hausdorff space and \(H \) be a Hilbert space. Then \(E = C(X, H) \), the space of all continuous \(H \)-valued functions on \(X \), is a Banach space and it is a left Banach \(C(X) \)-module with the module action defined by \(\pi_l(f, \Lambda) (x) = f(x) \Lambda(x) \) for all \(f \in C(X), \Lambda \in E, x \in X \). Also we define a \(C(X) \)-valued inner product \(\langle \ldots \rangle \) on \(E \) by \(\langle \Lambda, \Gamma \rangle (x) = \langle \Lambda(x), \Gamma(x) \rangle \) for all \(\Lambda, \Gamma \in E, x \in X \). It is easy to verify that \(E \) is a left \(C(X) \)-Hilbert module.

Now let \(h \) be an arbitrary element of Hilbert space \(H \) with \(||h|| = 1 \). The map \(\Lambda_0 : X \rightarrow H \) defined by \(\Lambda_0(x) = h \) for all \(x \in X \) is a continuous \(H \)-valued function on \(X \), therefore we have \(\Lambda_0 \in E \) and it is easy to see that \(\epsilon(A_0, A_0) = I_{C(X)} \). So \(\pi_\Lambda_0 \) is a product on \(E \) that making it into a Banach algebra denoted by \((E, \pi_\Lambda_0)\).

Theorem 2.2. [8] For a bounded bilinear map \(f : X \times Y \rightarrow Z \) the following statements are equivalent:

(i) \(f \) is regular;
(ii) \(f'''''''' = f''''''' \);
(iii) \(f''''''''(Z', X'') \subseteq Y'' \);
(iv) the linear map \(x \mapsto f'(z', x) : X \rightarrow Y' \) is weakly compact for every \(z' \in Z' \).

Theorem 2.3. Let \(E \) be a left Hilbert \(A \)-module and let for all \(x' \in E' \) the bounded linear map \(T_{x'} : A \rightarrow E' \) defined by \(T_{x'}(a) = \pi_l'(x', a) \) be weakly compact. Then the Banach algebra \((E, \pi_e)\) is Arens regular.

Proof. Let \(\varphi : E \rightarrow A \) be defined by \(\varphi(x) = \epsilon(x, e) \), then \(\varphi \) is a bounded linear map and let \(\pi_l : A \times E \rightarrow E \) be the left module action of \(A \) on \(E \), thus \(\pi_e(x, y) = \pi_l(\varphi(x), y) \). Now suppose that \(x, y \in E, x' \in \ldots \)
\[E', x'' \in E'' \]. So we have:
\[
< \pi'_e(x', y) > = < x', \pi_e(x, y) > = < x', \pi_i(\varphi(x), y) > = < \pi_i'(x', \varphi(x)), y > .
\]
\[
< \pi''_e(x'', x'), x > = < x'', \pi'_e(x', x) > = < x'', \pi_i'(x', \varphi(x)) > = < \pi_i''(x'', x'), \varphi(x) > = < \varphi(\pi_i''(x'', x')), x > .
\]
\[
< \pi'''_e(x'', y''), x' > = < \pi''_e(y'', x''), x' > = < \pi''_e(y'', \varphi(x''), x') > = < \varphi(\pi''_e(y'', \varphi(x''), x')), x > .
\]

Therefore \(\pi'''_e(x'', y'') = \pi''_e(\varphi(x''), y'') \) (1). Now
\[
< \pi'_e(x', y) > = < x', \pi_e(y, x) > = < x', \pi_i(y, x) > = < \pi_i'(x', y) > = < \varphi^*(x''), \pi''_e(y'', x') > = < \pi_i''(\varphi^*(x''), y''), x' > .
\]
\[
< \pi'''_e(x'', y''), x' > = < \pi'''_e(y'', x''), x' > = < \pi'''_e(y'', \varphi^*(x''), x') > = < \varphi^*(\pi'''_e(y'', \varphi^*(x''), x')), x > .
\]

So we have \(\pi'''_e(x'', y'') = \pi'''_e(\varphi^*(x''), y'') \) (2).

Now, since for all \(x' \in E' \) the bounded linear mapping \(a \rightarrow \pi_i'(x', a) \) from \(A \) to \(E' \) is weakly compact, so applying Theorem (2.2) for \(\pi_i \) shows that \(\pi_i \) is regular, and finally by (1), (2) we have \(\pi'''_e(x'', y'') = \pi'''_e(\varphi^*(x''), y'') \) for all \(x'', y' \in E'' \), thus \((E, \pi_e) \) is Arens regular.

Example 2.4. Let \(Y \) be a Banach space and \(X \) be a compact Hausdorff space. Then \(C(X, Y) \), the space of all continuous \(Y \)-valued functions on \(X \), is a Banach space and \(M(X, Y) \), the Banach space of all countably additive \(Y \)-valued measures with regular finite variation defined on the Borel \(\sigma \)-algebra \(B_X \) of \(X \), is the topological dual of \(C(X, Y) \) [3].
In particular when H is a Hilbert space $\mathcal{M}(X, H)$ is the topological dual of $C(X, H)$. It is proved that if Y^* is weakly sequentially complete then $\mathcal{M}(X, Y^*)$ is weakly sequentially complete [12]. Now since the Hilbert spaces are reflexive, so the topological dual of $C(X, H)$ is weakly sequentially complete, therefore by [1, Theorem 4.2] we have for all $x' \in E'$ the bounded linear mapping $a \mapsto \pi'_i(a')$ from A to E' is weakly compact. Thus applying the above Theorem shows that $(C(X, H), \pi_{\Lambda_0})$ is an Arens regular Banach algebra.

Definition 2.5. Let E be a left Hilbert A-module and e be an arbitrary element in E with $||e|| = 1$. We define the set $A_e := \{ _e\langle x, e \rangle : x \in E \}$.

It is easy to verify that A_e is a left ideal in A, but it is not closed in general. Indeed, let $A = \{ f : [0, 1] \rightarrow \mathbb{C} : f \text{ is continuous} , f(1) = 0 \}$. Then, $f : [0, 1] \rightarrow \mathbb{C}$ defined by $f(x) = x - 1$ is an element of A and $A_f = \{ A\langle g, f \rangle : g \in A \} = \{ gf^* : g \in A \}$ is not closed, because $f \in \overline{A_f}$ and $f \notin A_f$.

Now we give some conditions under which A_e is a closed ideal in A. For instance if e be a element of E such that $_e\langle e, e \rangle = 1_A$ then $A_e = A$, because for all $a \in A$ we have $a = a1_A = a _e\langle e, e \rangle = _e\langle a.e, e \rangle$.

The following definition of a Hilbert bimodule is originally due to Brown, Mingo and Shen [4].

Definition 2.6. Let E be an A-bimodule. E is said to be a Hilbert A-bimodule, when E is a left and right Hilbert A-module and satisfies the relation $_e\langle x, y \rangle.z = x. _e\langle y, z \rangle$.

Proposition 2.7. Let A be unital and E be a Hilbert A-bimodule. If e be an element of E such that $ _e\langle e, e \rangle \in Inv(A)$ then A_e is closed.

Proof. Let $b \in \overline{A_e}$, then there exists a sequence $(x_n)_{n \in \mathbb{N}} \subseteq E$ such that $ _e\langle x_n, e \rangle$ convergence to b. Thus the sequence $(_e\langle x_n, e \rangle)_{n \in \mathbb{N}} \subseteq A$ is Cauchy. Now we have:

$$||x_n - x_m|| = ||(x_n - x_m) _e\langle e, e \rangle _e\langle e, e \rangle^{-1}||$$

$$\leq ||x_n. _e\langle e, e \rangle - x_m. _e\langle e, e \rangle|| || _e\langle e, e \rangle^{-1}||$$

$$= || _e\langle x_n, e \rangle.e - _e\langle x_m, e \rangle.e|| || _e\langle e, e \rangle^{-1}||$$

$$\leq || _e\langle x_n, e \rangle - _e\langle x_m, e \rangle|| || _e\langle e, e \rangle^{-1}||.$$

So the sequence $(x_n)_{n \in \mathbb{N}} \subseteq E$ is Cauchy and by the completeness of E there exists an element $x \in E$ such that x_n convergence to x. Now by continuity of A-valued inner product we conclude that $ _e\langle x_n, e \rangle$ convergence to $ _e\langle x, e \rangle$. Thus $b = _e\langle x, e \rangle$ and A_e is closed. \qed

The following useful Proposition is well-known and its proof is straightforward.
Proposition 2.8. Let X and Y be Banach algebras and T be a continuous homomorphism from X onto Y. If X is Arens regular then Y is.

Theorem 2.9. Let A be unital and E be a Hilbert A-bimodule, $||e|| = 1$ and $\langle e, e \rangle_E \in \text{Inv}(A)$. Then the Banach algebra (E, π_e) is Arens regular.

Proof. In Proposition (2.7) we saw that under the above conditions A_e is a closed ideal in A. Now since A is Arens regular so A_e is. We define the map $T : A_e \rightarrow (E, \pi_e)$ by $T(e(x, e)) = x$ for all $x \in E$. T is well-defined because if $e(x, e) = e(y, e)$ we have:

\[
x - y = (x - y)(e(x, e)e^{-1}_E)
= ((x - y)(e(x, e)))(e(x, e)e^{-1}_E)
= (e(x, e)(x - y)(e(x, e)).e)(e(x, e)e^{-1}_E).
\]

And T is continuous because

\[
||x_n - x|| = ||(x_n - x)(e(x, e)e^{-1}_E)||
\leq ||(x_n - x)(e(x, e)e^{-1}_E)||||e(x, e)e^{-1}_E||
= ||e(x_n - x, e)||||e(x, e)e^{-1}_E||
\leq ||e(x_n - x, e)||||e(x, e)e^{-1}_E||.
\]

It is easy to see that T is linear. So it is enough that we show that T is multiplicative

\[
T(e(x, e)e(y, e)) = T(e(x, e)(y, e)) = e(x, e)y
= \pi_e(x, y)
= \pi_e(T(e(x, e)), T(e(y, e))).
\]

By Proposition (2.8) since T is onto, the Banach algebra (E, π_e) is Arens regular.

3. Derivations of (E, π_e)

Let E be a left Hilbert A-module, and let e be an element in E with $||e|| = 1$ and (E, π_e) be the Banach algebra introduced in previous section.

Lemma 3.1. Let E be a full Hilbert A-module and let $a \in A$. Then $a = 0$ if and only if $x.a = 0$ for all $x \in E$ [9].

Theorem 3.2. Let A be unital and E be a left Hilbert A-module and let $D : A \rightarrow A$ and $\delta : (E, \pi_e) \rightarrow (E, \pi_e)$ be derivations of Banach algebras such that $\delta(a.x) = D(a).x + a.\delta(x)$. Suppose that δ is inner implemented by y, then
(i) if E is full then D is inner.
(ii) if A is unital and there exists $z \in E$ such that $\langle _{E}z,y \rangle \in \text{Inv}(A)$, then D is inner.

Proof. Let a be an arbitrary element of A. Then for all $x \in E$, $\delta(ax) = D(a).x + a.\delta(x)$. So for all $x \in E$

\[
D(a).x = \delta(ax) - a.\delta(x) = \pi_{c}(y,ax) - \pi_{c}(ax,y) - ax(\pi_{c}(y,x) - \pi_{c}(x,y)) = \langle _{E}y,e \rangle .(a.x) - \langle _{E}a.x,e \rangle .y - a.\langle _{E}y,e \rangle .x - \langle _{E}x,e \rangle .y = \langle _{E}y,e \rangle .a.x - \langle _{E}a.x,e \rangle .y - a.\langle _{E}y,e \rangle .x + a.\langle _{E}x,e \rangle .y = \langle _{E}y,e \rangle .a.x - a.\langle _{E}y,e \rangle .x.\]

Hence $D(a).x = (\langle _{E}y,e \rangle .a - a.\langle _{E}y,e \rangle)x$ for all $x \in E$.

(i) Since for all $x \in E$ we have $(D(a) - (\langle _{E}y,e \rangle .a - a.\langle _{E}y,e \rangle))x = 0$ and E is full, applying Lemma (3.1) for left Hilbert modules shows that $D(a) = \langle _{E}y,e \rangle .a - a.\langle _{E}y,e \rangle$ and D is an inner derivation implemented by $\langle _{E}y,e \rangle$.

(ii)Since for all $x \in E$ in particular for z, $D(a).x = \langle _{E}y,e \rangle .a.x - a.\langle _{E}y,e \rangle .x$, we conclude that $\langle _{E}D(a).z,y \rangle = \langle _{E}(\langle _{E}y,e \rangle .a - a.\langle _{E}y,e \rangle).z,y \rangle$ and so $D(a).\langle _{E}z,y \rangle = (\langle _{E}y,e \rangle .a - a.\langle _{E}y,e \rangle)\langle _{E}z,y \rangle$. Now since $\langle _{E}z,y \rangle \in \text{Inv}(A)$ we obtain that $D(a) = \langle _{E}y,e \rangle .a - a.\langle _{E}y,e \rangle$. Thus D is an inner derivation implemented by $\langle _{E}y,e \rangle$.

\[\square\]

Theorem 3.3. Let E be a Hilbert A-bimodule, $\langle e,e \rangle _{E} \in \text{Inv}(A)$ and all derivations of A_{e} be inner, then every derivation of (E,π_{e}) is inner.

Proof. Let δ be an arbitrary derivation of (E,π_{e}). We define the mapping D on A_{e} by $D(\langle _{E}x,e \rangle) = \langle _{E}\delta(x),e \rangle$ for all $x \in E$. It is easy to verify that D is linear, also for all $x,y \in E$ we have:

\[
D(\langle _{E}x,e \rangle \langle _{E}y,e \rangle) = D(\langle _{E}(\langle _{E}x,e \rangle ,y,e) \rangle) = \langle _{E}\delta(\langle _{E}x,e \rangle ,y,e) \rangle = \langle _{E}\delta(\pi_{e}(x,y)),e \rangle = \langle _{E}\pi_{e}(\delta(x),y) + \pi_{e}(x,\delta(y)),e \rangle = \langle _{E}\delta(x),y,e \rangle + \langle _{E}(\delta(x),e),y,e \rangle = D(\langle _{E}x,e \rangle)\langle _{E}y,e \rangle + \langle _{E}x,e \rangle D(\langle _{E}y,e \rangle).\]

So D is a derivation of A_{e} and since every derivation $D : A_{e} \rightarrow A_{e}$ is inner, there exists $t \in E$ such that $D(\langle _{E}x,e \rangle) = \langle _{E}(\delta(x),e) - \langle _{E}(\pi_{e}(t,x) - \pi_{e}(x,t),e) \rangle .e = 0$. Now since E is a Hilbert bimodule
we have \(\delta(x) - (\pi_e(t, x) - \pi_e(x, t)) \). \(\langle e, e \rangle_E = 0 \) and by invertibility of \(\langle e, e \rangle_E \) we conclude that \(\delta(x) = \pi_e(t, x) - \pi_e(x, t) \) and \(\delta \) is inner. \(\square \)

If in the above theorem we add the conditions under which \(A = A_e \), for example \(\langle e, e \rangle = 1_A \), then we obtain relationship between \(A \) and \(E \).

Now suppose that \(X \) is a compact Hausdorff space and \(H \) is a Hilbert space. For \(E = C(X, H) \) and \(\Lambda_0 \) in Example (2.1) we have \(\langle \Lambda_0, \Lambda_0 \rangle = 1_{C(X)} \), so for every \(f \in C(X) \) we have \(f = f \langle \Lambda_0, \Lambda_0 \rangle = \langle f, \Lambda_0, \Lambda_0 \rangle \). Thus \(C(X) = \{ \langle \Lambda, \Lambda_0 \rangle : \Lambda \in E \} \). Also we notice that \(\Lambda_0 \) is a left unit for Banach algebra \((E, \pi_{\Lambda_0}) \). So we have:

Theorem 3.4. Every derivation of \((C(X, H), \pi_{\Lambda_0}) \) is zero if and only if \(\Lambda_0 \) is unit element of \((C(X, H), \pi_{\Lambda_0}) \).

Proof. Let \(d \) be an arbitrary derivation of Banach algebra \((E, \pi_{\Lambda_0}) = (C(X, H), \pi_{\Lambda_0}) \). We define the mapping \(D \) on \(C(X) \) by \(D_{\langle \Lambda, \Lambda_0 \rangle} = \langle \delta(\Lambda), \Lambda_0 \rangle \) for all \(\Lambda \in E \). With the same proof of the above Theorem we have \(D \) is a derivation of \(C(X) \). Now since \(C(X) \) is a commutative \(C^* \)-algebra, \(D \) is zero [5] and so \(D_{\langle \Lambda, \Lambda_0 \rangle} = 0 \) for all \(\Lambda \in E \). Now since \(\Lambda_0 \) is unit element of \(E \) for all \(\Lambda \in E \) we have \(d(\Lambda) = \pi_{\Lambda_0}(d(\Lambda), \Lambda_0) = \langle d(\Lambda), \Lambda_0 \rangle \cdot \Lambda_0 = D_{\langle \Lambda, \Lambda_0 \rangle} \cdot \Lambda_0 = 0 \) and so \(d \equiv 0 \).

For the converse, consider the inner derivation \(d_{\Lambda_0} \) on \(E \) defined by \(d_{\Lambda_0}(\Lambda) = \pi_{\Lambda_0}(\Lambda, \Lambda) - \pi_{\Lambda_0}(\Lambda, \Lambda) \) for all \(\Lambda \in E \). Since every derivation of \((E, \pi_{\Lambda_0}) \) is zero thus \(d_{\Lambda_0} = 0 \). So for all \(\Lambda \in E \) we have \(\pi_{\Lambda_0}(\Lambda, \Lambda) = \pi_{\Lambda_0}(\Lambda, \Lambda) \) and it shows that \(\pi_{\Lambda_0}(\Lambda, \Lambda) = \Lambda \) and so \(\Lambda_0 \) is unit element of \((E, \pi_{\Lambda_0}) \). \(\square \)

References

A. Sahleh
Department of Mathematics, University of Guilan, P.O.Box 1914, Rasht, Iran.
Email: sahlehj@guilan.ac.ir

L. Najarpisheh
Department of Mathematics, University of Guilan, P.O.Box 1914, Rasht, Iran.
Email: Najarpisheh@phd.guilan.ac.ir
منظم آرنز بودن و مشتق روي مدول هاي هيبرت با یک ضرب مشخص

عباس سهله* و لیلا نجارپیشه
دانشکده علوم رياضي، دانشگاه گيلان، رشت، ايران

چکیده
فرض كنید E - مدول هيبرت C - جبر و A یک A - جبر و E یک E - مدول هيبرت چپ باشد. در این مقاله ضربی را تعريف مي كنيم كه آن را به یک جبر پاتخ تيديل مي كنیم و نشان خواهيم داد كه تحت شرایط مشخص، E - مرتب همچنين رابطه بين مشتق ها روی E و A باعث مي كنند.