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ON E-SMALL COMPRESSIBLE MODULES

P. C. DIOP ∗ AND M. L. DIA

Abstract. Let R be a commutative ring with identity and let M
be an (left) unitary R-module. In this paper, we introduce a detail
and study the concept of e-small compressible as a generalization of
the compressible module, and give some of their properties, char-
acterizations, and examples. On the other hand, we study the
relations between e-small compressible modules and some classes
of modules.

1. Introduction

Let R be a commutative ring with identity and let M be an (left)
unitary R-module. A submodule L is called essential submodule of M ,
if L∩K 6= 0 for any submodule K of M . In [11], Zhou, D.X. and Zhang,
X.R. introduce and study the concept of e-small submodules, where a
submodule N of an R-module M is called e-small submodule(N �e M)
if for any essential submodule L of M , N + L = M implies L = M .
An R-module M is called e-small compressible if M can be embedded
in each of its nonzero e-small submodule.
In this paper we introduce and study the concept of e-small compress-
ible as a generalisation of compressible module, and give some of their
properties, characterizations and examples. Also we see that under
certain conditions, e-small compressible, e-small monoform, small com-
pressible and compressible modules are equivalent.
Morever, we study the relations between e-small compressible mod-
ules and other related modules as e-small retractable module, polyform
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module, e-small polyfom module, e-small quasi-Dedekind module, non-
singular module, K-nonsingular module, projective module, continuous
module, quasi-continuous module.
The notation N ≤M means that N is a submodule of M and N ≤⊕ M
denotes that N is a direct summand of M .

2. Preliminaries

Definition 2.1. Let M be an R-module and N ≤M .

(1) N is called essential submodule of M (N ≤e M) if, N∩K 6= {0}
for any nonzero submodule K of M .

(2) N is called small submodule of M (N � M) if, for any sub-
module L of M , N + L = M implies L = M

(3) N is called e-small of M (N �e M) if, for any essential sub-
module L of M , N + L = M implies L = M .

(4) N is called δ-small of M (N �δ M) if N + L = M with M/L
is singular implies L = M .

(5) M is called e-hollow if every submodule of M is e-small in M.

Remark 2.2. Each small submodule is e-small submodule. But the
converse is not true in general for example: N = {0, 3} is a submodule
of Z/6Z as a Z-module. N is e-small but N is not small.

Lemma 2.3. ([2], Corollary 3.9)
Let M be an uniform R-module. A proper submodule of M is e-small
if and only it is small.

Lemma 2.4. ([11], Proposition 2.5)

(1) Let N , K and L are submodules of an R-module M such that
N ⊆ K, if K �e M , then N �e M and K/N �e M/N .

(2) Assume that K1 ⊆M1 ⊆M,K2 ⊆M2 ⊆M and M = M1⊕M2,
then K1 ⊕K2 �e M1 ⊕M2 if and only K1 �e M1 and K2 �e

M2.
(3) N + L�e M if and only if N �e M and L�e M .
(4) If K �e M and f : M −→ M ′ is a homomorphism, then

f(K)�e M
′. In particular, if K �e M ⊆M ′, then K �e M

′.

Definition 2.5. A nonzero R-module is called anti co-Hopfian if it is
isomorphic to all its nonzero submodules.

Lemma 2.6. An anti co-Hopfian module M is uniform Noetherian.

Proof. Since M is isomorphic to each cyclic submodule, M is cyclic
and every submodule of M is cyclic and so M is Noetherian. Thus M
has uniform submodule, say U . Since U ∼= M , M is uniform. �
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3. Some Properties of E-small compressible Modules

In this section, we introduce the concept of e-small compressible as
a generalization of compressible module and give some basic properties
examples and characterization of this concept.

Definition 3.1. An R-module M is called e-small compressible if M
can be embedded in each of its nonzero e-small submodule. Equiv-
alenty, M is esmall compressible if there exists a monomorphism f :
M −→ N whenever 0 6= N �e M .
A ring R is called e-small compressible if R as an R-module is e-small
compressible.

Example 3.2. (1) Z6 as a Z−module is not e-small compressible,
since (3)�e Z6 but Z6 cannot be embedded in (3).

(2) Every semisimple module is not e-small compressible see 1).
(3) The Z −module Q is not e-small compressible, since Z �e Q

and Hom(Q,Z) = 0.
(4) Every simple module is e-small compressible but not conversely,

since Z as a Z−module is e-small compressible but not simple.
(5) Every integral domain ring is an e-small compressible ring.

Remark 3.3. (1) Every compressible module is e-small compress-
ible.

(2) Every e-small compressible module is a small compressible but
not conversely.

Proof. Suppose that M is an e-small compressible module. Let 0 6=
N � M , then N �e M . Since M is e-small compressible, so f :
M −→ N is a monomorphism. Thus M is small compressible.
Conversely is not true because Z6 as a Z−module is small compressible
but not e-small compressible. �

Proposition 3.4. Let M be an e-hollow R-module, then M is e-small
compressible if and only if M is compressible.

Proof. ⇐) It is clear.
⇒) Suppose that M is e-small compressible. Let N be a nonzero
submodule of M , since M is e-hollow then N is e-small in M . But M
is e-small compressible, so M can be embedded in N for some 0 6= N ≤
M . Thus M is compressible. �

Corollary 3.5. Let M be a semi-simple R-module. Then M is e-small
compressible if and only if M is compressible.
Proof
Since M is semi-simple then M is e-hollow. Thus the result is obtained
by Proposition 3.4.



72 DIOP AND DIA

Proposition 3.6. Let M be an indecomposable R-module. Then M is
e-small compressible if and only if M is small compressible.

Proof. ⇒) Suppose that M is e-small compressible. Then the result is
obtained by Remark 3.3.
⇐) Suppose that M is small compressible. Let N �e M , since M is
indecomposable then by [2, Proposition 3.7] N � M . So M can be
embedded in N . Thus M is small compressible. �

Proposition 3.7. An e-small submodule of an e-small compressible
module is e-small compressible.

Proof. Let M be an e-small compressible module and 0 6= N �e M .
Let 0 6= K �e N , then K �e M . As M is e-small compressible implies
there exists a monomorphism f : M −→ K and therefore fi : N −→ K
is a monomorphism where i : N −→M is the inclusion homomorphism.
Hence N is e-small compressible. �

Proposition 3.8. A direct summand of an e-small compressible mod-
ule is also e-small compressible.

Proof. Let M = A ⊕ B be an e-small compressible module and let
0 6= K �e A. Then K ⊕ 0�e M and hence there is a monomorphism
say, f : M −→ K ⊕ 0 clearly K ⊕ 0 ' K, so f : M −→ K is
a monomorphism and the composition fjA : A −→ M −→ K is a
monomorphism where jA is the inclusion of homomorphism A in M .
Therefore A is e-small compressible. �

Corollary 3.9. Let M be a semi-simple R-module. If M is e-small
compressible, then every nonzero submodule of M is e-small compress-
ible.

Proof. Suppose that M is e-small compressible. Let 0 6= N ≤M , then
N ≤⊕ M . So N is e-small compressible by Proposition 3.8. �

Proposition 3.10. Let M1 and M2 be two isomorphic R-modules.
Then M1 is e-small compressible if and only if M2 is e-small com-
pressible.

Proof. Suppose that M1 is e-small compressible. Let ϕ : M1 → M2

be an isomorphism, ϕ−1 : M2 → M1 is well-be homomorphism. Let
0 6= N �e M2, then ϕ−1(N)�e M1 by Lemma 2.4. Put K = ϕ−1(N),
f : M1 → K is a monomorphism and g = ϕ|K then g : K → M2 is
a monomorphism. g(K) = ϕ(ϕ−1)(N) = N hence g : K → N is a
monomorphism. Now, we have the composition
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h = gfϕ−1 : M2 →M1 → K → N is a monomorphism. Therefore, M2

is e-small compressible. �

Remark 3.11. The direct sum of e-small compressible module is not
necessarily e-small compressible. Consider the following examples

Let Z6 = Z2 ⊕ Z3 as a Z-module. Each of Z2 and Z3 is e-small
compressible. But Z6 is not e-small compressible by Example 3.2.

Proposition 3.12. Let M = M1 ⊕ M2 be an R-module such that
AnnRM1 + AnnRM2. Then M is e-small compressible if and only if
M1 and M2 are e-small compressible.

Proof. ⇒) It follows by Proposition 3.8.
⇐) Let 0 6= N �e M . Then by [1], N = K1 ⊕ K2 for some 0 6=
K1 ≤ M1 ≤ M and 0 6= K2 ≤ M2 ≤ M . But M1 and M2 are e-
small compressible, so there are monomorphism f : M1 −→ K1 and f :
M2 −→ K2. Define h : M −→ N by h(a, b) = (f(a), g(b)), it can easily
that h is a monomorphism and hence M is e-small compressible. �

Now, we introduce the following notions.

Definition 3.13. Let M be an R-module.

(1) M is called e-small prime if AnnR(M) = AnnR(N) for each
nonzero e-small submodule N of M .

(2) M is called e-small uniform if every nonzero e-small submodule
of M is essentiel in M .

Lemma 3.14. Let M be an e-small prime module, then AnnR(N) is
a prime ideal of R for each nonzero e-small submodule of M .

Proof. Let N be a nonzero e-small submodule of M . Let a, b ∈ R such
that ab ∈ AnnR(N). Then abN = 0. Suppose that bN 6= 0. But
bN ≤ N and N �e M , then bN �e M , but M is e-small prime and
a ∈ AnnR(bN) implies a ∈ AnnR(M), on the other hand AnnR(M) =
annR(N), so a ∈ AnnR(N) and hence AnnR(N) is a prime ideal of
R. �

Definition 3.15. A proper submodule N of an R-module M is called
e-small prime submodule if and only if whenever r ∈ R et x ∈M with
(x)�e M et rx ∈ N either x ∈ N or r ∈ [N :R M ].

Proposition 3.16. Every e-small compressible module is e-small prime.

Proof. Let M be an e-small compressible module. Let 0 6= N �e M ,
we have show that ann(M) = ann(N). Let r ∈ AnnR(N) then rN = 0.
But M is e-small compressible, f : M −→ N is a monomorphism, then
f(rM) = rf(M) ⊆ rN = 0, so rM = 0, thus r ∈ AnnR(M) and
therefore AnnR(M) = AnnR(N). �
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Proposition 3.17. ([8], Lemma 2.3.3.p.56 and Theorem 2.3.6.p.57)
A finitely generated R-module M is e-small compressible if and only if
M is e-small prime and e-small uniform.

In the following result, we are going to give a characterization of
e-small compressible modules.

Theorem 3.18. Let M be an R-module. Then the following statements
are equivalent.

(1) M is e-small compressible.
(2) M is isomorphic to an R-module of the form A/P for some

e-small prime ideal P of R and an ideal A of R containing P
properly.

(3) M is isomorphic to a nonzero submodule of a finitely generated
e-small uniform, e-small prime R-module.

Proof. 1)⇒ 2) Let 0 6= m ∈M , Rm�e M . Then Rm is e-small com-
pressible by Proposition 3.7, therefore Rm is e-small prime by Propo-
sition 3.16. So there exists a monomorphism, say f : M −→ Rm
and hence M is isomorphic to a submodule of Rm. On other hand,
Rm ' R/ann(m) and by Lemma 3.14 AnnR(m) is a prime ideal and
hence e-small prime ideal of R.
Put AnnR(m) = P , then M ' A/P where A is an ideal of R contains
P properly and P is an e-small prime ideal of R.
2)⇒ 3) By (2), M ' A/P for some prime ideal P of R and an ideal A
of R containing P properly, so A/P is a nonzero submodule of R/P .
R/P is finitely generated R-module and R/P is e-small prime (since
R/P is an integral domain). Also R/P is an uniform R-module and
hence e-small uniform, hence (3) follows.
3)⇒ 1) By (3), M is isomorphic to a nonzero submodule of a finitely
generated e-small uniform and e-small prime R-module , say M ′, M ′ is
an e-small compressible R-module by Proposition 3.17. So M is e-small
compressible by Proposition 3.10 which proves (1). �

Proposition 3.19. Let M be an R-module. Then M is e-small com-
pressible if and only if there exists a monomorphism ϕ ∈ EndR(M)
such that Imϕ ⊆ N for each nonzero e-small submodule N of M .

Proof. ⇒) Suppose that M is e-small compressible. Let 0 6= N �e M ,
f : M −→ N is a monomorphism. So there exists a monomorphism
ϕ = if ∈ EndR(M) where i : N −→M is the inclusion homomorphism
and Imϕ = if(M) = f(M) ⊆ N .
⇐) Let 0 6= N �e M . By hypothesis there exists a monomorphism
ϕ ∈ EndR(M) and ϕ(M) ⊆ N . Therefore, ϕ : M −→ N is a monomor-
phism. Thus M is e-small compressible. �
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4. Esmall compressible and Other Related Modules

In this section, we study the relations between e-small compressible
modules and other related modules.

Proposition 4.1. Let M be a projective R-module. Then the following
are equivalent:

(1) M is e-small compressible.
(2) HomR(M,N) contains a monomorphism for any N �δ M .

Proof. ⇒) Suppose that M is e-small compressible. Let N �e M ,
then HomR(M,N) is a monomorphism. To show that N �δ M . Let
K be a submodule of M such that N + K = M and M/K singular.
Since N �e M , by [11, Proposition 2.3] K is a direct summand of
M and M/K is a semisimple module. Then there exist a submodule
L of M such that K ⊕ L = M . And so M/K ∼= L. Then L is a
singular module. Since M/K is semisimple, L is semisimple. L is a
projective module also as direct summand of projective module. So L
is a projective module and semisimple. Thus M/K is a nonsingular
and singular module. So M/K = {0}. Hence , M = K, N �δ M .
Therefore HomR(M,N) contains a monomorphism for any N �δ M .
⇐) Suppose that HomR(M,N) contains a monomorphism for any
N �δ M . To show that N �e M . Let K be an essentiel submodule
of M such that N + K = M . Since K ≤e M , M/K is singular. But
N �δ M , M = K. Thus N �e M . Hence M is e-small compressible.

Put Z(M) = {m ∈ M : AnnR(M) ≤e M}. Z(M) is called the sin-
gular submodule of M . M is called singular if Z(M) = M and M is
called nonsingular if Z(M) = 0. �

Proposition 4.2. Let M be a nonsingular R-module. Then the fol-
lowing are equivalent:

(1) M is e-small compressible.
(2) HomR(M,N) contains a monomorphism for any N �δ M .

Proof. ⇒) Suppose that M is e-small compressible. For N �e M ,
then by [2, proposition 3.6] N �δ M . So HomR(M,N) contains a
monomorphism for any N �δ M .
⇐) Suppose that HomR(M,N) contains a monomorphism for any
N �δ M . To show that N �e M . Then by Proposition 4.1 N �e M .
So HomR(M,N) is a monomorphism. Hence M is e-small compress-
ible. �

Corollary 4.3. Let M be a faithful prime R-module. Then the follow-
ing are equivalent:
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(1) M is e-small compressible.
(2) HomR(M,N) contains a monomorphism for any N �δ M .

Proposition 4.4. Let M be a faithful anti co-Hopfian R-module such
that every cyclic submodule is e-small. Then the following are equiva-
lent:

(1) M is e-small compressible.
(2) M is nonsingular.

Proof. ⇒) Suppose that M is an e-small compressible module. Then
M is e-small prime by Proposition 3.16. So by [7, Proposition 3.31]
M is a torsion-free module over an integral domain R/annM . Since
by hypothesis M is faithful, then M is a torsion free module over an
integral domain R. So M is a nonsingular R-module.
⇒) Suppose that M is nonsingular. Since by hypothesis M is anti
co-Hopfian, then M is uniform. So M is monoform. Thus M is e-
small uniform and e-small prime module. But moreover M is finitely
generated, hence M is e-small compressible by Proposition 3.17. �

Corollary 4.5. Let M be a faithful e-hollow R-module such that S =
EndR(M) is continuous and regular. If M is e-small compressible, then
M is continuous.

Proof. Suppose that M is e-small compressible. Since M is an e-hollow
module, then every submodule is e-small in M . So by Proposition 4.4
M is a nonsingular module. But by Proposition 3.4 M is compressible,
so M is a retractable module. Hence by [6, Theorem 2.6] M is a
continuous module. �

Corollary 4.6. Let M be a faithful e-hollow R-module such that S =
EndR(M) is continuous and regular. If M is e-small compressible, then
M is quasi-continuous.

Recall that an R-module M is called K-nonsingular module if, φ ∈
End(M), Kerφ ≤e M implies φ = 0. Also it is called polyform if, for
any 0 6= N ≤M and f ∈ hom(N,M), 0 6= f , then Kerf �e N .

Proposition 4.7. Let M be an anti co-Hopfian R-module. If M is a
K-nonsingular module, then M is an e-small compressible module.

Proof. Suppose thatM is aK-nonsingular module. Since by hypothesis
M is uniform, M is an indecomposable extending module . So M
is a Baer module, thus M is a quasi-Dedekind module. Hence M
is an e-small uniform and e-small prime module since it is uniform
quasi-Dedekind. But M is finitely generated, therefore M is e-small
compressible by Proposition 3.17. �
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Corollary 4.8. Let M be an anti co-Hopfian R-module. If M is a
polyform module, then M is an e-small compressible module.

Proof. Since by [10, Proposition 2.3] every polyform module is a K-
nonsingular module, then the result is obtained by Proposition 4 .7. �

Proposition 4.9. Let M be an e-small compressible R-module such
that every nonzero e-small submodule of M is simple. Then M is
simple.

Proof. Suppose that M is e-small compressible and let N be a nonzero
e-small submodule of M . Then M can be embedded in N, so M is
isomorphic to any submodule of N . Since by hypothesis N is simple
and M ∼= N , M is simple. �

Corollary 4.10. Let M be a faithful R-module such that every nonzero
e-small submodule of M is simple. If M is e-small compressible, then
R is e-small compressible.

Proof. Suppose that M is e-small compressible. Then by Proposition
4.9 M is simple, so EndR(M) is a division ring. But M is a faithful
module, EndR(M) ' R implies R is a division ring. Thus R is e-small
compressible. �

Now, we introduce the following notions.

Definition 4.11. AnR-moduleM is called e-small retractable ifHom(M,N) 6=
0 for each nonzero e-small submodule N of M .

Remark 4.12. Every retractable module is e-small retractable module.
Every semisimple module is e-small retractable because it is retractable.

Proposition 4.13. Every e-small compressible module is e-small re-
tractable. But the converse is not true in general .

Let N be a nonzero e-small submodule of M . Since by hypothe-
sis M is e-small compressible, then M can be embedded in N . So
Hom(M,N) 6= 0, thus M is e-small retractable.
The conversely is not true because the semisimple module is e-small
retractable but not e-small compressible by Example 3.2.

Recall that an module M is said to be co-compressible if it is a ho-
momorphic image of any of its non trivial factor.

Proposition 4.14. Let M be a Hopfian and co-compressible R-module.
If M is e-small retractable, then M is e-small compressible.
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Proof. We show that every 0 6= f ∈ End(M) is an epimorphism. Let
f : M −→ M . Since M is co-compressible g : M/N −→ M is an
epimorphism, goπ : M −→ M/N −→ M is an epimorphism where
π : M −→M/N is a projection canonic. Thus put f = goπ ∈ End(M)
is an epimorphism. Since by hypthesis M is Hopfian, f is a monomor-
phism. But by hypothesis M is e-small retractable, then M is e-small
compressible. �

Proposition 4.15. Let M be an indecomposable and e-small retractable
R-module. If S is a regular ring then M is e-small compressible where
S = EndR(M).

Proof. Let 0 6= N �e M , then by properties of e-small retractable
module, f : M −→ N , 0 6= f is a homomorphism. If i : N −→ M is
the inclusion map, then iof : M −→ M is a homomorphism. But S is
a regular ring, so Kerf = Ker(iof) ≤⊕ M . Since by hypothesis M is
indecomposable, Kerf = 0. Thus M is e-small compressible. �

Corollary 4.16. Let M be a critically co-compressible and e-small
retractable R-module. If S is a regular ring, then M is e-small com-
pressible where S = EndR(M).

Recall an R-module M is called e-small quasi-Dedekind if, for each
f ∈ EndR(M), f 6= 0 implies Kerf is e-small in M .
The following proposition shows that e-small quasi-Dedekind implies
e-small compressible under the class uniform free Z-module.

Proposition 4.17. Let M be an uniform free Z-module such that every
submodule is e-small. Then the following are equivalent:

(1) M is e-small compressible.
(2) M is compressible.
(3) M is quasi-Dedekind.
(4) M is small quasi-Dedekind.
(5) M is e-small quasi-Dedekind.

Proof. 1) ⇒ 5) Let 0 6= N ≤ M . By hypothesis N is e-small in M .
Since M is e-small compressible, M can be embedded in N . So M is
compressible.
2⇒ 3) It is clear.
3)⇒ 4) Obvious.
4) ⇒ 5) Let 0 6= f ∈ EndR(M). Since M is a small quasi-Dedekind
module, then Kerf � M . So Kerf �e M . Thus M is an e-small
quasi-Dedekind module.
5)⇒ 1) Since Z is an integral domain and M is a free Z-module, then
by [9, Corollary 1.2.4] M is e-small retractable.
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Now, let 0 6= N �e M , f : M −→ N is a nonzero homomorphism.
Since M is an e-small quasi-Dedekind module, then Ker(iof) �e M
where i : N −→ M , so Ker(iof)� M since M is uniform. Moreover,
M is a free Z-module, hence Kerf = Ker(iof) = 0. Thus M is an
e-small compressible module. �

Corollary 4.18. Let M be an uniform e-hollow free Z-module. Then
the following are equivalent:

(1) M is monoform.
(2) M is quasi-Dedekind.
(3) M is small quasi-Dedekind.
(4) M is e-small quasi-Dedekind.
(5) M is e-small compressible.

Theorem 4.19. ([8], Proposition 2.3.9.p.60) Let M be a faithful finitely
generated multiplication R-module. Then M is e-small compressible if
and only if R is e-small compressible.

Corollary 4.20. Let M be a faithful cyclic R-module. Then the fol-
lowing are equivalent:

(1) M is e-small compressible module.
(2) M is e-small prime module.
(3) R is e-small compressible ring.

Proof. (1)⇒ (2) See Proposition 3.16.
(2) ⇒ (3) Suppose that M is e-small prime. Let 0 6= N �e M , then
annRM = annRN = annRIM = annR(I) since M is a multiplication
module. But M is faithful, then annR(I) = 0. Thus by [9, Corollary
3.1.40], R is e-small compressible.
(3)⇒ (1) It is clear by Theorem 4.19. �

Definition 4.21. An R-module is called e-small polyform if for each
0 6= N �e M , f ∈ Hom(N,M), Kerf �e N

Proposition 4.22. Every e-small compressible module is an e-small
polyform module. But the converse is not true in general.

Proof. Let 0 6= N �e M and f ∈ Hom(N,M). Since M is e-small
compressible, then gof : N −→ M −→ N is a monomorphism. So
Kerf = 0, thus Kerf �e N . Hence M is an e-small polyform module.
The reciprocal is not true because Z4 as Z-module is e-small polyform
but not e-small compressible. �

Definition 4.23. Let M be an R-module.

(1) M is called a monoform module if for each nonzero submodule
N of M and for each f ∈ Hom(N,M), f 6= 0 implies Kerf = 0.
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(2) M is called an e-small monoform module if for each nonzero
submodule N of M and for each f ∈ Hom(N,M), f 6= 0 implies
Kerf �e N .

Remark 4.24. Every e-small compressible R-module is e-small mono-
form but not conversely. For instance, Z6 as Z − module is e-small
monoform but not e-small compressible.

Proposition 4.25. Let M be a quasi-Dedekind R-module. Then M is
e-small monoform if and only if M is e-small compressible.

Proof. ⇒) Suppose that M is e-small monoform. Let 0 6= N �e M ,
then f ∈ Hom(N,M) 6= 0. Since by hypothesis M is quasi-Dedekind,
then fog : M −→ N −→M is a monomorphism. So g : M −→ N is a
monomorphism. Thus M is e-small compressible.
⇐) It is clear by Remark 4.24. �

Proposition 4.26. Let M be an uniform Noetherian small prime R-
module. Then the following statements are equivalent:

(1) M is compressible.
(2) M is small compressible
(3) M is e-small compressible.
(4) M is e-small polyform.
(5) M is e-small monoform.

Proof. 1)⇒ 2) It is clear.
2) ⇒ 3) Since M is uniform, M is indecomposable. So M is e-small
compressible by Proposition 3.6.
3)⇒ 4) See Proposition 4.22.
4)⇒ 5) It is clear by [8].
5)⇒ 1) It follows by [3,Proposition 2.29]. �

Corollary 4.27. Let M be an anti co-Hopfian small prime R-module.
Then the following statements are equivalent:

(1) M is compressible.
(2) M is small compressible
(3) M is e-small compressible.
(4) M is e-small polyform.
(5) M is e-small monoform.
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