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S-SMALL AND S-ESSENTIAL SUBMODULES

S. RAJAEE ∗

Abstract. This paper is concerned with S-comultiplication mod-
ules which are a generalization of comultiplication modules. In
section 2, we introduce the S-small and S-essential submodules of
a unitary R-module M over a commutative ring R with 1 6= 0
such that S is a multiplicatively closed subset of R. We prove
that if M is a faithful S-strong comultiplication R-module and
N �S M , then there exist an ideal I ≤S

e R and an t ∈ S such that
t(0 :M I) ≤ N ≤ (0 :M I). The converse is true if S ⊆ U(R) such
that U(R) is the set of all units of R. Also, we prove that if M is
a torsion-free S-strong comultiplication module, then N ≤S

e M if
and only if there exist an ideal I �S R and an s ∈ S such that
s(0 :M I) ≤ N ≤ (0 :M I). In section 3, we introduce the concept
of S-quasi-copure submodule N of an R-module M and investigate
some results related to this class of submodules.

1. Introduction

Throughout this article, R is a commutative ring with 1 6= 0 and
M is a nonzero unital R-module. We denote the set of all units in
R by U(R) and the set of all submodules of M by L(M), and also
L∗(M) = L(M) \ {0,M}. A nonempty subset S of R is called a mul-
tiplicatively closed subset (briefly, m.c.s.) of R if 0 /∈ S, 1 ∈ S, and
ss′ ∈ S for all s, s′ ∈ S. Note that SP = R− P is a m.c.s. of R for ev-
ery P ∈ Spec(R). Recently, in [6], Sevim et al. introduced the notion
of S-prime submodule which is a generalization of prime submodule
and used them to characterize certain class of rings/modules such as
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prime submodules, simple modules, torsion free modules, S-Noetherian
modules and etc. In [1], Anderson et al. defined the concept of S-
multiplication modules and S-cyclic modules which are S-versions of
multiplication and cyclic modules and extended many results on multi-
plication and cyclic modules to S-multiplication and S-cyclic modules.
An R-module M is said to be an S-multiplication module if for each
submodule N of M there exist an s ∈ S and an ideal I of R such
that sN ⊆ IM ⊆ N . It is easy to see that an R-module M is S-
multiplication if and only if for each submodule N of M , there exists
an s ∈ S such that sN ⊆ (N : M)M ⊆ N . If we take S = {1R}, this
definition coincides with the multiplication module definition.

According to [1, Example 1], if Ann(M) ∩ S 6= ∅, then M is an S-
multiplication module. This implies that if 0 ∈ S, then M is trivially
S-multiplication module. Clearly, every multiplication module is an
S-multiplication module and the converse is true if S ⊆ U(R), see [1,
Example 2]. Also, M is called an S-cyclic R-module if there exist s ∈ S
and m ∈ M with sM ⊆ Rm ⊆ M . Every S-cyclic module is an S-
multiplication module, see, [1, Proposition 5]. For a prime ideal P of
R, M is called P -cyclic if M is (R− P )-cyclic.
According to [1, Proposition 8], M is m-cyclic for each m ∈ Max(R) if
and only if M is a finitely generated multiplication module. We recall
that a m.c.s. S of R is said to satisfy maximal multiple condition if
there exists an s ∈ S such that t divides s for each t ∈ S.

In [2], Anderson and Dumitrescu defined the concept of S-Noetherian
rings which is a generalization of Noetherian rings and they extended
many properties of Noetherian rings to S-Noetherian rings. A submod-
ule N of M is said to be an S-finite submodule if there exists a finitely
generated submodule K of M such that sN ⊆ K ⊆ N . Also, M is
said to be an S-Noetherian module if its each submodule is S-finite. In
particular, R is said to be an S-Noetherian ring if it is an S-Noetherian
R-module.

In [7], Eda Yıldız et al. introduced and studied S-comultiplication
modules which are the dual notion of S-multiplication modules. They
characterize certain class of rings/modules such as comultiplication
modules, S-second submodules, S-prime ideals, S-cyclic modules in
terms of S-comultiplication modules. Let M be an R-module and
S ⊆ R be a m.c.s of R. M is called an S-comultiplication module
if for each submodule N of M , there exist an s ∈ S and an ideal I of R
such that s(0 :M I) ⊆ N ⊆ (0 :M I). In particular, a ring R is called an
S-comultiplication ring if it is an S-comultiplication R-module. Every
R-module M with Ann(M) ∩ S = ∅ is trivially an S-comultiplication
module. Every comultiplication module is also an S-comultiplication
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module. Also the converse is true provided that S ⊆ U(R), see [7,
Example 3].

An R-module M satisfies the S-double annihilator condition (S-DAC
for short) if for each ideal I of R there exists an s ∈ S such that
sAnnR((0 :M I)) ⊆ I, [3, Definition 2.14]. Also, M is called an S-
strong comultiplication module if M is an S-comultiplication R-module
which satisfies the S-DAC, , see [3, Definition 2.15]. A submodule N of
M is called an S-direct summand of M if there exist a submodule K of
M and an s ∈ S such that sM = N +K, [3, Definition 2.8]. M is said
to be an S-semisimple module if every submodule of M is an S-direct
summand of M , see [3, Definition 2.9].

2. S-small and S-essential submodules

In this section we generalize the concepts of small submodules and
essential submodules of an R-module M to the S-small submodules and
S-essential submodules of M such that S ⊆ R is a m.c.s. We provide
some useful theorems concerning this new class of submodules.

Definition 2.1. Let M be an R-module and S ⊆ R be a m.c.s of R.
M is called an S-comultiplication module if for each submodule N of
M , there exist an s ∈ S and an ideal I of R such that s(0 :M I) ⊆ N ⊆
(0 :M I), see [7, Definition 1].

Example 2.2. Let p be a prime number and consider the Z-module

E(p) = {α =
m

pn
+ Z : m ∈ Z, n ∈ N ∪ {0}}.

Then every submodule of E(p) is of the form

Gt = {α =
m

pt
+ Z : m ∈ Z},

for some fixed t ≥ 0. It is showed that E(p) is an S-comultiplication
module, since for t ≥ 0, we have

(0 :E(p) Ann(Gt)) = (0 :E(p) p
tZ) = Gt.

Therefore E(p) is an S-comultiplication module, see [7, Example 2].

Definition 2.3. Let S be a m.c.s. of R and let M be an R-module
with N ≤M .

(i) We say that N is an S-small (S-superfluous) submodule of M
and denote by N �S M , if for every submodule L of M and
s ∈ S, sM ≤ N +L implies that there exists an t ∈ S such that
tM ≤ L.
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(ii) We say that N is an S-essential (S-large) submodule of M and
denote by N ≤S

e M if for every submodule L of M the equality
N ∩L = 0 implies that there exists an s ∈ S such that sL = 0.

(iii) The S-socle of M , denoted by SocS(M) which is the intersection
of all S-essential submodules of M .

(iv) The S-radical of M , denoted by RadS(M) which is the sum of
all S-small submodules of M .

If we take S = {1R}, this definitions coincide with the small and es-
sential submodule definitions.

Theorem 2.4. Let M be an R-module with submodules K ≤ N ≤ M
and S ⊆ R be a m.c.s. Then the following assertions hold.

(i) If K ≤S
e M , then K ≤S

e N and N ≤S
e M .

(ii) If K ≤S
e N and M is a faithful prime R-module, then K ≤S

e M .
(iii) Assume that H ≤ M . If H ∩ K ≤S

e M , then H ≤S
e M and

K ≤S
e M .

(iv) If N �S M , then K �S M and N/K �S M/K.

Proof. i) Clearly, K ≤S
e N because assume that L ≤ N and K ∩L = 0.

Since K ≤S
e M there exists an s ∈ S such that sL = 0. Now if L ≤M

and N ∩ L = 0, then K ∩ L = K ∩ (N ∩ L) = 0. Since K ≤S
e M there

exists an s ∈ S such that sL = 0 and hence N ≤S
e M .

ii) Suppose that K ≤S
e N and L ≤ M such that K ∩ L = 0. Then

K ∩ (N ∩ L) = 0 since K ≤S
e N there exists an s ∈ S such that

s(N ∩ L) = 0. This implies that s ∈ AnnR(N ∩ L) = AnnR(M) = 0
and therefore sL = 0.
iii) The proof is straightforward by (i).
iv) Suppose that sM ≤ K + L for some L ≤ M and s ∈ S. This
implies that sM ≤ N + L since N �S M hence there exists an t ∈ S
such that tM ≤ L this conclude that K �S M . Now let s(M/K) ≤
N/K + L/K for some s ∈ S and L/K ≤ M/K. Then s(M/K) =
(sM +K)/K ≤ (N +L)/K and hence sM ≤ sM +K ≤ N +L. Since
N �S M there exists an t ∈ S such that tM ≤ L. It conclude that
tM + K ≤ L + K = L and hence t(M/K) = (tM + K)/K ≤ L/K.
This implies that N/K �S M/K. �

Proposition 2.5. Let M be a faithful S-strong comultiplication R-
module.

(i) If N �S M , then there exist an ideal I ≤S
e R and an t ∈ S

such that t(0 :M I) ≤ N ≤ (0 :M I). The converse is true if
S ⊆ U(R).

(ii) If M is an S-semisimple R-module, then the assertion (i) sat-
isfies.
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Proof. i) Assume that N �S M . Since M is an S-comultiplication
module there exist an ideal I of R and an t ∈ S such that t(0 :M I) ≤
N ≤ (0 :M I). Suppose that I ∩J = 0 for some ideal J of R. By virtue
of [3, Lemma 2.16 (b)] there exists an s ∈ S such that

N + (0 :M J) ≥ t(0 :M I) + (0 :M J) ≥ t(0 :M I) + t(0 :M J)

≥ st(0 :M I ∩ J) = stM.

Take s′ = st ∈ S. Since N �S M hence s′M ≤ N + (0 :M J) implies
that there exists an s′′ ∈ S such that s′′M ≤ (0 :M J). This conclude
that s′′J ⊆ AnnR(M) = 0 and therefore I ≤S

e R.
Conversely, let N ∈ L(M) such that t(0 :M I) ≤ N ≤ (0 :M I) for

an t ∈ S and an ideal I ≤S
e R. Suppose that there exists an s ∈ S such

that sM ≤ N + K for some K ≤ M . We must show that there exists
an x ∈ S such that xM ≤ K. Since M is an S-comultiplication module
there exist an t′ ∈ S and an ideal J of R such that t′(0 :M J) ≤ K ≤
(0 :M J). By virtue of [3, Lemma 2.16 (b)], there exists an t ∈ S such
that t(0 :M I ∩ J) ≤ (0 :M I) + (0 :M J). Since S ⊆ U(R) this implies
that (0 :M I ∩ J) ≤ t−1((0 :M I) + (0 :M J)) ≤ (0 :M I) + (0 :M J).
It conclude that (0 :M I ∩ J) = (0 :M I) + (0 :M J) ≥ N + K ≥ sM .
Therefore I ∩ J ⊆ AnnR(sM) = AnnR(M) = 0. Since I ≤S

e R, there
exists an s′ ∈ S such that s′J = 0 hence s′M ≤ (0 :M J). Take x = s′t′,
then xM = s′t′M ≤ t′(0 :M J) ≤ K and the proof is complete.
ii) Since M is an S-semisimple module hence every submodule of M is
an S-direct summand of M . Therefore for every submodule N of M
there exist a submodule K of M and s ∈ S such that sM = N + K.
This implies the assertion (i). �

Theorem 2.6. Let M be a torsion-free S-strong comultiplication mod-
ule and let N ≤ M . Then N ≤S

e M if and only if there exist I �S R
and an s ∈ S such that s(0 :M I) ≤ N ≤ (0 :M I).

Proof. (⇒) Suppose that N ≤S
e M . Since M is an S-comultiplication

module, there exist an ideal I of R and an s ∈ S such that s(0 :M I) ≤
N ≤ (0 :M I). Assume that tR ≤ I + J for some ideal J of R and an
t ∈ S, then

N ∩ (0 :M J) ≤ (0 :M I) ∩ (0 :M J) = (0 :M I + J) ≤ (0 :M tR) = 0.

Since N ≤S
e M there exists an t′ ∈ S such that t′(0 :M J) = 0 and

therefore t′ ∈ AnnR((0 :M J)). SinceM satisfies the S-DAC there exists
an t′′ ∈ S such that t′t′′ ∈ t′′AnnR((0 :M J)) ⊆ J . Take x = t′t′′ ∈ S,
then xR ⊆ J and the proof is complete.
(⇐) Assume that there exists an ideal I �S R such that s(0 :M I) ≤
N ≤ (0 :M I) for some s ∈ S. Let L ≤ M and N ∩ L = 0. We must
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show that there exists an y ∈ S such that yL = 0. Since M is an
S-comultiplication R-module there exist an ideal J of R and an t ∈ S
such that t(0 :M J) ≤ L ≤ (0 :M J). This implies that

0 = N ∩ L ≥ s(0 :M I) ∩ t(0 :M J) ≥ st((0 :M I) ∩ (0 :M J))

= st(0 :M I + J).

Therefore st ∈ AnnR(0 :M I + J). Since M satisfies S-DAC hence
there exists an t′ ∈ S such that t′AnnR(0 :M I + J) ⊆ I + J . Take
x = stt′ ∈ S. This conclude that x ∈ I+J and then xR ≤ I+J . Since
I �S R then there exists an y ∈ S such that yR ⊆ J . This implies
that y ∈ J and hence yL ≤ y(0 :M J) = 0. �

Corollary 2.7. Let M be a torsion-free S-strong comultiplication R-
module and let N ≤M . Then SocS(M) ≤ (0 :M RadS(R)).

Proof. The proof is clear by Theorem 2.6, since

SocS(M) =
⋂

N≤S
e M

N ≤
⋂

I�SR

(0 :M I) = (0 :
∑
I�SR

I) = (0 :M RadS(R)).

�

3. S-quasi copure submodules

In this section we define the concept of S-quasi copure submodules
of an R-module M and provide some results concerning this new class
of submodules. Let S be a m.c.s. of R and P a submodule of M with
(P :R M) ∩ S = ∅, then P is called an S-prime submodule if there
exists an s ∈ S, and whenever am ∈ P , then sa ∈ (P :R M) or sm ∈ P
for each a ∈ R and m ∈ M . Particularly, an ideal I of R is called
an S-prime ideal if I is an S-prime submodule of R-module R. We
denote the sets of all prime submodules and all S-prime submodules
of M by Spec(M) and SpecS(M), respectively. Note that for every
P ∈ Spec(M) such that (P :R M) ∩ S = ∅, then P ∈ SpecS(M)
since 1 ∈ S. Also, if we take S ⊆ U(R), then the notions of S-prime
submodules and prime submodules are equal. A submodule N of M is
said to be S-pure if there exists an s ∈ S such that s(N ∩ IM) ⊆ IN
for every ideal I of R. Also, M is said to be fully S-pure if every
submodule of M is S-pure, see [4, Definitions 2-1, 2-2].

Remark 3.1. For any submodule N of an R-module M , we define
VS(N) to be the set of all S-prime submodules of M containing N .
Also the S-radical of a submodule N of M is the intersection of all S-
prime submodules of M containing N , denoted by radS(N) therefore
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radS(N) = ∩VS(N). If N is not contained in any S-prime submod-
ule of M , then we set radS(N) = M . A submodule L of M is called
S-copure if there exists an s ∈ S such that s(L :M I) ⊆ L + (0 :M I)
for every ideal I of R, see [3, Definition 2.1]. We will denote the set
of all S-copure submodules of M by CS(M). An R-module M is fully
S-copure if every submodule of M is S-copure, i.e., L(M) = CS(M).
For a submodule N of an R-module M , we will denote the set of all
S-copure S-prime submodules of M containing N by CV S(N). Equiv-
alently, CV S(N) = VS(N) ∩ CS(M). If N is not contained in any
S-prime S-copure submodule of M , then we put CV S(N) = M .

Definition 3.2. Let S be a m.c.s. of R and let M be an R-module
and N ≤M .

(i) We say that N is a weak S-copure submodule if every prime
submodule P of M containing N is an S-copure submodule of
M , i.e., V(N) ⊆ CS(M). We will denote the set of all this
submodules of M by CS

w(M).
(ii) We say that N is an S-quasi-copure submodule if every S-prime

submodule P of M containing N is an S-copure submodule of
M . Equivalently, if VS(N) ⊆ CS(M) hence VS(N) = CV S(N).
We will denote the set of all S-quasi-copure submodules of M
by CS

q (M).

Theorem 3.3. Let S ⊆ R be a m.c.s. and let M be an S-comultiplication
module on R. Then the following assertions hold.

(i) If N ∈ CS(M), then M/N is an S-comultiplication R-module.
(ii) If N ∈ CS(M), then for every s ∈ S, M/sN is an S-comultiplication

R-module.

Proof. i) Let K/N ≤ M/N . Since M is an S-comultiplication R-
module, there exist an ideal I of R and an s ∈ S such that s(0 :M I) ≤
K ≤ (0 :M I). Then

s

(
(0 :M I)

N

)
=
s(0 :M I) +N

N
≤ K +N

N
=
K

N
≤ (0 :M I)

N
.

Hence, M/N is an S-comultiplication R-module.
ii) This follows by part (i) and [3, Proposition 2.7 (c)]. �

Theorem 3.4. Let M be an R-module. If S ⊆ T are m.c.s. of R and
N,K ∈ L(M) such that N ⊆ K. Then the following statements hold.

(i) If N ∈ CS
w(M), then K ∈ CS

w(M).
(ii) If N ∈ CS

w(M), then K/N ∈ CS
w(M/N).
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(iii) Assume that M is a distributive module. If N,K ∈ CS(M),
then N ∩ K ∈ CS(M). Moreover, if V(N) is a finite set and
N ∈ CS(M), then rad(N) ∈ CS(M).

(iv) Suppose that M is a multiplication module, and N,K ∈ L(M).
If P ∈ V(NK) such that (P : M) ∩ S = ∅, then there exists a
s ∈ S such that sN ⊆ P or sK ⊆ P .

(v) CS
q (M) ⊆ CT

q (M).

(vi) If N ∈ CS
q (M), then for every p ∈ Spec(R), Np ∈ CSp

q (Mp).

Proof. i) It is clear.
ii) Suppose that P ∈ SpecS(M) and N ≤ K ≤ P , then by [6, Corollary
2.8 (ii)], P/N ∈ SpecS(M/N). By virtue of [3, Theorem 2.6 (c)], since
P is an S-copure submodule of M hence P/N is an S-copure submodule
of M/N such that K/N ≤ P/N .
iii) Since N,K ∈ CS(M) hence there exist s1, s2 ∈ S such that for
every ideal I of R, s1(N :M I) ≤ N + (0 :M I) and also s2(K :M I) ≤
K + (0 :M I). Take s = s1s2 ∈ S, then for every a ∈ R,

s(N ∩K :M a) = s1s2((N :M a) ∩ (K :M a))
≤ s1(N :M a) ∩ s2(K :M a)
≤ (N + (0 : Ma)) ∩ (K + (0 :M a))
= (N ∩K) + (0 :M a)

Therefore by [3, Theorem 2.12], we conclude that N ∩K ∈ CS(M).The
second part is clear by induction on |V(N)| <∞.
iv) Suppose that P ∈ V(NK) and (P :R M) ∩ S = p ∩ S = ∅ where
p = (P : M) ∈ Spec(R). By [6, Proposition 2.2], P ∈ VS(NK).
Assume that N = IM and K = JM for some ideals I and J of R. By
virtue of [6, Lemma 2.5], since P is an S-prime submodule of M and
P ⊇ NK = IJM hence there exists an s ∈ S such that sIJ ⊆ (P :R
M) or sM ⊆ P . If sM ⊆ P , then s ∈ (P :R M) which is impossible.
This implies that sIJ ⊆ (P :R M) for some s ∈ S. By [6, Proposition
2.9], since M is a multiplication module therefore P ∈ SpecS(M) if
and only if p = (P :R M) ∈ SpecS(R). Since sIJ ⊆ p, then by
[6, Corollary 2.6], there exists an t ∈ S such that t(sI) = tsI ⊆ p
or tsJ ⊆ tJ ⊆ p. Therefore either ts(IM) = tsN ⊆ pM = P or
tsJM = tsK ⊆ pM = P . Take s′ = ts then the proof is complete.
v) Since M is an S-multiplication module, then by [1, Proposition 1],
M is also a T -multiplication module. Assume that P is an S-prime
submodule of M containing N , then by [6, Proposition 2.2 (ii)] P is an
T -prime submodule of M containing N in the case (P :R M) ∩ T = ∅.
If N ∈ CS

q (M), then P is an S-copure submodule of M and by [3,
Proposition 2.7 (a)], P is an T -copure submodule of M containing N .
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This implies that N ∈ CT
q (M).

vi) Suppose that Qp ∈ VSp(Np) is an Sp-prime submodule of Mp as
an Rp-module containing Np. Since N ∈ CS

q (M) hence every S-prime
submodule Q of M containing N is S-copure, then by [3, Proposition
2.13], Qp ⊇ Np is an Sp-copure submodule of Mp. �

We recall that the saturation S∗ of S is defined as S∗ = {x ∈ R :
x
1
∈ U(S−1R)}. Obviously, S∗ is a m.c.s. of R containing S, see [5].

Theorem 3.5. Let S be a m.c.s. of R. The following assertions hold.

(i) CS
q (M) ⊆ CS∗

q (M).
(ii) Assume that M is a finitely generated faithful multiplication

module, then N = IM ∈ CS
q (M) if and only if I ∈ CS

q (R) such
that N = IM for some ideal I of R. Furthermore, for every
P ∈ SpecS(M) such that (P : M) ∩ S = ∅, then radS(M) =
radS(R)M .

Proof. i) It is clear.
ii) Assume that p ∈ SpecS(R) such that p ⊇ I. We must show that
p is an S-copure ideal of R. Since M is a multiplication module by
[6, Proposition 2.9 (ii)], P = pM ∈ SpecS(M). By hypothesis since
N = IM ∈ CS

q (M) and P = pM ≥ N = IM this conclude that P is
an S-copure submodule of M . Therefore there exists an s ∈ S such
that s(P :M a) ≤ P + (0 :M a) for each ideal a of R. We prove that
s(p :R a) ⊆ p + (0 :R a) for each ideal a of R. We note that

s(P :M a) = s(pM :M a) = s(p :R a)M ≤ P + (0 :M a)

= pM + ((0 :M a) :R M)M

= (p + (0 :R a))M.

Since M is a cancellation module therefore s(p :R a) ⊆ p + (0 :R a).
The converse is similar. By [6, Theorem 2.11], we have

radS(M) =
⋂

Ann(M)⊆I∈SpecS(R)

IM = radS(R)M.

�
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