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SOME PROPERTIES OF PAIR OF n-ISOCLINISM
INDUCTION

M. SAJEDI AND H. DARABI∗

Abstract. Let (G,M) be a pair of groups, in whichM is a normal
subgroup of a group G.We study some properties of n-isoclinism of
pair of groups. In fact, we show that the subgroups and quotient
groups of two n-isoclinism pair of groups are m-isoclinic for all
m ≤ n. Moreover, the properties of π-pair and supersolvable pair
of groups which are invariant under n-isoclinism has be studied.

1. Introduction and preliminaries

In 1940, P. Hall [2], introduced the concept of isoclinism between
two groups G and H. This concept are equivalence relation among all
groups and it is weaker than isomorphism. Two groups G and H are
isoclinic if and only if there exist isomorphisms α : G

Z(G)
−→ H

Z(H)

and β : G′ −→ H ′ such that β is induced by α, which are compatible.
Hekester [6], introduced the concept of nilpotent groups of class at most
n and arose the concept of n-isoclinism. Salemkar et al. [8] extended the
concept of isoclinism to pairs of groups. Heidarian et al. [3] extended
the concept of n-isoclinism extend to the class of all pairs of groups.
Hassanzadeh et al. [5], verifies a new notion of nilpotency for pairs of
groups. The main goal of this paper is to investigate the properties of
subgroup and quotiont groups of pair of groups that are invarint under
n-isoclinism.

Now we can define the center of the pair of group as follows:
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Definition 1.1. Let (G,M) be a pair of groups, where M is a normal
subgroup of G set

Z(G,M) = {m ∈M : [m,x] = 1, for all x ∈ G} .

Upper central series, one may define:

1 = Z0(G,M) � Z1(G,M) � Z2(G,M) � · · ·

in which Z1(G,M) = Z(G,M) and

Zn+1(G,M)

Zn(G,M)
= Z(

G

Zn(G,M)
,

M

Zn(G,M)
).

A pair (G,M) is called nilpotent of class n, whenever Zn(G,M) = M ,
for some natural number n.

Now we can also define

[G,M ] = 〈[g,m] : g ∈ G,m ∈M〉 ,

for which having the lower central series for the pair (G,M) as follows:

M = γ1(G,M) ≥ γ2(G,M) ≥ · · ·

of (G,M) such that γn+1 (G,M) = [G, γn (G,M)]. For arbitrary pair
of groups (G,M) and (H,N), let α : G

Z(G,M)
−→ H

Z(H,N)
, β : [G,M ] −→

[H,N ] and α| :
M

Z(G,M)
−→ N

Z(H,N)
, be isomorphism, which are compat-

ible, such that the following diagram is commutative.

G
Z(G,M)

× M
Z(G,M)

((α|,α),β)−→ H
Z(H,N)

× N
Z(H,N)

↓ ↓
[G,M ]

β−→ [H,N ] ,

(1.1)

where α| is the restriction of α on M
Z(G,M)

. Hence, the pair of isoclinism

((α, α|), β) is called an isoclinism between the pairs of groups (G,M)
and (H,N), and denoted by (G,M)∼(H,N). One can generalized this
concept to n-isoclinism of the pairs of groups, which will be denoted
by (G,M)∼n(H,N), where Moghaddam et al. introduced in [7].

For more information on the center and commutators of the groups,
we refer the readers to [1, 4].

The following propositions and lemmas are very useful for further
investigations.

Proposition 1.2. [3] Let (G,M) be a pair of groups, H be a subgroup
of G and N be a normal subgroup of G with N ⊆M . Then
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(i) (H,H ∩M)∼n(HZn(G,M), (H ∩M)Zn(G,M)). In particular,
if G = HZn(G,M), then (H,H ∩M)∼n(G,M). Conversely, if

H
Zn(M,H∩M)

satisfies the descending chain condition on normal

subgroups and (H,H ∩M)∼n(G,M), then G = HZn(G,M).
(ii) If N ∩ γn+1(G,M) = 1, then (G,M)∼n(G/N,M/N).

Conversely, if γn+1(G,M) satisfies the ascending chain con-
dition on normal subgroups and (G,M)∼n(G/N,M/N), then
N ∩ γn+1(G,M) = 1.

Lemma 1.3. [3] Let ((α, α|), β) be an n-isoclinism between (G,M) and
(H,N).

(a) If G1 is a subgroup of G with Zn(G,M) ⊆ G1 and α( G1

Zn(G,M)
) =

H1

Zn(H,N)
then

(G1, G1 ∩M)∼n(H1, H1 ∩N).

(b) If M1 is a normal subgroup of G with M1 ⊆ γn+1(G,M), then

(G/M1,M/M1)∼n (H/β(M1), N/β(M1)) .

The following lemma is useful in our investigation.

Lemma 1.4. Let (G,M) and (H,N) be two pairs of groups, and let
N be a normal subgroups of G with N ⊆M , and i, j ≥ 1. Then

(a) Zi(
(G,M)
Zj(G,M)

) =
Zi+j(G,M)

Zj(G,M)
,

(b) Zi(
G
N
, M
N

) ≥ Zi(G,M)N
N

,

(c) γi(
G
N
, M
N

) = γi(G,M)N
N

,
(d) γi(G, γj (G,M)) ≤ γi+j−1 (G,M) .

Proof. We use induction on i. If i = 1, the result follows by defini-

tion. Assume that the result holds for i. We have Zi+1(
(G,M)
Zj(G,M)

) =
Z(Zi(G,M))
Zj(G,M)

=
Z1+j(Zi(G,M))

Zj(G,M)
=

Z(Zi+j(G,M))

Zj(G,M)
=

Zi+1+j(G,M)

Zj(G,M)
. So (a) holds.

Similarly, we can prove another parts of lemma by induction on i. �

Lemma 1.5. Let (G,M) be a pair of groups, H be a subgroup of G.
If H
Zn(M,H∩M)

satisfies the descending chain condition on normal sub-

groups and G
Zn(G,M)

∼= H
Zn(M,H∩M)

, then

(H,H ∩M)∼n (G,M) .

Proof. Put K = Zn (G,M), then Proposition 1.2 (i), implies that
(H,H ∩M)∼n(K,M), in particular G

Zn(G,M)
∼= H

Zn(M,H∩M)
∼= K

Zn(K,M)
.

Now, we show K = G. Suppose that α : G
Zn(G,M)

−→ K
Zn(K,M)

is isomor-

phism, so, clearly Zn (G,M) ≤ Zn (K,M). Now, we put α( K
Zn(G,M)

) =
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K1

Zn(K,M)
. Clearly, Zn (G,M) ≤ Zn (K,M) ≤ K1 ≤ K. It can be seen

that K1 = K if and only if K = G. Again put α( K1

Zn(G,M)
) = K2

Zn(K,M)
.

Clearly Zn (G,M) ≤ K2 ≤ K1 and K2 = K1 if and only if K = K1, so
K2 = K1 if and only if K = G. Continuing this process condition, we
have the following ascending chain

K

Zn (K,M)
≥ K1

Zn (K,M)
≥ K2

Zn (K,M)
≥ . . .

of subgroup of K
Zn(K,M)

that G = K if and only if Ki

Zn(K,M)
= Ki+1

Zn(K,M)
.

But K
Zn(K,M)

∼= G
Zn(G,M)

holds in ascending chains of subgroups and the

gives result. �

Theorem 1.6. Let (G,M) be a pair of groups, H be a subgroup and
N be a normal subgroup of G with N ≤M . Then

(a) For each normal subgroup K �G, if N ∩ γn+1(G,M) = 1, then

(G,M) ∼n
(

G

K ∩N
,

M

K ∩N

)
.

(b) If N ∩ γn+1(G,M) = 1, then

(H,H ∩N) ∼n
(

H

H ∩N
,
H ∩N
H ∩N

)
.

(c) If G = HZn (G,M) , then(
G

N ∩ γn+1(G,M)
,

M

N ∩ γn+1(G,M)

)
∼n
(

HN

N ∩ γn+1(G,M)
,

(H ∩N)N

N ∩ γn+1(G,M)

)
.

(d) For each subgroup K ≤ G, if G = HZn (G,M), then

(G,M) ∼n (〈H,K〉 , 〈H,K〉 ∩M).

Proof.
(a) Clearly, (K ∩ N) ∩ γn+1(G,M) ≤ N ∩ γn+1(G,M) = 1, therefore,
by Proposition 1.2 (ii), (G,M) ∼n

(
G

K∩N ,
M

K∩N

)
.

(b) Clearly, (H ∩ N) ∩ γn+1(H,H ∩ N) ≤ N ∩ γn+1(G,M) = 1, hence
(H∩N)∩γn+1(H,H∩N) = 1. So, by the second isomorphism theorem
[8] and Proposition 1.2 (ii) we have:

(H,H ∩N) ∼n
(

H

H ∩N
,
H ∩N
H ∩N

)
∼=
(
HN

N
,
H ∩N
H ∩N

)
.

(c) Consider that G = HZn (G,M) , implies that G
N

= HN
N
.Zn(G,M)N

N
.

On the other hand, Lemma 1.4 (b) implies Zn(G,M)N
N

≤ Zn(G/N,M/N),

that by substitution in previous relation, we have G
N

= HN
N
.Zn(M/N,G/N).

Now, using Proposition 1.2 (i) obtain the result.
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(d) Clearly H ≤ 〈H,K〉, so G = HZn(G,M) ≤ 〈H,K〉Zn(G,M).
Hence
G = 〈H,K〉Zn(G,M). Now, Proposition 1.2 (i) the result is obtained.

�

2. Main result

In this section, we prove some properties of subgroup and quotiont
groups of pair of groups that are invarint under n-isoclinism. In the
following result, we always assume that H ≤ G and N�G with N ≤M.

Theorem 2.1. Let (G,M) and (H,N) two pairs of groups and
(
(α, α|), β

)
is pair of n−isclinism from (G,M) to (H,N). Then for all i ≥ 0,

i) α(γi+1(G,N)Zn(G,M))
Zn(G,M)

= γi+1(H,H∩N)Zn(H,H∩N)
Zn(H,H∩N)

,

ii) (α, α|)
(
Zn+i(G,M)
Zn(G,M)

)
= Zn+i(H,H∩N)

Zn(H,H∩N)
,

iii) (G,M)
Zn+i(G,M)

∼= (H,H∩N)
Zn+i(H,H∩N)

,

iv) β(γn+i+1(G,M)) = γn+i+1(H,H ∩N).

Proof. i) From (α, α|) is pair of isomorphism and using Lemma 1.4
(c), we have

α(
γi+1(G,M)Zn(G,M)

Zn(G,M)
) = α(γi+1(

G

Zn(G,M)
,

M

Zn(G,M)
))

∼= γi+1(
H

Zn(H,H ∩N)
,

H ∩N
Zn(H,H ∩N)

) =
γi+1(H)Zn(H,H ∩N)

Zn(H,H ∩N)

ii) By using definition the upper central series and isomorphism of
α we have

α(
Zn+i(G,M)

Zn(G,M)
) = α

(
Zi(

G

Zn(G,M)
,

M

Zn(G,M)
)

)
= Zi

(
α(

G

Zn(G,M)
,

M

Zn(G,M)
)

)
∼= Zi

(
H

Zn(H,H ∩M)
,

N

Zn(H,H ∩M)

)
=
Zn+i(H,H ∩N)

Zn(H,H ∩M)
.

iii) By part(ii),

(G,M)

Zn+i (G,M)
∼=

(G,M)
Zn(G,M)

Zn+i(G,M)
Zn(G,M)

∼=
(H,H∩N)
Zn(H,H∩N)

Zn+i(H,H∩N)
Zn(H,H∩N)

∼=
(H,H ∩N)

Zn+i (H,H ∩N)
.
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iv) For all g1, . . . , gn+1+i ∈ G, m ∈ M and h ∈ α(mZn(G,M)),
hj ∈ α(gjZn(G,M)) which 1 ≤ j ≤ n+ 1 + i, we have:

α([m, g1, . . . , gi+1]Zn(G,M))

= [α(m)Zn(G,M), α(g1)Zn(G,M), . . . , α(gi+1)Zn(G,M)]

= [hZn(H,H ∩M), α(h1)Zn(H,H ∩M), . . . , α(hi+1)Zn(H,H ∩M)]

= [h, h1, . . . , hi+1]Zn(H,H ∩M).

Now by definition of n-isoclinism, we have

β([[m, g1, . . . , gi+1], gi+2, . . . , gn+i+1])

= [[h, h1, . . . , hi+1], hi+2, . . . , hn+i+1]

= [h, h1, . . . , hi+1, hi+2, . . . , hn+i+1].

Therefore

β(γn+i+1(G,M)) = γn+i+1(H,H ∩N).

�

Theorem 2.2. Let (G,M) ∼n (H,H ∩N). Then for all k ≥ 0,

(a) Zn+k(G,M) ∼n Zn+k(H,H ∩N),

(b) (G,M)
γn+1+k(G,M)

∼n
(

N
γn+1+k(H,H∩N)

, H
γn+1+k(H,H∩N)

)
.

(a) Since Zn(G,M) ≤ Zn+k(G,M) ≤ G, by Lemma 1.3 (a) implies

(α, α|)
(
Zn+k(G,M)

Zn(G,M)

)
= Zn+k(H,H∩N)

Zn(H,H∩N)
. By assumption Zn+k(G,M) = H1,

according to Lemma 1.3 (a) the result is obtained.
(b) Since for all k ≥ 0, we have γn+1+k(G,M) ≤ γn+1(G,M) and the
other hand M1 = γn+1+k(G,M) � G , as a result, by Lemma 1.3 (b)
and Theorem 2.1 (iv) the result is obtained.

Theorem 2.3. If (G,M) ∼n (H,H ∩ N), then each normal subgroup
of G is n-isoclinic with each normal subgroup of H.

Proof. Let M1 � G, hence by Lemma 1.3 (a) and Proposition 1.2 (i)
we have (M1,M1 ∩ M) ∼n (M1Zn(M,G), (M1 ∩ M)Zn(M,G)) ∼n
(N1Zn(N1, N1 ∩ H), (N1 ∩ H)Zn(N1, N1 ∩ H)) ∼n (N1, N1 ∩ H), that
N1 �H and gives the form following:

α

(
M1Zn(G,M)

Zn(G,M)

)
=
N1Zn(N1, N1 ∩H)

Zn(N1, N1 ∩H)
.

�

Theorem 2.4. Let (G,M) be an arbitrary pair of groups and n ≥
0, then for all i ∈ {0, 1, 2, · · · , n} and each normal subgroup N with
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N ∩ γn+1(G,M) = 1, we have(
G

Zi(G,M)
,

M

Zi(G,M)

)
∼n−i

(
G
N

Zi(
G
N
, M
N

)
,

M
N

Zi(
G
N
, M
N

)

)
.

Proof. For all 0 ≤ i ≤ n, put Zi(
G
N
, M
N

) = M1

N
, so by Lemma 1.4 (b),

M1 �G and Zi(G,M)N ≤M1. Therefore M1

Zi(M,G)
� G

Zi(M,G)
. Now, it is

sufficient to show that(
G

Zi(G,M)
,

M

Zi(G,M)

)
∼n−i

(
G

Zi(G,M)
, M
Zi(G,M)

)
(

M1

Zi(G,M)
, M
Zi(G,M)

) .
But, using Theorem 1.6 (a), it is only to show that

M1

Zi(G,M)
∩ γn−i+1

(
G

Zi(G,M)
,

M

Zi(G,M)

)
= 1.

For all g ∈ M1 ∩ γn−i+1(G,M) and x1, . . . , xi ∈ G and attention to
M1

N
= Zi

(
G
N
, M
N

)
, we have [g, x1, . . . , xi] ∈ N . On the other hand

[g, x1, . . . , xn] ∈ γn+1(G,M), so [g, x1, . . . , xi] = 1, that means g ∈
Zi(G,M). Thus M1 ∩ γn−i+1(G,M) ≤ Zi(G,M).

By Dedekind’s modular law [7],
M1 ∩ γn−i+1(G,M)Zi(G,M) = Zi(G,M), as required. �

Theorem 2.5. Let H be a subgroup of G and (G,M) is a pair of groups
and H

Zn(M,H∩M)
satisfies the descending chain condition on subgroup. If

G
Zi(G,M)

∼j H
Zi(H,H∩M)

, then (G,M) ∼i+j (H,H ∩M).

Proof. By Proposition 1.2 (i), if H
Zi(M,H∩M)

satisfies the descending

chain condition on subgroup and H ≤ G then (G,M) ∼n (H,H ∩M).
Now, by induction on j, clearly if j = 0 and G

Zi(G,M)
∼= H

Zi(H,H∩M)
then

by Lemma 1.4 (G,M) ∼i (H,H ∩M). Hence, we assumption result
hold for j and H

Zi+j+1(H,H∩M)
satisfies the descending chain condition on

subgroup and (G,M)
Zi+1(G,M)

∼=
(G,M)

Zi(G,M)

Z
(

(G,M)
Zi(G,M)

) ∼j (H,H∩M)
Zi(H,H∩M)

Z
(

(H,H∩M)
Zi(H,H∩M)

) ∼= (H,H∩M)
Zi+1(H,H∩M)

,

so (G,M)
Zi+1(G,M)

∼j (H,H∩M)
Zi+1(H,H∩M)

. But H
Z(i+1)+j(M,H∩M)

satisfies the descend-

ing chain condition on subgroup. Hence by assumption induction
(G,M) ∼(i+1)+j (H,H ∩M), so (G,M) ∼i+(j+1) (H,H ∩M). Hence
the result holds. �

Theorem 2.6. Let (G,M) be a pair of groups which the qoutient group
H

Zi+j(H,H∩M)
satisfies the descending chain condition on subgroup, for



22 SAJEDI AND DARABI

i, j > 0. If the subgroup H contains Zi(H,H ∩M), then the relation(
G

Zi(G,M)
,

M

Zi(G,M)

)
∼j
(

H

Zi(H,H ∩M)
,

H ∩M
Zi(H,H ∩M)

)
,

implies that

(G,M) ∼i+j (H,H ∩M).

Proof. Clearly, H
Zi(H,H∩M)

≤ G
Zi(G,M)

. On the other hand, we have

H
Zi+j(H,H∩M)

∼=
H

Zi(H,H∩M)

Zj

(
H

Zi(H,H∩M)

) satisfies the descending chain condition

on subgroup. By using Proposition 1.2 (i) (conversely) the relation(
G

Zi(G,M)
,

M

Zi(G,M)

)
∼j
(

H

Zi(H,H ∩M)
,

H ∩M
Zi(H,H ∩M)

)
,

implies that G
Zi(G,M)

= H
Zi(H,H∩M)

× Zj
(

G
Zi(G,M)

, M
Zi(G,M)

)
.

Since Zi(H,H ∩ M) ≤ Zi(G,M), we have G
Zi(G,M)

= H
Zi(H,H∩M)

×
Zi+j(G,M)

Zi(G,M)
=

HZi+j(G,M)

Zi(G,M)
. HenceG = HZi+j(G,M), so by Proposition 1.2

(i) we have

(G,M) ∼i+j (H,H ∩M).

�

Theorem 2.7. Let (G,M) be a pair of groups, N � G with N ≤ M
and N ∩ γn+1 (G,M) = 1. Then for all 0 ≤ i ≤ n, we have

γi+1 (G,M) ∼n−i γi+1 (G/N,M/N) .

Proof. Put j = n− i. Now, we have

γi+1 (G/N,M/N) =
γi+1 (G,M)N

N
=

γi+1 (G,M)

N ∩ γi+1 (G,M)
.

By using M1 = N ∩ γi+1 (G,M) it is sufficient to show that M1 = N ∩
γj+1(G, γi+1 (G,M)) = 1, because by Lemma 1.4 (c), γi+1 (G,M) ∼j
γi+1(G,M)

N
= γi+1 (G/N,M/N). Clearly, γj+1(G, γi+1(G,M)) ≤ γi+1 (G,M),

therefore using Lemma 1.4 (d), we have

M1 ∩ γj+1(G, γi+1 (G,M)) = N ∩ γi+1 (G,M) ∩ γj+1(G, γi+1 (G,M))

= N ∩ γj+1(G, γi+1 (G,M)) ≤ N ∩ γi+j+1 (G,M) .

Since j + i + 1 ≥ n + 1, hence M1 ∩ γj+1(G, γi+1 (G,M)) ≤ N ∩
γn+1 (G,M) = 1. So, the result is obtained. �
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Now, we study properties of pair of nilpotent that invariant under
n-isoclinism. Let (G,M) be a pair of groups. Then (G,M) is called a
nilpotent pair of group if M has a normal series

1 = M0 ≤M1 ≤ · · · ≤Mt = M,

such that Mi is a normal subgroup of G and Mi+1

Mi
≤ Z

(
G
Mi
, M
Mi

)
for all

i.

Theorem 2.8. Let (G,M) be a pair of groups, N ≤ Z(G,M) and(
G
N
, M
N

)
be nilpotent. Then (G,M) is nilpotent.

Proof. Since
(
G
N
, M
N

)
is a nilpotent pair of groups, so there exist a series

as follows:

1 =
M0

N
≤ M1

N
≤ M2

N
≤ · · · ≤ Mn

N
=
M

N
,

such that
Mi+1

N
Mi

N

≤ Z

(
G
N
Mi

N

,
M
N
Mi

N

)
,

so, we have Mi+1

Mi
≤ Z

(
G
Mi
, M
Mi

)
. On the other hand N ≤ Z(G,M). So,

the series: 1 = N0 ≤ N ≤ M1 ≤ M2 · · · ≤ Mn = M, is a central series
of G. Hence, (G,M) is nilpotent of groups. �

Theorem 2.9. Let (G,M) be a nilpotent pair of class m and H be any
subgroup of G with (G,M) ∼n (H,H ∩M) for all m ≤ n. Then the
(H,H ∩M) is a nilpotent pair.

Proof. By Theorem 2.1 (iii), we have G
Zn+i(G,M)

∼= H
Zn+i(H,H∩M)

, for all

i ≥ 0. By put i = m−n, we have G
Zm(G,M)

∼= H
Zm(H,H∩M)

, so Zm(H,H ∩
M) = H ∩M , which gives the result. �

The following is an immediate consequence of Theorem 2.9.

Corollary 2.10. Let (G,M) be a nilpotent pair of class n and H be
an arbitrary. Then (H,H ∩M) is nilpotent pair of class n if and only
if (G,M) ∼n (H,H ∩M). In particular (G,M) ∼n (1, 1).

Definition 2.11. Let (G,M) be a pair of groups. Then (G,M) is
called supersolvable group if there exist normal series as follow:

1 = M0 ≤M1 ≤ · · · ≤Mr = M,

such that, factors group Mi+1

Mi
is cyclic for 0 ≤ i ≤ r − 1 .

Theorem 2.12. Let (G,M) ∼k (H,H∩N). If (G,M) is supersolvable,
then (H,H ∩N) is supersolvable.
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Proof. Since (G,M) is supersolvable, so (G,M)
Zn(G,M)

∼= (H,H∩N)
Zn(H,H∩N)

is also su-

persolvable. Therefore (H,H∩N)
Zn(H,H∩N)

has a finite normal series with cyclic

factor as follows:

1 =
N0

Zn (H,H ∩N)
=
Zn (H,H ∩N)

Zn (H,H ∩N)
≤ N1

Zn (H,H ∩N)
≤

N2

Zn (H,H ∩N)
≤ · · · ≤ Nm

Zn (H,H ∩N)
=

H

Zn (H,H ∩N)
.

Hence,
Nj

Nj−1

∼=
Nj

Zn(H,H∩N)
Nj−1

Zn(H,H∩N)

for1 ≤ j ≤ m, is cyclic group which Nj−1 ≤

Nj. On the other hand Zn (H,H ∩N) is finite, so it is solvable. There-
fore, each subgroup is solvable. So, there exist the subnormal series

Zi(H,H ∩N) = Ni,0 ≤ Ni,1 ≤ · · · ≤ Ni,ki = Zi+1(H,H ∩N),

such that all of factors are cyclic. Therefore,

Z0(H,H ∩N) = N0,0 ≤ N0,1 ≤ · · · ≤ N0,k0

≤ Z1(H,H ∩N) = N1,0 ≤ N1,1 ≤ · · · ≤ N1,k1

≤ Z2(H,H ∩N) = N2,0 ≤ · · · ≤ Zn(H,H ∩N)

≤ N1 ≤ N2 ≤ · · · ≤ Nm = (H,H ∩N)

is a finite normal series with factors cyclic for (H,H ∩ N). So
(H,H ∩N) is supersolvable. Now, we study the properties, π− sepa-
rable and π−solvable of the pair of group (G,M) that preserve under
n-isoclinism. �

Let π is the non-empty set of primary number and (G,M) is a pair
of arbitrary groups, then the element m ∈ M is called π−element of
pair (G,M), whenever order m only divide on primary number of π.
Also, the finite pair of groups (G,M) is called, π−group, when order
M is so. We may define finite pair of group (G,M),π− separable or
π−solvable, whenever there exist a subnormal series that its factors
π−group or π′−group.

Theorem 2.13. Let (G,M) and (H,H ∩ M) are two finite groups
such that (G,M) ∼n (H,H ∩ N). Then, (G,M) is π− separable(
π−solvable) if and only if (H,H ∩M) is π− separable( π−solvable).

Proof. Suppose that (G,M) is a π− seperable group. Hence (G,M)
Zn(G,M)

∼=
(H,H∩N)
Zn(H,H∩N)

is also seperable. Therefore, there exist the following a sub-

normal series
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N0

Zn(H,H ∩N)
=
Zn(H,H ∩N)

Zn(H,H ∩N)
�

N1

Zn(H,H ∩N)
� . . .

�
Nk

Zn(H,H ∩N)
=

H ∩N
Zn(H,H ∩N)

,

such that its factors π− group or π′−group. On the other hand
Zn (H,H ∩N) is finite nilpotent, and so supersolvable. So, there is
following subnormal series

M0 = 〈1〉�M1 � · · ·�Mm = Zn (H,H ∩N) ,

which its factors π− group or π′− group. Now, one can easily see the
subnormal series

M0 = 〈1〉�M1�· · ·�Mm = Zn (H,H ∩N) = N0�N1�· · ·�Nm = H∩N,
its factors, π− group or π′− group. So (H,H ∩N) is a π− seperable
group . �
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