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PERFECT 2-COLORINGS OF Cn × Cm

M. ALAEIYAN∗, M. K. JAMIL AND M.H. ALAEIYAN

Abstract. In this paper, we enumerate the parameter matrices
of all perfect 2-colorings of the generalized prism graph Cn × C3,
where n ≥ 3. We also present some generalized results for Cn×Cm,
where m,n ≥ 3.

1. Introduction

Let G = (V (G), E(G)) be a graph [4] with vertex set V (G) and
edge set E(G). The number of elements in V (G) and E(G) is called
the order and the size of the graph G. In a graph G the number of
vertices attached to the vertex v is called the degree of the vertex v, it
is denoted as d(v).

The Cartesian product G×H of the graphs G and H has the vertex
set V (G×H) = V (G)× V (H) and (u1, u2)(v1, v2) is an edge of G×H
if u1 = v1 and u2v2 ∈ E(H), or u1v1 ∈ E(G) and u2 = v2.

The Cartesian product of the cycles Cn and Cm where m,n ≥ 3, has
vertices and edges as

V (Cn × Cm) = {ai,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m},

E(Cn × Cm) = {ai,jai+1,j : 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m}
∪ {ai,jai,j+11 ≤ i ≤ n, 1 ≤ j ≤ m− 1}
∪ {ai,1ai,m : 1 ≤ i ≤ n} ∪ {a1,jan,j : 1 ≤ j ≤ m}.
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For a graph G and an integer m, a mapping p : V (G) −→ {1, 2, . . . ,m}
is called a perfect m-coloring with matrix A = (aij)i,j∈{1,2,...,m}, if it is
subjective, and for all i, j, for every vertex of color i the number of
its neighbors of color j is equal to ai,j. The matrix A is called the
parameter matrix of a perfect coloring. In the case m = 2, we call the
first color white (or zero), and the second color black (or one).

The idea of perfect m-coloring plays a significant role in coding the-
ory, algebraic combinatorics, and graph theory. In literature, the term
equitable partition is also used for this concept [10].

Completely regular codes are the generalization of perfect codes. The
existence of completely regular codes in a graph is a historical prob-
lem in mathematics. In 1973, Delsarte conjectured the non-existence of
perfect codes in Johnson graphs. After that, some effort has been made
on enumerating the parameter matrices of Johnson graphs [3, 5, 6, 10].

In 2007, Fon-Der-Flaass investigated the parameter matrices of n-
dimensional hypercube Qn for n < 24. He also found the construction
and a necessary condition for the existence of perfect 2-coloring of
the n-dimensional hypercube with a given parameter matrix [7, 8, 9].
Alaeiyan and Karami [1, 2] obtained the results on perfect 2-coloring for
Petersen graph and Platonic graphs. Also, Alaeiyan et al. [3] enumer-
ated the parameter matrices of all perfect 3- colorings of the Johnson
graph J(6, 3).

This paper enumerates the parameter matrices of all perfect 2-colorings
of Cn×C3. Figure 1 shows the representation of 4-regular graph Cn×C3.

2. Main Results and Discussions

In this section, we first discuss some results concerning necessary
conditions for the existence of perfect 2-colorings of 4-regular graph of
order 3n of Cn×C3 with a given parameter matrix A = (aij)i,j=1,2, and
then we enumerate the parameters of all perfect 2-colorings of 4-regular
graph of Cn × C3.

The simplest necessary condition for the existence of a perfect 2-

colorings of Cn × C3 with the matrix

[
a11 a12
a21 a22

]
is

a11 + a12 = a21 + a22 = 4.

Also, it is clear that neither a12 nor a21 cannot be equal to zero, other-
wise white and black vertices of Cn×C3 would not be adjacent, which
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Figure 1. Representation of 4-regular graph Cn × C3.

is impossible since the graph is connected. By the given conditions,
we can see that a parameter matrix of a perfect 2-coloring of Cn × C3

must be one of the following matrices:

A1 =

[
0 4
4 0

]
, A2 =

[
1 3
4 0

]
, A3 =

[
0 4
2 2

]
, A4 =

[
0 4
1 3

]
, A5 =

[
1 3
3 1

]
,

A6 =

[
1 3
2 2

]
, A7 =

[
1 3
1 3

]
, A8 =

[
2 2
2 2

]
, A9 =

[
2 2
1 3

]
, A10 =

[
3 1
1 3

]
.

Lemma 2.1. [5] If W is the set of white vertices in a perfect 2-coloring
of a graph G with matrix A = (aij)i,j=1,2, then

|W | = |V (G)| a21
a12 + a21

.

Now, we will investigate the parameters of all perfect 2-colorings of
Cn × C3. In the proof of the theorems we mention that p is a perfect
2-colorings of graphs, which is the mapping p : V (Cn × C3)→ {0, 1}.
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2.1. Perfect 2-colorings of Cn × C3 with the matrix A1: In this
part, we show that Cn × C3 has no perfect 2-coloring with the matrix
A1.

Theorem 2.2. The graph Cn×C3 have no perfect 2-colorings with the
matrix A1.

Proof. Suppose first that the color a1,1 is zero. Then according to
matrix A1, the neighbors can not zero, and therefore must be color
one, which contradicts the matrix A1. It means if p(a1,1) = 0, then
p(a1,2) = p(a1,3) = 1 which is a contradiction with the matrix A1.
Similarly, if p(a1,1) = 1, then we have the same results. Hence Cn×C3

have no perfect 2-colorings with the matrix A1. �

2.2. Perfect 2-colorings of Cn × C3 with the matrix A2:

Theorem 2.3. There are no perfect 2-colorings of Cn × C3 with the
matrix A2.

Proof. It is easy to see that we cannot assign 0 or 1 to all the vertices
a1,1, a1,2 and a1,3. Without loss of generality, suppose that p(a1,1) =
p(a1,2) = 1 and p(a1,3) = 0. Then p(a2,3) = 0, p(a2,1) = p(a2,2) = 1,
which is not possible because the parameter matrix is A2. �

2.3. Perfect 2-colorings of Cn × C3 with the matrix A3:

Theorem 2.4. Cn×C3, where n ≡ 0(mod 3), has a perfect 2-coloring
with the matrix A3. Also, when n ≡ 1, 2(mod 3) the graph Cn × C3

have no perfect 2-coloring with the matrix A3.

Proof. By our assumptions there are three cases:

Case 1 n ≡ 0(mod 3):
For each positive integer n, consider the mapping p : V (Cn ×
C3)→ {0, 1} by

p(ai,1) =

{
0 ; 1 ≤ i ≤ n, i ≡ 2(mod 3)

1 otherwise
,

p(ai,2) =

{
0 ; 1 ≤ i ≤ n, i ≡ 1(mod 3)

1 otherwise
,

p(ai,3) =

{
0 ; 1 ≤ i ≤ n, i ≡ 0(mod 3)

1 otherwise
.

It can be easily seen that the above mapping is a perfect 2-
coloring with the matrix A3.
Now for the second part, we note that, every 3-cycle contains
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exactly one 0, otherwise 0 connects with 0 or 1 connects with
no 0 so Cn × C3 does not admits perfect 2-coloring for A3.

Case 2 n ≡ 1(mod 3)
Without loss of generality, suppose that p(a1,1) = p(a2,2) =
p(a3,3) = . . . = p(an−3,1) = p(an−2,2) = p(an−1,3) = 0 = p(an,2)
but than p(an−1,2) connects with three 0’s namely an−2,2, an−1,3
and an,2, which is not possible relative to the matrix A3.

Case 3 n ≡ 2(mod 3):
Without loss of generality, suppose that p(a1,1) = p(a2,2) =
p(a3,3) = . . . = p(an−3,3) = p(an−2,2) = p(an−1,1) = 0 = p(an,2)
and p(an,2) = 0 or p(an,3) = 0. If p(an,2) = 0, then an,3 connects
with only one 0 namely an,2, and vice versa.

�

2.4. Perfect 2-colorings of Cn × C3 with the matrix A4:

Theorem 2.5. There are no perfect 2-colorings of Cn × C3 with the
matrix A4.

Proof. Clearly, we cannot assign 0 to more than one vertex from the
vertices a1,1, a1,2 and a1,3.
Without loss of generality, suppose that p(a1,2) = 0. Then p(a1,1) =
p(a1,3) = p(a2,1) = p(a2,2) = p(a2,3) = 1. To connect a2,1 and a2,3 to 0
we must have p(a3,1) = p(a3,3) = 0, but this is not possible.
Suppose p(a1,1) = p(a1,2) = p(a1,3) = 1. Now, we have to connect these
three vertices to 0 but we have only two possible places (without loss
of generality a2,1 and an,2) otherwise 0 connects with 0. So we also
cannot assign 1 to the vertices a1,1, a1,2 and a1,3. �

2.5. Perfect 2-colorings of Cn × C3 with the matrix A5:

Theorem 2.6. There are no perfect 2-colorings of Cn × C3 with the
matrix A5.

Proof. Clearly, we cannot assign 0 or 1 to all the vertices a1,1, a1,2 and
a1,3.
Without loss of generality, suppose that p(a1,1) = p(a1,2) = 0. Then
p(a1,3) = p(a2,1) = p(a2,2) = p(an,1) = p(an,2) = 1 and p(a2,3) = 0.
Now a2,3 is connected with three 1 so we must have p(a3,3) = 0. Also
a2,1 and a2,2 is connected with two 0 and to connect with third 0 we
must have p(a3,1) = p(a3,2) = 0, which is not possible.
Similar case as above if we assign p(a1,1) = p(a1,2) = 1. �
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2.6. Perfect 2-colorings of Cn × C3 with the matrix A6:

Theorem 2.7. There are no perfect 2-colorings of Cn × C3 with the
matrix A6.

Proof. In the three-cycle (a1,1a1,2a1,3) we have three caces; or all three
vertices are zero or two of them are zero or only one of them is zero.
Now, we consider all 3 caces. According to the matrix A6 clearly, 0
cannot be assign to the all vertices a1,1, a1,2 and a1,3.
Without loss of generality, suppose that p(a1,1) = p(a1,2) = 0. This
implies that p(a1,3) = p(a2,1) = p(a2,2) = p(a2,3) = 1, which is not
possible.
Suppose that p(a1,1) = p(a1,2) = p(a1,3) = 1. Then p(a2,1) = p(an,1) =
p(a2,2) = p(an,2) = p(a2,3) = p(an,3) = 0, which is again not possible.
Suppose that p(a1,1) = 0 and p(a1,2) = p(a1,3) = 1. We consider the
following cases:

i) if p(a2,1) = 0, then p(a3,1) = p(a2,2) = p(a3,2) = p(an,1) = 1.
Now a3,1, a2,2 and a2,3 are connected with one 0. To connect a2,2
and a2,3 with another 0 we must have p(a3,2) = p(a3,3) = 0, but
then a3,1 connects with three 0, which is impossible according
to the matrix A6.

ii) if p(an,1) = 0, then p(a2,1) = p(a3,1) = p(an,2) = p(an,3) =
p(a2,3) = 1. Now a2,1 and a3,1 are connected with one 0 and to
connect these vertices with another 0 we must have p(a2,2) =
p(a2,3) = 0. Then a2,1 connects with three 0’s, which is again
not possible according to the matrix A6.

�

2.7. Perfect 2-colorings of Cn × C3 with the matrix A7:

Remark 2.8. According to the matrix A10, in a 3-cycle, every vertex
has the same color.

Theorem 2.9. If n ≡ 0(mod 4), then the graphs Cn×C3 have a perfect
2-coloring with the matrix A10. Also, if n 6≡ 0(mod 4), then the graphs
Cn × C3 have no perfect 2-coloring with the matrix A10.

Proof. For k ≥ 1, C4k×C3 admits the 2-perfect coloring by the following
mapping:

p(a1,1) = p(a1,2) = p(a1,3) = p(an,1) = p(an,2) = p(an,3) = 0,

p(ai,j) = 0; i ≡ 0, 1(mod 4), 1 ≤ j ≤ 3,

p(ai,j) = 1; i ≡ 2, 3(mod 4), 1 ≤ j ≤ 3.
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Therefore, according to matrix A10; Cn×C3 when n ≡ 0(mod 4) has a
perfect 2-coloring with the matrix A10. Also, when n 6≡ 0(mod 4) the
graph Cn × C3 have no perfect 2-coloring with the matrix A10. �

3. Some Generalized Results

In this section, we will discuss some generalized results on Cm × Cn

graphs for perfect 2-colorings; where m,n ≥ 3.

3.1. Perfect 2-colorings of Cn × Cm with the matrix A10:

Theorem 3.1. The Cn × C4k, n ≥ 3 and k ≥ 1, have a perfect 2-
coloring with the matrix A10.

Proof. The mapping p : V (Cn × Cm)→ {1, 2} defined as:

p(ai,j) = 0; 1 ≤ i ≤ n, j ≡ 1, 2(mod 4),

p(ai,j) = 0; 1 ≤ i ≤ n, j ≡ 0, 3(mod 4),

gives the perfect 2-colorings with the matrix A10. �

3.2. Perfect 2-colorings of Cn × Cm with the matrix A9:

Theorem 3.2. The Cn × C3k, n ≥ 3 and k ≥ 1, have a perfect 2-
coloring with the matrix A9.

Proof. The following mapping attains the perfect 2-colorings with the
matrix A9:

p : V (Cn × Cm)→ {1, 2}

p(ai,j) = 0; 1 ≤ i ≤ n, j ≡ 1(mod 3) and 1 ≤ j ≤ m,

p(ai,j) = 0; 1 ≤ i ≤ n, j ≡ 0, 2(mod 3) and 1 ≤ j ≤ m.

�

3.3. Perfect 2-colorings of Cn × Cm with the matrix A8:

Theorem 3.3. The Cn × Cm, where m,n ≥ 3 and n or m must be
even, have a perfect 2-coloring with the matrix A8.

Proof. By Lemma 2.1 we have;

|W | = mn

2
,

which is only possible when n or m is even.
The mapping p : V (Cn × Cm)→ {1, 2} defined as the following:

p(ai,j) = 0; i is odd 1 ≤ i ≤ n, 1 ≤ j ≤ m,

p(ai,j) = 1; i is even 1 ≤ i ≤ n, 1 ≤ j ≤ m.

provide the perfect 2-colorings for the matrix A8. �
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3.4. Perfect 2-colorings of Cn × Cm with the matrix A1:

Theorem 3.4. The C2l × C2k, l ≥ 1 and k ≥ 1, have a perfect 2-
coloring with the matrix A1.

Proof. The following mapping gives the perfect 2-colorings:

p(ai,j) = 0; i is even 1 ≤ i ≤ n, j is odd 1 ≤ j ≤ m,

p(ai,j) = 1; i is odd 1 ≤ i ≤ n, j is even 1 ≤ j ≤ m.

�

3.5. Perfect 2-colorings of Cn × Cm with the matrix A5:

Theorem 3.5. The C2l × C2k, l, k ≥ 2, have a perfect 2-coloring with
the matrix A5.

Proof. The mapping p : V (Cn×Cm)→ {1, 2} defined as the following:

p(ai,j) = 0; i is odd 1 ≤ i ≤ n, j ≡ 0, 1(mod 4), 1 ≤ j ≤ m,

p(ai,j) = 0; i is odd 1 ≤ i ≤ n, j ≡ 2, 3(mod 4), 1 ≤ j ≤ m,

p(ai,j) = 0; i is even 1 ≤ i ≤ n, j ≡ 2, 3(mod 4), 1 ≤ j ≤ m,

p(ai,j) = 0; i is even 1 ≤ i ≤ n, j ≡ 0, 1(mod 4), 1 ≤ j ≤ m,

is the perfect 2-coloring with the matrix A5. �
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