Journal of Algebra and Related Topics Vol. 11, No 1, (2023), pp 55-XX

PERFECT 2-COLORINGS OF $C_n \times C_m$

M. ALAEIYAN*, M. K. JAMIL AND M.H. ALAEIYAN

ABSTRACT. In this paper, we enumerate the parameter matrices of all perfect 2-colorings of the generalized prism graph $C_n \times C_3$, where $n \geq 3$. We also present some generalized results for $C_n \times C_m$, where $m, n \geq 3$.

1. INTRODUCTION

Let G = (V(G), E(G)) be a graph [4] with vertex set V(G) and edge set E(G). The number of elements in V(G) and E(G) is called the *order* and the *size* of the graph G. In a graph G the number of vertices attached to the vertex v is called the degree of the vertex v, it is denoted as d(v).

The Cartesian product $G \times H$ of the graphs G and H has the vertex set $V(G \times H) = V(G) \times V(H)$ and $(u_1, u_2)(v_1, v_2)$ is an edge of $G \times H$ if $u_1 = v_1$ and $u_2v_2 \in E(H)$, or $u_1v_1 \in E(G)$ and $u_2 = v_2$.

The Cartesian product of the cycles C_n and C_m where $m, n \ge 3$, has vertices and edges as

$$V(C_n \times C_m) = \{a_{i,j} : 1 \le i \le n, 1 \le j \le m\},\$$

$$E(C_n \times C_m) = \{a_{i,j}a_{i+1,j} : 1 \le i \le n-1, 1 \le j \le m\} \\ \cup \{a_{i,j}a_{i,j+1}1 \le i \le n, 1 \le j \le m-1\} \\ \cup \{a_{i,1}a_{i,m} : 1 \le i \le n\} \cup \{a_{1,j}a_{n,j} : 1 \le j \le m\}.$$

Keywords: perfect colorings, equitable partition, generalized prism graph.

*Corresponding author.

MSC(2010): Primary: 05C15; Secondary: 68R01, 68R05

Received: 30 January 2021, Accepted: 4 January 2023.

For a graph G and an integer m, a mapping $p: V(G) \longrightarrow \{1, 2, ..., m\}$ is called a *perfect m-coloring* with matrix $A = (a_{ij})_{i,j \in \{1,2,...,m\}}$, if it is subjective, and for all i, j, for every vertex of color i the number of its neighbors of color j is equal to $a_{i,j}$. The matrix A is called the *parameter matrix* of a perfect coloring. In the case m = 2, we call the first color white (or zero), and the second color black (or one).

The idea of perfect *m*-coloring plays a significant role in coding theory, algebraic combinatorics, and graph theory. In literature, the term *equitable partition* is also used for this concept [10].

Completely regular codes are the generalization of perfect codes. The existence of completely regular codes in a graph is a historical problem in mathematics. In 1973, Delsarte conjectured the non-existence of perfect codes in Johnson graphs. After that, some effort has been made on enumerating the parameter matrices of Johnson graphs [3, 5, 6, 10].

In 2007, Fon-Der-Flaass investigated the parameter matrices of *n*dimensional hypercube Q_n for n < 24. He also found the construction and a necessary condition for the existence of perfect 2-coloring of the *n*-dimensional hypercube with a given parameter matrix [7, 8, 9]. Alaeiyan and Karami [1, 2] obtained the results on perfect 2-coloring for Petersen graph and Platonic graphs. Also, Alaeiyan et al. [3] enumerated the parameter matrices of all perfect 3- colorings of the Johnson graph J(6, 3).

This paper enumerates the parameter matrices of all perfect 2-colorings of $C_n \times C_3$. Figure 1 shows the representation of 4-regular graph $C_n \times C_3$.

2. Main Results and Discussions

In this section, we first discuss some results concerning necessary conditions for the existence of perfect 2-colorings of 4-regular graph of order 3n of $C_n \times C_3$ with a given parameter matrix $A = (a_{ij})_{i,j=1,2}$, and then we enumerate the parameters of all perfect 2-colorings of 4-regular graph of $C_n \times C_3$.

The simplest necessary condition for the existence of a perfect 2colorings of $C_n \times C_3$ with the matrix $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ is $a_{11} + a_{12} = a_{21} + a_{22} = 4.$

Also, it is clear that neither a_{12} nor a_{21} cannot be equal to zero, otherwise white and black vertices of $C_n \times C_3$ would not be adjacent, which

FIGURE 1. Representation of 4-regular graph $C_n \times C_3$.

is impossible since the graph is connected. By the given conditions, we can see that a parameter matrix of a perfect 2-coloring of $C_n \times C_3$ must be one of the following matrices:

$$A_{1} = \begin{bmatrix} 0 & 4 \\ 4 & 0 \end{bmatrix}, A_{2} = \begin{bmatrix} 1 & 3 \\ 4 & 0 \end{bmatrix}, A_{3} = \begin{bmatrix} 0 & 4 \\ 2 & 2 \end{bmatrix}, A_{4} = \begin{bmatrix} 0 & 4 \\ 1 & 3 \end{bmatrix}, A_{5} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}, A_{6} = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}, A_{7} = \begin{bmatrix} 1 & 3 \\ 1 & 3 \end{bmatrix}, A_{8} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}, A_{9} = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}, A_{10} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}.$$

Lemma 2.1. [5] If W is the set of white vertices in a perfect 2-coloring of a graph G with matrix $A = (a_{ij})_{i,j=1,2}$, then

$$|W| = |V(G)| \frac{a_{21}}{a_{12} + a_{21}}.$$

Now, we will investigate the parameters of all perfect 2-colorings of $C_n \times C_3$. In the proof of the theorems we mention that p is a perfect 2-colorings of graphs, which is the mapping $p: V(C_n \times C_3) \to \{0, 1\}$.

2.1. Perfect 2-colorings of $C_n \times C_3$ with the matrix A_1 : In this part, we show that $C_n \times C_3$ has no perfect 2-coloring with the matrix A_1 .

Theorem 2.2. The graph $C_n \times C_3$ have no perfect 2-colorings with the matrix A_1 .

Proof. Suppose first that the color $a_{1,1}$ is zero. Then according to matrix A_1 , the neighbors can not zero, and therefore must be color one, which contradicts the matrix A_1 . It means if $p(a_{1,1}) = 0$, then $p(a_{1,2}) = p(a_{1,3}) = 1$ which is a contradiction with the matrix A_1 . Similarly, if $p(a_{1,1}) = 1$, then we have the same results. Hence $C_n \times C_3$ have no perfect 2-colorings with the matrix A_1 .

2.2. Perfect 2-colorings of $C_n \times C_3$ with the matrix A_2 :

Theorem 2.3. There are no perfect 2-colorings of $C_n \times C_3$ with the matrix A_2 .

Proof. It is easy to see that we cannot assign 0 or 1 to all the vertices $a_{1,1}, a_{1,2}$ and $a_{1,3}$. Without loss of generality, suppose that $p(a_{1,1}) = p(a_{1,2}) = 1$ and $p(a_{1,3}) = 0$. Then $p(a_{2,3}) = 0$, $p(a_{2,1}) = p(a_{2,2}) = 1$, which is not possible because the parameter matrix is A_2 .

2.3. Perfect 2-colorings of $C_n \times C_3$ with the matrix A_3 :

Theorem 2.4. $C_n \times C_3$, where $n \equiv 0 \pmod{3}$, has a perfect 2-coloring with the matrix A_3 . Also, when $n \equiv 1, 2 \pmod{3}$ the graph $C_n \times C_3$ have no perfect 2-coloring with the matrix A_3 .

Proof. By our assumptions there are three cases:

Case 1 $n \equiv 0 \pmod{3}$:

For each positive integer n, consider the mapping $p: V(C_n \times C_3) \to \{0, 1\}$ by

$$p(a_{i,1}) = \begin{cases} 0 & ; 1 \le i \le n, i \equiv 2 \pmod{3} \\ 1 & otherwise \end{cases},$$
$$p(a_{i,2}) = \begin{cases} 0 & ; 1 \le i \le n, i \equiv 1 \pmod{3} \\ 1 & otherwise \end{cases},$$
$$p(a_{i,3}) = \begin{cases} 0 & ; 1 \le i \le n, i \equiv 0 \pmod{3} \\ 1 & otherwise \end{cases}.$$

It can be easily seen that the above mapping is a perfect 2coloring with the matrix A_3 .

Now for the second part, we note that, every 3-cycle contains

58

exactly one 0, otherwise 0 connects with 0 or 1 connects with no 0 so $C_n \times C_3$ does not admits perfect 2-coloring for A_3 . Case 2 $n \equiv 1 \pmod{3}$

Without loss of generality, suppose that $p(a_{1,1}) = p(a_{2,2}) = p(a_{3,3}) = \ldots = p(a_{n-3,1}) = p(a_{n-2,2}) = p(a_{n-1,3}) = 0 = p(a_{n,2})$ but than $p(a_{n-1,2})$ connects with three 0's namely $a_{n-2,2}, a_{n-1,3}$ and $a_{n,2}$, which is not possible relative to the matrix A_3 .

Case 3 $n \equiv 2 \pmod{3}$:

Without loss of generality, suppose that $p(a_{1,1}) = p(a_{2,2}) = p(a_{3,3}) = \ldots = p(a_{n-3,3}) = p(a_{n-2,2}) = p(a_{n-1,1}) = 0 = p(a_{n,2})$ and $p(a_{n,2}) = 0$ or $p(a_{n,3}) = 0$. If $p(a_{n,2}) = 0$, then $a_{n,3}$ connects with only one 0 namely $a_{n,2}$, and vice versa.

2.4. Perfect 2-colorings of $C_n \times C_3$ with the matrix A_4 :

Theorem 2.5. There are no perfect 2-colorings of $C_n \times C_3$ with the matrix A_4 .

Proof. Clearly, we cannot assign 0 to more than one vertex from the vertices $a_{1,1}, a_{1,2}$ and $a_{1,3}$.

Without loss of generality, suppose that $p(a_{1,2}) = 0$. Then $p(a_{1,1}) = p(a_{1,3}) = p(a_{2,1}) = p(a_{2,2}) = p(a_{2,3}) = 1$. To connect $a_{2,1}$ and $a_{2,3}$ to 0 we must have $p(a_{3,1}) = p(a_{3,3}) = 0$, but this is not possible.

Suppose $p(a_{1,1}) = p(a_{1,2}) = p(a_{1,3}) = 1$. Now, we have to connect these three vertices to 0 but we have only two possible places (without loss of generality $a_{2,1}$ and $a_{n,2}$) otherwise 0 connects with 0. So we also cannot assign 1 to the vertices $a_{1,1}, a_{1,2}$ and $a_{1,3}$.

2.5. Perfect 2-colorings of $C_n \times C_3$ with the matrix A_5 :

Theorem 2.6. There are no perfect 2-colorings of $C_n \times C_3$ with the matrix A_5 .

Proof. Clearly, we cannot assign 0 or 1 to all the vertices $a_{1,1}, a_{1,2}$ and $a_{1,3}$.

Without loss of generality, suppose that $p(a_{1,1}) = p(a_{1,2}) = 0$. Then $p(a_{1,3}) = p(a_{2,1}) = p(a_{2,2}) = p(a_{n,1}) = p(a_{n,2}) = 1$ and $p(a_{2,3}) = 0$. Now $a_{2,3}$ is connected with three 1 so we must have $p(a_{3,3}) = 0$. Also $a_{2,1}$ and $a_{2,2}$ is connected with two 0 and to connect with third 0 we must have $p(a_{3,1}) = p(a_{3,2}) = 0$, which is not possible.

Similar case as above if we assign $p(a_{1,1}) = p(a_{1,2}) = 1$.

2.6. Perfect 2-colorings of $C_n \times C_3$ with the matrix A_6 :

Theorem 2.7. There are no perfect 2-colorings of $C_n \times C_3$ with the matrix A_6 .

Proof. In the three-cycle $(a_{1,1}a_{1,2}a_{1,3})$ we have three caces; or all three vertices are zero or two of them are zero or only one of them is zero. Now, we consider all 3 caces. According to the matrix A_6 clearly, 0 cannot be assign to the all vertices $a_{1,1}, a_{1,2}$ and $a_{1,3}$.

Without loss of generality, suppose that $p(a_{1,1}) = p(a_{1,2}) = 0$. This implies that $p(a_{1,3}) = p(a_{2,1}) = p(a_{2,2}) = p(a_{2,3}) = 1$, which is not possible.

Suppose that $p(a_{1,1}) = p(a_{1,2}) = p(a_{1,3}) = 1$. Then $p(a_{2,1}) = p(a_{n,1}) = p(a_{2,2}) = p(a_{n,2}) = p(a_{2,3}) = p(a_{n,3}) = 0$, which is again not possible.

Suppose that $p(a_{1,1}) = 0$ and $p(a_{1,2}) = p(a_{1,3}) = 1$. We consider the following cases:

- i) if $p(a_{2,1}) = 0$, then $p(a_{3,1}) = p(a_{2,2}) = p(a_{3,2}) = p(a_{n,1}) = 1$. Now $a_{3,1}, a_{2,2}$ and $a_{2,3}$ are connected with one 0. To connect $a_{2,2}$ and $a_{2,3}$ with another 0 we must have $p(a_{3,2}) = p(a_{3,3}) = 0$, but then $a_{3,1}$ connects with three 0, which is impossible according to the matrix A_6 .
- *ii*) if $p(a_{n,1}) = 0$, then $p(a_{2,1}) = p(a_{3,1}) = p(a_{n,2}) = p(a_{n,3}) = p(a_{2,3}) = 1$. Now $a_{2,1}$ and $a_{3,1}$ are connected with one 0 and to connect these vertices with another 0 we must have $p(a_{2,2}) = p(a_{2,3}) = 0$. Then $a_{2,1}$ connects with three 0's, which is again not possible according to the matrix A_6 .

2.7. Perfect 2-colorings of $C_n \times C_3$ with the matrix A_7 :

Remark 2.8. According to the matrix A_{10} , in a 3-cycle, every vertex has the same color.

Theorem 2.9. If $n \equiv 0 \pmod{4}$, then the graphs $C_n \times C_3$ have a perfect 2-coloring with the matrix A_{10} . Also, if $n \not\equiv 0 \pmod{4}$, then the graphs $C_n \times C_3$ have no perfect 2-coloring with the matrix A_{10} .

Proof. For $k \ge 1$, $C_{4k} \times C_3$ admits the 2-perfect coloring by the following mapping:

$$p(a_{1,1}) = p(a_{1,2}) = p(a_{1,3}) = p(a_{n,1}) = p(a_{n,2}) = p(a_{n,3}) = 0,$$
$$p(a_{i,j}) = 0; \quad i \equiv 0, 1 \pmod{4}, 1 \le j \le 3,$$
$$p(a_{i,j}) = 1; \quad i \equiv 2, 3 \pmod{4}, 1 \le j \le 3.$$

60

Therefore, according to matrix A_{10} ; $C_n \times C_3$ when $n \equiv 0 \pmod{4}$ has a perfect 2-coloring with the matrix A_{10} . Also, when $n \not\equiv 0 \pmod{4}$ the graph $C_n \times C_3$ have no perfect 2-coloring with the matrix A_{10} . \Box

3. Some Generalized Results

In this section, we will discuss some generalized results on $C_m \times C_n$ graphs for perfect 2-colorings; where $m, n \geq 3$.

3.1. Perfect 2-colorings of $C_n \times C_m$ with the matrix A_{10} :

Theorem 3.1. The $C_n \times C_{4k}$, $n \geq 3$ and $k \geq 1$, have a perfect 2coloring with the matrix A_{10} .

Proof. The mapping $p: V(C_n \times C_m) \to \{1, 2\}$ defined as:

$$p(a_{i,j}) = 0; \quad 1 \le i \le n, j \equiv 1, 2 \pmod{4},$$

 $p(a_{i,j}) = 0; \quad 1 \le i \le n, j \equiv 0, 3 \pmod{4},$

gives the perfect 2-colorings with the matrix A_{10} .

3.2. Perfect 2-colorings of $C_n \times C_m$ with the matrix A_9 :

Theorem 3.2. The $C_n \times C_{3k}$, $n \ge 3$ and $k \ge 1$, have a perfect 2coloring with the matrix A_9 .

Proof. The following mapping attains the perfect 2-colorings with the matrix A_9 :

$$p: V(C_n \times C_m) \to \{1, 2\}$$

$$p(a_{i,j}) = 0; \quad 1 \le i \le n, j \equiv 1 \pmod{3} \text{ and } 1 \le j \le m,$$

$$p(a_{i,j}) = 0; \quad 1 \le i \le n, j \equiv 0, 2 \pmod{3} \text{ and } 1 \le j \le m.$$

3.3. Perfect 2-colorings of $C_n \times C_m$ with the matrix A_8 :

Theorem 3.3. The $C_n \times C_m$, where $m, n \ge 3$ and n or m must be even, have a perfect 2-coloring with the matrix A_8 .

Proof. By Lemma 2.1 we have;

$$|W| = \frac{mn}{2},$$

which is only possible when n or m is even.

The mapping $p: V(C_n \times C_m) \to \{1, 2\}$ defined as the following:

$$p(a_{i,j}) = 0; \quad i \text{ is odd } 1 \le i \le n, 1 \le j \le m,$$

$$p(a_{i,j}) = 1; \quad i \text{ is even } 1 \le i \le n, 1 \le j \le m.$$

provide the perfect 2-colorings for the matrix A_8 .

3.4. Perfect 2-colorings of $C_n \times C_m$ with the matrix A_1 :

Theorem 3.4. The $C_{2l} \times C_{2k}$, $l \ge 1$ and $k \ge 1$, have a perfect 2coloring with the matrix A_1 .

Proof. The following mapping gives the perfect 2-colorings:

$$p(a_{i,j}) = 0; \quad i \text{ is even } 1 \le i \le n, j \text{ is odd } 1 \le j \le m,$$

$$p(a_{i,j}) = 1; \quad i \text{ is odd } 1 \le i \le n, j \text{ is even } 1 \le j \le m.$$

3.5. Perfect 2-colorings of $C_n \times C_m$ with the matrix A_5 :

Theorem 3.5. The $C_{2l} \times C_{2k}$, $l, k \geq 2$, have a perfect 2-coloring with the matrix A_5 .

Proof. The mapping $p: V(C_n \times C_m) \to \{1, 2\}$ defined as the following:

 $\begin{array}{ll} p(a_{i,j}) = 0; & i \text{ is odd } 1 \leq i \leq n, j \equiv 0, 1 (\text{mod } 4), 1 \leq j \leq m, \\ p(a_{i,j}) = 0; & i \text{ is odd } 1 \leq i \leq n, j \equiv 2, 3 (\text{mod } 4), 1 \leq j \leq m, \\ p(a_{i,j}) = 0; & i \text{ is even } 1 \leq i \leq n, j \equiv 2, 3 (\text{mod } 4), 1 \leq j \leq m, \\ p(a_{i,j}) = 0; & i \text{ is even } 1 \leq i \leq n, j \equiv 0, 1 (\text{mod } 4), 1 \leq j \leq m, \end{array}$

is the perfect 2-coloring with the matrix A_5 .

Acknowledgments

The authors would like to thank the referee for careful reading.

References

- M. Alaeiyan, H. Karami, Perfect 2-coloring of the generalized Petersen graph, Proc. Indian Acad. Sci., (3) 126 (2016) 289–294.
- M.H. Alaeiyan, H. Karami, Perfect 2-coloring of the Platonic graphs, Int. J. Nonlinear Anal. Appl., (2) 8 (2017) 29–35.
- M. Alaeiyan, A. Abedi, M.H. Alaeiyan, Perfect 3- Colorings of the Johnson Graph J(6, 3). Bull. Iran. Math. Soc., (2020). https://doi.org/10.1007/s41980-019-00346-9.
- H. Ansari-Toroghy; F. Farshadifar; F. Mahboobi-Abkenar. The small intersection graph relative to multiplication modules, J. Algebra Relat. Topics, (1) 4 (2016), 21-32.
- S.V. Avgustinovich, I. Y. Mogilnykh, Perfect 2-colorings of Johnson graphs J(6, 3) and J(7, 3), Lect. Notes Comput. Sci., 5228 (2008) 11–19.
- S.V. Avgustinovich, I. Y. Mogilnykh, Perfect colorings of Johnson graphs J(8, 3) and J(8, 4) with tow colors, J. Appl. Industrial Math., 5 (2011) 19–30.
- D. G. Fon-Der-Flaass, A bound on correlation immunity, Sib. Electron. Math. Reports J., 4 (2007) 133–135.
- D. G. Fon-Der-Flaass, Perfect 2-coloring of a hypercube, Sib. Math. J., 4 (2007) 923–930.

- D. G. Fon-Der-Flaass, Perfect 2-coloring of a 12-dimensional cube that achive a bound of correlation immunity, Sib. Math. J., 4 (2007) 292–295.
- C. Godsil, Compact graphs and equitable partitions, Linear Algebra Appl., 255 (1997) 259–266.

Mehdi Alaeiyan

School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16846, Iran.

Email: alaeiyan@iust.ac.ir

Muhammad Kamran Jamil

Department of Mathematics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road, Lahore, Pakistan. Email: m.kamran.sms@gmail.com

Mohammadhadi Alaeiyan

Faculty of Computer Engineering, K. N. Toosi University of Technology, Seyed Khandan, Shariati Ave, Tehran 16317-14191, Iran. Email: m.alaeiyan@kntu.ac.ir