Journal of Algebra and Related Topics

Vol. 11, No 1, (2023), pp 55-XX

PERFECT 2-COLORINGS OF $C_{n} \times C_{m}$

M. ALAEIYAN*, M. K. JAMIL AND M.H. ALAEIYAN

Abstract

In this paper, we enumerate the parameter matrices of all perfect 2 -colorings of the generalized prism graph $C_{n} \times C_{3}$, where $n \geq 3$. We also present some generalized results for $C_{n} \times C_{m}$, where $m, n \geq 3$.

1. Introduction

Let $G=(V(G), E(G))$ be a graph [4] with vertex set $V(G)$ and edge set $E(G)$. The number of elements in $V(G)$ and $E(G)$ is called the order and the size of the graph G. In a graph G the number of vertices attached to the vertex v is called the degree of the vertex v, it is denoted as $d(v)$.

The Cartesian product $G \times H$ of the graphs G and H has the vertex set $V(G \times H)=V(G) \times V(H)$ and $\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)$ is an edge of $G \times H$ if $u_{1}=v_{1}$ and $u_{2} v_{2} \in E(H)$, or $u_{1} v_{1} \in E(G)$ and $u_{2}=v_{2}$.

The Cartesian product of the cycles C_{n} and C_{m} where $m, n \geq 3$, has vertices and edges as

$$
\begin{aligned}
& V\left(C_{n}\right.\left.\times C_{m}\right)=\left\{a_{i, j}: 1 \leq i \leq n, 1 \leq j \leq m\right\} \\
& E\left(C_{n} \times C_{m}\right)=\left\{a_{i, j} a_{i+1, j}: 1 \leq i \leq n-1,1 \leq j \leq m\right\} \\
& \cup\left\{a_{i, j} a_{i, j+1} 1 \leq i \leq n, 1 \leq j \leq m-1\right\} \\
& \cup\left\{a_{i, 1} a_{i, m}: 1 \leq i \leq n\right\} \cup\left\{a_{1, j} a_{n, j}: 1 \leq j \leq m\right\} .
\end{aligned}
$$

[^0]For a graph G and an integer m, a mapping $p: V(G) \longrightarrow\{1,2, \ldots, m\}$ is called a perfect m-coloring with matrix $A=\left(a_{i j}\right)_{i, j \in\{1,2, \ldots, m\}}$, if it is subjective, and for all i, j, for every vertex of color i the number of its neighbors of color j is equal to $a_{i, j}$. The matrix A is called the parameter matrix of a perfect coloring. In the case $m=2$, we call the first color white (or zero), and the second color black (or one).

The idea of perfect m-coloring plays a significant role in coding theory, algebraic combinatorics, and graph theory. In literature, the term equitable partition is also used for this concept [10].

Completely regular codes are the generalization of perfect codes. The existence of completely regular codes in a graph is a historical problem in mathematics. In 1973, Delsarte conjectured the non-existence of perfect codes in Johnson graphs. After that, some effort has been made on enumerating the parameter matrices of Johnson graphs [3, 5, 6, 10].

In 2007, Fon-Der-Flaass investigated the parameter matrices of n dimensional hypercube Q_{n} for $n<24$. He also found the construction and a necessary condition for the existence of perfect 2 -coloring of the n-dimensional hypercube with a given parameter matrix $[7,8,9]$. Alaeiyan and Karami [1, 2] obtained the results on perfect 2-coloring for Petersen graph and Platonic graphs. Also, Alaeiyan et al. [3] enumerated the parameter matrices of all perfect 3-colorings of the Johnson graph $J(6,3)$.

This paper enumerates the parameter matrices of all perfect 2-colorings of $C_{n} \times C_{3}$. Figure 1 shows the representation of 4-regular graph $C_{n} \times C_{3}$.

2. Main Results and Discussions

In this section, we first discuss some results concerning necessary conditions for the existence of perfect 2-colorings of 4-regular graph of order $3 n$ of $C_{n} \times C_{3}$ with a given parameter matrix $A=\left(a_{i j}\right)_{i, j=1,2}$, and then we enumerate the parameters of all perfect 2-colorings of 4-regular graph of $C_{n} \times C_{3}$.

The simplest necessary condition for the existence of a perfect 2colorings of $C_{n} \times C_{3}$ with the matrix $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ is

$$
a_{11}+a_{12}=a_{21}+a_{22}=4
$$

Also, it is clear that neither a_{12} nor a_{21} cannot be equal to zero, otherwise white and black vertices of $C_{n} \times C_{3}$ would not be adjacent, which

Figure 1. Representation of 4-regular graph $C_{n} \times C_{3}$.
is impossible since the graph is connected. By the given conditions, we can see that a parameter matrix of a perfect 2-coloring of $C_{n} \times C_{3}$ must be one of the following matrices:

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{ll}
0 & 4 \\
4 & 0
\end{array}\right], A_{2}=\left[\begin{array}{ll}
1 & 3 \\
4 & 0
\end{array}\right], A_{3}=\left[\begin{array}{ll}
0 & 4 \\
2 & 2
\end{array}\right], A_{4}=\left[\begin{array}{ll}
0 & 4 \\
1 & 3
\end{array}\right], A_{5}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right], \\
& A_{6}=\left[\begin{array}{ll}
1 & 3 \\
2 & 2
\end{array}\right], A_{7}=\left[\begin{array}{ll}
1 & 3 \\
1 & 3
\end{array}\right], A_{8}=\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right], A_{9}=\left[\begin{array}{ll}
2 & 2 \\
1 & 3
\end{array}\right], A_{10}=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right] .
\end{aligned}
$$

Lemma 2.1. [5] If W is the set of white vertices in a perfect 2-coloring of a graph G with matrix $A=\left(a_{i j}\right)_{i, j=1,2}$, then

$$
|W|=|V(G)| \frac{a_{21}}{a_{12}+a_{21}}
$$

Now, we will investigate the parameters of all perfect 2-colorings of $C_{n} \times C_{3}$. In the proof of the theorems we mention that p is a perfect 2 -colorings of graphs, which is the mapping $p: V\left(C_{n} \times C_{3}\right) \rightarrow\{0,1\}$.
2.1. Perfect 2-colorings of $C_{n} \times C_{3}$ with the matrix A_{1} : In this part, we show that $C_{n} \times C_{3}$ has no perfect 2 -coloring with the matrix A_{1}.
Theorem 2.2. The graph $C_{n} \times C_{3}$ have no perfect 2-colorings with the matrix A_{1}.

Proof. Suppose first that the color $a_{1,1}$ is zero. Then according to matrix A_{1}, the neighbors can not zero, and therefore must be color one, which contradicts the matrix A_{1}. It means if $p\left(a_{1,1}\right)=0$, then $p\left(a_{1,2}\right)=p\left(a_{1,3}\right)=1$ which is a contradiction with the matrix A_{1}. Similarly, if $p\left(a_{1,1}\right)=1$, then we have the same results. Hence $C_{n} \times C_{3}$ have no perfect 2 -colorings with the matrix A_{1}.
2.2. Perfect 2-colorings of $C_{n} \times C_{3}$ with the matrix A_{2} :

Theorem 2.3. There are no perfect 2 -colorings of $C_{n} \times C_{3}$ with the matrix A_{2}.

Proof. It is easy to see that we cannot assign 0 or 1 to all the vertices $a_{1,1}, a_{1,2}$ and $a_{1,3}$. Without loss of generality, suppose that $p\left(a_{1,1}\right)=$ $p\left(a_{1,2}\right)=1$ and $p\left(a_{1,3}\right)=0$. Then $p\left(a_{2,3}\right)=0, p\left(a_{2,1}\right)=p\left(a_{2,2}\right)=1$, which is not possible because the parameter matrix is A_{2}.

2.3. Perfect 2-colorings of $C_{n} \times C_{3}$ with the matrix A_{3} :

Theorem 2.4. $C_{n} \times C_{3}$, where $n \equiv 0(\bmod 3)$, has a perfect 2 -coloring with the matrix A_{3}. Also, when $n \equiv 1,2(\bmod 3)$ the graph $C_{n} \times C_{3}$ have no perfect 2 -coloring with the matrix A_{3}.

Proof. By our assumptions there are three cases:
Case $1 n \equiv 0(\bmod 3)$:
For each positive integer n, consider the mapping $p: V\left(C_{n} \times\right.$ $\left.C_{3}\right) \rightarrow\{0,1\}$ by

$$
\begin{aligned}
& p\left(a_{i, 1}\right)=\left\{\begin{array}{ll}
0 & ; 1 \leq i \leq n, i \equiv 2(\bmod 3) \\
1 & \text { otherwise }
\end{array},\right. \\
& p\left(a_{i, 2}\right)= \begin{cases}0 & ; 1 \leq i \leq n, i \equiv 1(\bmod 3) \\
1 & \text { otherwise }\end{cases} \\
& p\left(a_{i, 3}\right)= \begin{cases}0 & ; 1 \leq i \leq n, i \equiv 0(\bmod 3) \\
1 & \text { otherwise }\end{cases}
\end{aligned}
$$

It can be easily seen that the above mapping is a perfect 2 coloring with the matrix A_{3}.
Now for the second part, we note that, every 3 -cycle contains
exactly one 0 , otherwise 0 connects with 0 or 1 connects with no 0 so $C_{n} \times C_{3}$ does not admits perfect 2-coloring for A_{3}.
Case $2 n \equiv 1(\bmod 3)$
Without loss of generality, suppose that $p\left(a_{1,1}\right)=p\left(a_{2,2}\right)=$ $p\left(a_{3,3}\right)=\ldots=p\left(a_{n-3,1}\right)=p\left(a_{n-2,2}\right)=p\left(a_{n-1,3}\right)=0=p\left(a_{n, 2}\right)$ but than $p\left(a_{n-1,2}\right)$ connects with three 0 's namely $a_{n-2,2}, a_{n-1,3}$ and $a_{n, 2}$, which is not possible relative to the matrix A_{3}.
Case $3 n \equiv 2(\bmod 3)$:
Without loss of generality, suppose that $p\left(a_{1,1}\right)=p\left(a_{2,2}\right)=$ $p\left(a_{3,3}\right)=\ldots=p\left(a_{n-3,3}\right)=p\left(a_{n-2,2}\right)=p\left(a_{n-1,1}\right)=0=p\left(a_{n, 2}\right)$ and $p\left(a_{n, 2}\right)=0$ or $p\left(a_{n, 3}\right)=0$. If $p\left(a_{n, 2}\right)=0$, then $a_{n, 3}$ connects with only one 0 namely $a_{n, 2}$, and vice versa.

2.4. Perfect 2-colorings of $C_{n} \times C_{3}$ with the matrix A_{4} :

Theorem 2.5. There are no perfect 2 -colorings of $C_{n} \times C_{3}$ with the matrix A_{4}.

Proof. Clearly, we cannot assign 0 to more than one vertex from the vertices $a_{1,1}, a_{1,2}$ and $a_{1,3}$.
Without loss of generality, suppose that $p\left(a_{1,2}\right)=0$. Then $p\left(a_{1,1}\right)=$ $p\left(a_{1,3}\right)=p\left(a_{2,1}\right)=p\left(a_{2,2}\right)=p\left(a_{2,3}\right)=1$. To connect $a_{2,1}$ and $a_{2,3}$ to 0 we must have $p\left(a_{3,1}\right)=p\left(a_{3,3}\right)=0$, but this is not possible.
Suppose $p\left(a_{1,1}\right)=p\left(a_{1,2}\right)=p\left(a_{1,3}\right)=1$. Now, we have to connect these three vertices to 0 but we have only two possible places (without loss of generality $a_{2,1}$ and $a_{n, 2}$) otherwise 0 connects with 0 . So we also cannot assign 1 to the vertices $a_{1,1}, a_{1,2}$ and $a_{1,3}$.

2.5. Perfect 2-colorings of $C_{n} \times C_{3}$ with the matrix A_{5} :

Theorem 2.6. There are no perfect 2 -colorings of $C_{n} \times C_{3}$ with the matrix A_{5}.

Proof. Clearly, we cannot assign 0 or 1 to all the vertices $a_{1,1}, a_{1,2}$ and $a_{1,3}$.
Without loss of generality, suppose that $p\left(a_{1,1}\right)=p\left(a_{1,2}\right)=0$. Then $p\left(a_{1,3}\right)=p\left(a_{2,1}\right)=p\left(a_{2,2}\right)=p\left(a_{n, 1}\right)=p\left(a_{n, 2}\right)=1$ and $p\left(a_{2,3}\right)=0$. Now $a_{2,3}$ is connected with three 1 so we must have $p\left(a_{3,3}\right)=0$. Also $a_{2,1}$ and $a_{2,2}$ is connected with two 0 and to connect with third 0 we must have $p\left(a_{3,1}\right)=p\left(a_{3,2}\right)=0$, which is not possible.
Similar case as above if we assign $p\left(a_{1,1}\right)=p\left(a_{1,2}\right)=1$.

2.6. Perfect 2-colorings of $C_{n} \times C_{3}$ with the matrix A_{6} :

Theorem 2.7. There are no perfect 2-colorings of $C_{n} \times C_{3}$ with the matrix A_{6}.

Proof. In the three-cycle $\left(a_{1,1} a_{1,2} a_{1,3}\right)$ we have three caces; or all three vertices are zero or two of them are zero or only one of them is zero. Now, we consider all 3 caces. According to the matrix A_{6} clearly, 0 cannot be assign to the all vertices $a_{1,1}, a_{1,2}$ and $a_{1,3}$.
Without loss of generality, suppose that $p\left(a_{1,1}\right)=p\left(a_{1,2}\right)=0$. This implies that $p\left(a_{1,3}\right)=p\left(a_{2,1}\right)=p\left(a_{2,2}\right)=p\left(a_{2,3}\right)=1$, which is not possible.
Suppose that $p\left(a_{1,1}\right)=p\left(a_{1,2}\right)=p\left(a_{1,3}\right)=1$. Then $p\left(a_{2,1}\right)=p\left(a_{n, 1}\right)=$ $p\left(a_{2,2}\right)=p\left(a_{n, 2}\right)=p\left(a_{2,3}\right)=p\left(a_{n, 3}\right)=0$, which is again not possible.
Suppose that $p\left(a_{1,1}\right)=0$ and $p\left(a_{1,2}\right)=p\left(a_{1,3}\right)=1$. We consider the following cases:
i) if $p\left(a_{2,1}\right)=0$, then $p\left(a_{3,1}\right)=p\left(a_{2,2}\right)=p\left(a_{3,2}\right)=p\left(a_{n, 1}\right)=1$. Now $a_{3,1}, a_{2,2}$ and $a_{2,3}$ are connected with one 0 . To connect $a_{2,2}$ and $a_{2,3}$ with another 0 we must have $p\left(a_{3,2}\right)=p\left(a_{3,3}\right)=0$, but then $a_{3,1}$ connects with three 0 , which is impossible according to the matrix A_{6}.
ii) if $p\left(a_{n, 1}\right)=0$, then $p\left(a_{2,1}\right)=p\left(a_{3,1}\right)=p\left(a_{n, 2}\right)=p\left(a_{n, 3}\right)=$ $p\left(a_{2,3}\right)=1$. Now $a_{2,1}$ and $a_{3,1}$ are connected with one 0 and to connect these vertices with another 0 we must have $p\left(a_{2,2}\right)=$ $p\left(a_{2,3}\right)=0$. Then $a_{2,1}$ connects with three 0 's, which is again not possible according to the matrix A_{6}.

2.7. Perfect 2-colorings of $C_{n} \times C_{3}$ with the matrix A_{7} :

Remark 2.8. According to the matrix A_{10}, in a 3 -cycle, every vertex has the same color.

Theorem 2.9. If $n \equiv 0(\bmod 4)$, then the graphs $C_{n} \times C_{3}$ have a perfect 2 -coloring with the matrix A_{10}. Also, if $n \not \equiv 0(\bmod 4)$, then the graphs $C_{n} \times C_{3}$ have no perfect 2-coloring with the matrix A_{10}.

Proof. For $k \geq 1, C_{4 k} \times C_{3}$ admits the 2-perfect coloring by the following mapping:

$$
\begin{aligned}
p\left(a_{1,1}\right)= & p\left(a_{1,2}\right)=p\left(a_{1,3}\right)=p\left(a_{n, 1}\right)=p\left(a_{n, 2}\right)=p\left(a_{n, 3}\right)=0, \\
& p\left(a_{i, j}\right)=0 ; \quad i \equiv 0,1(\bmod 4), 1 \leq j \leq 3, \\
& p\left(a_{i, j}\right)=1 ; \quad i \equiv 2,3(\bmod 4), 1 \leq j \leq 3 .
\end{aligned}
$$

Therefore, according to matrix $A_{10} ; C_{n} \times C_{3}$ when $n \equiv 0(\bmod 4)$ has a perfect 2 -coloring with the matrix A_{10}. Also, when $n \not \equiv 0(\bmod 4)$ the graph $C_{n} \times C_{3}$ have no perfect 2-coloring with the matrix A_{10}.

3. Some Generalized Results

In this section, we will discuss some generalized results on $C_{m} \times C_{n}$ graphs for perfect 2-colorings; where $m, n \geq 3$.

3.1. Perfect 2-colorings of $C_{n} \times C_{m}$ with the matrix A_{10} :

Theorem 3.1. The $C_{n} \times C_{4 k}, n \geq 3$ and $k \geq 1$, have a perfect 2coloring with the matrix A_{10}.
Proof. The mapping $p: V\left(C_{n} \times C_{m}\right) \rightarrow\{1,2\}$ defined as:

$$
\begin{array}{ll}
p\left(a_{i, j}\right)=0 ; & 1 \leq i \leq n, j \equiv 1,2(\bmod 4) \\
p\left(a_{i, j}\right)=0 ; & 1 \leq i \leq n, j \equiv 0,3(\bmod 4)
\end{array}
$$

gives the perfect 2 -colorings with the matrix A_{10}.

3.2. Perfect 2-colorings of $C_{n} \times C_{m}$ with the matrix A_{9} :

Theorem 3.2. The $C_{n} \times C_{3 k}, n \geq 3$ and $k \geq 1$, have a perfect 2coloring with the matrix A_{9}.

Proof. The following mapping attains the perfect 2-colorings with the matrix A_{9} :

$$
\begin{gathered}
p: V\left(C_{n} \times C_{m}\right) \rightarrow\{1,2\} \\
p\left(a_{i, j}\right)=0 ; \quad 1 \leq i \leq n, j \equiv 1(\bmod 3) \text { and } 1 \leq j \leq m \\
p\left(a_{i, j}\right)=0 ; \quad 1 \leq i \leq n, j \equiv 0,2(\bmod 3) \text { and } 1 \leq j \leq m .
\end{gathered}
$$

3.3. Perfect 2-colorings of $C_{n} \times C_{m}$ with the matrix A_{8} :

Theorem 3.3. The $C_{n} \times C_{m}$, where $m, n \geq 3$ and n or m must be even, have a perfect 2-coloring with the matrix A_{8}.

Proof. By Lemma 2.1 we have;

$$
|W|=\frac{m n}{2}
$$

which is only possible when n or m is even.
The mapping $p: V\left(C_{n} \times C_{m}\right) \rightarrow\{1,2\}$ defined as the following:

$$
\begin{gathered}
p\left(a_{i, j}\right)=0 ; \quad i \text { is odd } 1 \leq i \leq n, 1 \leq j \leq m \\
p\left(a_{i, j}\right)=1 ; \quad i \text { is even } 1 \leq i \leq n, 1 \leq j \leq m
\end{gathered}
$$

provide the perfect 2-colorings for the matrix A_{8}.
3.4. Perfect 2-colorings of $C_{n} \times C_{m}$ with the matrix A_{1} :

Theorem 3.4. The $C_{2 l} \times C_{2 k}, l \geq 1$ and $k \geq 1$, have a perfect 2coloring with the matrix A_{1}.
Proof. The following mapping gives the perfect 2-colorings:

$$
\begin{array}{cl}
p\left(a_{i, j}\right)=0 ; & i \text { is even } 1 \leq i \leq n, j \text { is odd } 1 \leq j \leq m \\
p\left(a_{i, j}\right)=1 ; & i \text { is odd } 1 \leq i \leq n, j \text { is even } 1 \leq j \leq m
\end{array}
$$

3.5. Perfect 2-colorings of $C_{n} \times C_{m}$ with the matrix A_{5} :

Theorem 3.5. The $C_{2 l} \times C_{2 k}, l, k \geq 2$, have a perfect 2 -coloring with the matrix A_{5}.
Proof. The mapping $p: V\left(C_{n} \times C_{m}\right) \rightarrow\{1,2\}$ defined as the following:

$$
\begin{aligned}
& p\left(a_{i, j}\right)=0 ; \quad i \text { is odd } 1 \leq i \leq n, j \equiv 0,1(\bmod 4), 1 \leq j \leq m, \\
& p\left(a_{i, j}\right)=0 ; \quad i \text { is odd } 1 \leq i \leq n, j \equiv 2,3(\bmod 4), 1 \leq j \leq m, \\
& p\left(a_{i, j}\right)=0 ; \quad \text { i is even } 1 \leq i \leq n, j \equiv 2,3(\bmod 4), 1 \leq j \leq m, \\
& p\left(a_{i, j}\right)=0 ; \quad i \text { is even } 1 \leq i \leq n, j \equiv 0,1(\bmod 4), 1 \leq j \leq m,
\end{aligned}
$$

is the perfect 2 -coloring with the matrix A_{5}.

Acknowledgments

The authors would like to thank the referee for careful reading.

References

1. M. Alaeiyan, H. Karami, Perfect 2-coloring of the generalized Petersen graph, Proc. Indian Acad. Sci., (3) 126 (2016) 289-294.
2. M.H. Alaeiyan, H. Karami, Perfect 2-coloring of the Platonic graphs, Int. J. Nonlinear Anal. Appl., (2) 8 (2017) 29-35.
3. M. Alaeiyan, A. Abedi, M.H. Alaeiyan, Perfect 3- Colorings of the Johnson Graph J(6, 3). Bull. Iran. Math. Soc., (2020). https://doi.org/10.1007/s41980-019-00346-9.
4. H. Ansari-Toroghy; F. Farshadifar; F. Mahboobi-Abkenar. The small intersection graph relative to multiplication modules, J. Algebra Relat. Topics, (1) 4 (2016), 21-32.
5. S.V. Avgustinovich, I. Y. Mogilnykh, Perfect 2-colorings of Johnson graphs J(6, 3) and $J(7,3)$, Lect. Notes Comput. Sci., 5228 (2008) 11-19.
6. S.V. Avgustinovich, I. Y. Mogilnykh, Perfect colorings of Johnson graphs J(8, 3) and $J(8,4)$ with tow colors, J. Appl. Industrial Math., 5 (2011) 19-30.
7. D. G. Fon-Der-Flaass, A bound on correlation immunity, Sib. Electron. Math. Reports J., 4 (2007) 133-135.
8. D. G. Fon-Der-Flaass, Perfect 2 -coloring of a hypercube, Sib. Math. J., 4 (2007) 923-930.
9. D. G. Fon-Der-Flaass, Perfect 2-coloring of a 12-dimensional cube that achive a bound of correlation immunity, Sib. Math. J., 4 (2007) 292-295.
10. C. Godsil, Compact graphs and equitable partitions, Linear Algebra Appl., 255 (1997) 259-266.

Mehdi Alaeiyan

School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16846, Iran.
Email: alaeiyan@iust.ac.ir

Muhammad Kamran Jamil

Department of Mathematics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road, Lahore, Pakistan.
Email: m.kamran.sms@gmail.com

Mohammadhadi Alaeiyan

Faculty of Computer Engineering, K. N. Toosi University of Technology, Seyed Khandan, Shariati Ave, Tehran 16317-14191, Iran.
Email: m.alaeiyan@kntu.ac.ir

[^0]: MSC(2010): Primary: 05C15; Secondary: 68R01, 68R05
 Keywords: perfect colorings, equitable partition, generalized prism graph.
 Received: 30 January 2021, Accepted: 4 January 2023.
 *Corresponding author.

