WEAKLY PRIME TERNARY SUBSEMIMODULES OF TERNARY SEMIMODULES

J. N. CHAUDHARI* AND H. P. BENDALE

ABSTRACT. In this paper we introduce the concept of weakly prime ternary subsemimodules of a ternary semimodule over a ternary semiring and obtain some characterizations of weakly prime ternary subsemimodules. We prove that if \(N \) is a weakly prime subtractive ternary subsemimodule of a ternary \(R \)-semimodule \(M \), then either \(N \) is a prime ternary subsemimodule or \((N : M)(N : M)N = 0 \). If \(N \) is a \(Q \)-ternary subsemimodule of a ternary \(R \)-semimodule \(M \), then a relation between weakly prime ternary subsemimodules of \(M \) containing \(N \) and weakly prime ternary subsemimodules of the quotient ternary \(R \)-semimodule \(M/N_{(Q)} \) is obtained.

1. Introduction

Anderson and Smith [2] introduced the notion of weakly prime ideals in commutative ring with non-zero identity in 2003. Later on, this concept has been studied in modules and semirings by many authors [4, 5, 16]. Further it is extended for semimodule by Chaudhari and Bonde [11]. For more study on various generalization of prime ideals see [3, 6, 7, 8, 9]. In this paper we introduce the concept of weakly prime ternary subsemimodule of a ternary semimodule over a ternary semiring and obtain some characterizations of weakly prime ternary subsemimodules. For the definitions of monoid and semiring we refer [1, 15] and for ternary semiring we refer [13, 14]. All ternary semirings in

Keywords: Entire ternary semimodule; subtractive ternary subsemimodule; partitioning ternary subsemimodule; weakly prime ternary subsemimodule; quotient ternary semimodule.
Received: 22 August 2014, Accepted: 2 November 2014.
*Corresponding author.
this paper are commutative with nonzero identity. \(\mathbb{Z}_0^+ (\mathbb{N}) \) will denote the set of all non-negative (positive) integers where as \(\mathbb{Z}_0^- (\mathbb{Z}^-) \) will denote the set of all non-positive (negative) integers. An ideal \(I \) of a ternary semiring \(R \) is called a subtractive ideal (\(= k \)-ideal) if \(a, a+b \in I, \ b \in R \), then \(b \in I \). A proper ideal \(P \) of a ternary semiring \(R \) is said to be prime if \(abc \in P \), then either \(a \in P \) or \(b \in P \) or \(c \in P \). A proper ideal \(P \) of a ternary semiring \(R \) is said to be weakly prime if \(0 \neq abc \in P \), then either \(a \in P \) or \(b \in P \) or \(c \in P \).

Let \(R \) be a ternary semiring. A left ternary \(R \)-semimodule is a commutative monoid \((M,+)\) with additive identity \(0_M \) for which we have a function \(R \times R \times M \to M \), defined by \((r_1, r_2, x) \mapsto r_1r_2x \) called ternary scalar multiplication, which satisfies the following conditions for all elements \(r_1, r_2, r_3 \) and \(r_4 \) of \(R \) and all elements \(x \) and \(y \) of \(M \):

\begin{enumerate}
 \item \((r_1r_2r_3)r_4x = r_1(r_2r_3r_4)x = r_1r_2(r_3r_4)x \);
 \item \(r_1r_2(x + y) = r_1r_2x + r_1r_2y \);
 \item \(r_1(r_2 + r_3)x = r_1r_2x + r_1r_3x \);
 \item \((r_1 + r_2)r_3x = r_1r_3x + r_2r_3x \);
 \item \(1_R1_Rx = x \);
 \item \(r_1r_20_M = 0_M = 0_Pr_2x = r_10_Rx \).
\end{enumerate}

Throughout this paper, by a ternary \(R \)-semimodule we mean a left ternary semimodule over a ternary semiring \(R \). Every ternary semiring \(R \) is ternary \((\mathbb{Z}_0^+,+,\cdot)\)-semimodule \([10]\). A nonempty subset \(N \) of a ternary \(R \)-semimodule \(M \) is called ternary subsemimodule of \(M \) if \(N \) is closed under addition and closed under ternary scalar multiplication.

If \(N \) is a proper ternary subsemimodule of a ternary \(R \)-semimodule \(M, m \in M \) and \(A \) is a non-empty subset of \(M \), then we denote

\begin{enumerate}
 \item \((N : m) = \{ r \in R : rsM \subseteq N \} \);
 \item \((N : A) = \{ r \in R : rsA \subseteq N \} \);
 \item \((N : M) = \{ r \in R : rsM \subseteq N \} \).
\end{enumerate}

Clearly, \((N : m) \) and \((N : M) \) are ideals of \(R \). Also \((N : A) = \bigcap \{(N : m) : m \in A\} \). Since intersection of arbitrary family of ideals is again an ideal, \((N : A) \) is an ideal of \(R \).

Definition 1.1. A ternary subsemimodule \(N \) of a ternary \(R \)-semimodule \(M \) is called subtractive ternary subsemimodule (\(= \) ternary \(k \)-subsemimodule) if \(x, x+y \in N, \ y \in M \), then \(y \in N \).

Lemma 1.2. Let \(N \) be a subtractive ternary subsemimodule of a ternary \(R \)-semimodule \(M, m \in M \) and \(A \) be a non-empty subset of \(M \). Then \((N : A), (N : m) \) are subtractive ideals of \(R \).

Proof. Proof is trivial.
Since \(\{0\} = 0 \) is a subtractive ternary subsemimodule of a ternary \(R \)-semimodule \(M \), \((0 : m)\) and \((0 : M)\) are subtractive ideals of \(R \) where \(m \in M \).

Lemma 1.3. ([12, Theorem 3.4]) Let \(I \) and \(J \) be subtractive ideals of a ternary semiring \(R \). Then \(I \cup J \) is subtractive ideal of \(R \) if and only if \(I \cup J = I \) or \(I \cup J = J \).

2. Weakly prime ternary subsemimodules

In this section we introduce the concept of weakly prime ternary subsemimodule of a ternary semimodule over a ternary semiring and obtain some characterizations of weakly prime ternary subsemimodules.

Definition 2.1. A proper ternary subsemimodule \(N \) of a ternary \(R \)-semimodule \(M \) is said to be prime if \(r_1 r_2 m \in N \), \(r_1, r_2 \in R \), \(m \in M \), then either \(r_1 \in (N : M) \) or \(r_2 \in (N : M) \) or \(m \in N \).

Definition 2.2. A proper ternary subsemimodule \(N \) of a ternary \(R \)-semimodule \(M \) is said to be weakly prime if \(0 \neq r_1 r_2 m \in N \), \(r_1, r_2 \in R \), \(m \in M \), then either \(r_1 \in (N : M) \) or \(r_2 \in (N : M) \) or \(m \in N \).

Clearly, every prime ternary subsemimodule of a ternary semimodule is weakly prime. Following example shows that the converse implication is not true.

Example 2.3. Consider the ternary semiring \(R = (\mathbb{Z}_0^+, +, \cdot) \). Then \(\{0\} \) is a weakly prime ternary subsemimodule of a ternary \(R \)-semimodule \(M = \{(0, -1, -2, -3, -4, -5), +_{-6}\} = (\mathbb{Z}_{-6}, +_{-6}) \), which is not a prime ternary subsemimodule.

Definition 2.4. A ternary \(R \)-semimodule \(M \) is said to be entire if \(r_1 r_2 m = 0 \), \(r_1, r_2 \in R \), \(m \in M \), then either \(r_1 = 0 \) or \(r_2 = 0 \) or \(m = 0 \).

Proposition 2.5. Let \(M \) be an entire ternary \(R \)-semimodule and \(N \) be a weakly prime ternary subsemimodule of \(M \). Then \((N : M)\) is a weakly prime ideal of \(R \).

Proof. Let \(0 \neq abc \in (N : M) \) and \(a \notin (N : M) \), \(b \notin (N : M) \). To show \(c \in (N : M) \). Let \(0 \neq x \in M, 0 \neq r \in R \). Since \(M \) is entire, \(0 \neq (abc)rx = a(bcr)x = ab(cr x) \in N \). Therefore \(a \in (N : M) \) or \(b \in (N : M) \) or \(cr x \in N \), since \(N \) is a weakly prime ternary subsemimodule. Now \(cr x \in N \) for all \(0 \neq r \in R \) and for all \(0 \neq x \in M \). So \(c \in (N : M) \). Thus \((N : M)\) is a weakly prime ideal of \(R \). □

In Proposition 2.5 the condition that, \(M \) is an entire, is essential.
Example 2.6. Consider the ternary R-semimodule $M = \{(0, -1, -2, -3, -4, -5), +_0\} = (\mathbb{Z}_6, +_0)$. Then $\{0\}$ is a weakly prime ternary subsemimodule of M, but $\{0\} : M = (-6)\mathbb{Z}_0\mathbb{Z}_0^-$ is not a weakly prime ideal because $0 \neq (-2) \cdot (-3) \cdot (-1) \in (-6)\mathbb{Z}_0\mathbb{Z}_0^-$, but $-2 \notin (-6)\mathbb{Z}_0\mathbb{Z}_0^-$, $-3 \notin (-6)\mathbb{Z}_0\mathbb{Z}_0^-$, $-1 \notin (-6)\mathbb{Z}_0\mathbb{Z}_0^-$.

Theorem 2.7. If N is a weakly prime subtractive ternary subsemimodule of a ternary R-semimodule M, then either N is prime or $(N : M)(N : M)N = 0$.

Proof. Suppose that $(N : M)(N : M)N \neq 0$. Let $r_1r_2m \in N$ with $r_1, r_2 \in R$ and $m \in M$. If $r_1r_2m \neq 0$, then we are through. Suppose $r_1r_2m = 0$. If $r_1r_2N \neq 0$, then there exists $n \in N$ such that $r_1r_2n \neq 0$. Now $0 \neq r_1r_2(m + n) = r_1r_2n \in N \Rightarrow$ either $r_1 \in (N : M)$ or $r_2 \in (N : M)$. By Lemma 1.2, either $r_1r_2N = 0$. Hence $r_1 \in (N : M)$ or $r_2 \in (N : M)$ or $m \in N$. By Lemma 1.2, $(N : M)$ is a subtractive ideal, and hence either $r_1 \in (N : M)$ or $r_2 \in (N : M)$ or $m \in N$. So suppose that $(N : M)r_2m = 0$. On the similar lines we can assume that $r_1(N : M)m = 0$. If $(N : M)(N : M)m \neq 0$, then there exist $r_1', r_2' \in (N : M)$ such that $r_1'r_2'm \neq 0$. Now $0 \neq (r_1 + r_1')(r_2 + r_2')m = r_1r_2m \in N \Rightarrow$ either $r_1 + r_1' \in (N : M)$ or $r_2 + r_2' \in (N : M)$ or $m \in N$. Again by using Lemma 1.2, either $r_1 \in (N : M)$ or $r_2 \in (N : M)$ or $m \in N$. So suppose that $(N : M)(N : M)m = 0$. On the similar lines we can assume that $(N : M)r_2N = 0$ and $r_1(N : M)N = 0$. Since $(N : M)(N : M)N \neq 0$, there exist $r_1^*, r_2^* \in (N : M)$ and $n^* \in N$ such that $r_1^*r_2^*n^* \neq 0$. Now $0 \neq (r_1 + r_1^*)(r_2 + r_2^*)(m + n^*) = r_1^*r_2^*n^* \Rightarrow$ either $r_1 + r_1^* \in (N : M)$ or $r_2 + r_2^* \in (N : M)$ or $m + n^* \in N$. Since N is a subtractive ternary subsemimodule and by using Lemma 1.2, either $r_1 \in (N : M)$ or $r_2 \in (N : M)$ or $m \in N$. Hence N is a prime ternary subsemimodule of M.

Lemma 2.8. Let N be a proper ternary subsemimodule of a ternary R-semimodule M. Then the following statements are equivalent.

i) N is a prime ternary subsemimodule of M.

ii) If whenever $IJD \subseteq N$, with I, J are ideals of R and D is a ternary subsemimodule of M, then $I \subseteq (N : M)$ or $J \subseteq (N : M)$ or $D \subseteq N$.

Proof. (i)\Rightarrow(ii) Let $IJD \subseteq N$ where I, J are ideals of R and D is a ternary subsemimodule of M. Suppose that $J \nsubseteq (N : M)$ and $D \nsubseteq N$. Choose $r_2 \in J$ and $x \in D$ such that $r_2 \notin (N : M)$ and $x \notin N$. Therefore, there exists $m \in M$ such that $r_2m = 0$. But $x = (r_2m)x \in N$ and $x \notin N$. Hence $IJD \subseteq N$.
Let \(r_1 \in I \). Now \(r_1 r_2 x \in I J D \subseteq N \). Since \(N \) is a prime ternary subsemimodule, \(r_1 \in (N : M) \). Hence \(I \subseteq (N : M) \).

(ii)⇒(i) Let \(r_1 r_2 m \in N \) where \(r_1, r_2 \in R \) and \(m \in M \). Take \(I = R R r_1 \), \(J = R R r_2 \) and \(D = R R m \). Then \(I, J \) are ideals of \(R \) and \(D \) is a ternary subsemimodule of \(M \) such that \(I J D \subseteq N \). By assumption either \(I \subseteq (N : M) \) or \(J \subseteq (N : M) \) or \(D \subseteq N \). So either \(r_1 \in (N : M) \) or \(r_2 \in (N : M) \) or \(m \in N \). Hence \(N \) is a prime ternary subsemimodule on \(M \).

\[\square \]

Theorem 2.9. If \(N \) is a proper subtractive ternary subsemimodule of a ternary \(R \)-semimodule \(M \), then the following statements are equivalent:

1. If whenever \(0 \neq I J D \subseteq N \), with \(I, J \) are ideals of \(R \) and \(D \) is a ternary subsemimodule of \(M \), then either \(I \subseteq (N : M) \) or \(J \subseteq (N : M) \) or \(D \subseteq N \);
2. \(N \) is a weakly prime ternary subsemimodule of \(M \).

Proof. (1)⇒(2) Suppose that \(0 \neq r_1 r_2 m \in N \) where \(r_1, r_2 \in R \) and \(m \in M \). Take \(I = \langle r_1 \rangle = R R r_1 \), \(J = \langle r_2 \rangle = R R r_2 \) and \(D = \langle m \rangle = R R m \). Then \(0 \neq I J D \subseteq N \). So either \(I \subseteq (N : M) \) or \(J \subseteq (N : M) \) or \(D \subseteq N \) and hence either \(r_1 \in (N : M) \) or \(r_2 \in (N : M) \) or \(m \in N \). Thus \(N \) is a weakly prime ternary subsemimodule of \(M \).

(2)⇒(1) Suppose that \(N \) is a weakly prime ternary subsemimodule of \(M \). If \(N \) is prime, then the result is clear by using Lemma 2.8. So we can assume that \(N \) is not prime. Let \(0 \neq I J D \subseteq N \) where \(I, J \) are ideals of \(R \) and \(D \) is a ternary subsemimodule of \(M \). To show \(I \subseteq (N : M) \) or \(J \subseteq (N : M) \) or \(D \subseteq N \). Suppose that \(I \not\subseteq (N : M) \), \(J \not\subseteq (N : M) \) and \(D \not\subseteq N \). Choose \(r_1 \in I \), \(r_2 \in J \) and \(x \in D \) such that \(r_1, r_2 \not\in (N : M) \) and \(x \not\in N \). If \(0 \neq r_1 r_2 x \in I J D \subseteq N \), then \(r_1 \in (N : M) \) or \(r_2 \in (N : M) \) or \(x \in N \), as \(N \) is a weakly prime ternary subsemimodule. It is impossible. Hence assume that \(r_1 r_2 x = 0 \). If \(r_1 r_2 D \neq 0 \), then choose \(d \in D \) such that \(r_1 r_2 d \neq 0 \). Now \(0 \neq r_1 r_2 d \in I J D \subseteq N \Rightarrow d \in N \), since \(N \) is weakly prime ternary subsemimodule. Now \(0 \neq r_1 r_2 (d + x) = r_1 r_2 d + r_1 x \in N \Rightarrow d + x \in N \). Since \(N \) is a subtractive ternary subsemimodule and \(d \in N \), so \(x \in N \), a contradiction. Hence assume that \(r_1 r_2 D = 0 \). If \(I r_2 x \neq 0 \), then there exists \(r_1' \in I \) such that \(0 \neq r_1' r_2 x \in I J D \subseteq N \). Since \(N \) is a weakly prime ternary subsemimodule, \(r_1' \in (N : M) \). Now \(0 \neq (r_1 + r_1') r_2 x = r_1 r_2 x \in N \Rightarrow r_1 + r_1' \in (N : M) \), as \(N \) is a weakly prime ternary subsemimodule. By Lemma 1.2, \(r_1 \in (N : M) \), a contradiction. Hence assume that \(I r_2 x = 0 \). On the similar lines we can assume that \(r_1 J x = 0 \). If \(I J x \neq 0 \), then there exist \(r_1'' \in I \) and \(r_2'' \in J \) such that \(0 \neq r_1'' r_2'' x \in I J D \subseteq N \). Since \(N \) is a weakly prime ternary subsemimodule, \(r_1'' \in (N : M) \) or \(r_2'' \in (N : M) \). Case (i)
Similarly, Case (ii) Lemma 1.2, either \(d \neq 0 \) (1) Let \(M \) a.

\[(x / 2) \in (1 \in 1) \in (1 \in 1 + 1 \in 2) . \]

For \(m \in M \) and \(d^* \in D \) such that \(0 \neq r_i^* r_2^* d^* \in IJD \subseteq N \). Since \(N \) is a weakly prime ternary subsemimodule, either \(r_i^* \in (N : M) \) or \(r_i^* \in (N : M) \) or \(d^* \in N \). Case (a) \(r_i^* \notin (N : M) \), \(r_i^* \notin (N : M) \), \(d^* \notin N \). Now \(0 \neq (r_1 + r_1^*) r_2^* d^* = r_i^* r_2^* d^* \in N \Rightarrow r_1 + r_1^* \in (N : M) \). By Lemma 1.2, \(r_1 \in (N : M) \), a contradiction. On the similar lines Case (b) \(r_1^* \notin (N : M) \), \(r_i^* \notin (N : M) \), \(d^* \notin N \). Now \(0 \neq (r_1 + r_1^*) r_2^* d^* = r_i^* r_2^* d^* \in N \Rightarrow r_1 + r_1^* \in (N : M) \). By Lemma 1.2, either \(r_1 \in (N : M) \) or \(r_2 \in (N : M) \), a contradiction. On the similar lines Case (c) \(r_i^* \notin (N : M) \), \(r_i^* \notin (N : M) \), \(d^* \notin N \). Now \(0 \neq (r_1 + r_1^*) r_2^* d^* = r_i^* r_2^* d^* \in N \Rightarrow r_1 \in (N : M) \) or \(r_2 \in (N : M) \). By Lemma 1.2, \(r_2 \in (N : M) \) or \(x \in N \), a contradiction. Now \(I \subseteq (N : M) \) or \(J \subseteq (N : M) \) or \(D \subseteq N \).

Theorem 2.10. Let \(N \) be a weakly prime subtractive ternary subsemimodule of a ternary \(R \)-semimodule \(M \). Then the following statements hold:

1) For \(m \in M \setminus N \), \((N : m) = (N : M) \cup (0 : m) \);

2) For \(m \in M \setminus N \), \((N : m) = (N : M) \) or \((N : m) = (0 : m) \).

Proof. (1) Let \(m \in M \setminus N \). Clearly, \((N : M) \cup (0 : m) \subseteq (N : m) \). Now let \(a \in (N : m) \). Then \(arm \in N \) for all \(r \in R \). If \(0 \neq a m \in N \), then \(a \in (N : M) \) or \(1 \in (N : M) \) as \(N \) is a weakly prime ternary subsemimodule. Hence \(a \in (N : M) \). Suppose that \(a m = 0 \). Then \(arm = 1r(a m) = 0 \) for all \(r \in R \). So \(a \in (0 : m) \). Thus \(a \in (N : M) \) or \((0 : m) \). Now \((N : m) \subseteq (N : M) \cup (0 : m) \).

(2) It follows by Lemma 1.2 and Lemma 1.3.
3. WEAKLY PRIME TERNARY SUBSEMIMODULES IN QUOTIENT TERNARY SEMIMODULES

In this section, we extend results of [4, 10] and [11] to ternary semimodules over ternary semirings and give a relation between the prime (weakly prime) ternary subsemimodules of a ternary R-semimodule M and the prime (weakly prime) ternary subsemimodules of the quotient ternary R-semimodule $M/N(Q)$ where N is a Q-ternary subsemimodule of M.

Lemma 3.1. ([10, Lemma 1.4]) Let N be a ternary subsemimodule of a ternary R-semimodule M and $x, y \in M$ such that $x + N \subseteq y + N$. Then $x + z + N \subseteq y + z + N$ and $rsx + N \subseteq rsy + N$ for all $z \in M, r, s \in R$.

Definition 3.2. ([10]) A ternary subsemimodule N of a ternary R-semimodule M is called Q-ternary subsemimodule (= partitioning ternary subsemimodule) if there exists a subset Q of M such that

1) $M = \cup\{q + N : q \in Q\}$.
2) If $q_1, q_2 \in Q$, then $(q_1 + N) \cap (q_2 + N) \neq \emptyset \iff q_1 = q_2$.

Let N be a Q-ternary subsemimodule of a ternary R-semimodule M. Then $M/N(Q) = \{q + N : q \in Q\}$ forms a ternary R-semimodule under the following addition "\(\oplus\)" and ternary scalar multiplication "\(\circ\)". $(q_1 + N) \oplus (q_2 + N) = q_3 + N$ where $q_3 \in Q$ is unique such that $q_1 + q_2 + N \subseteq q_3 + N$, and $r \circ s \circ (q_1 + N) = q_4 + N$ where $q_4 \in Q$ is unique such that $rsq_1 + N \subseteq q_4 + N$. This ternary R-semimodule $M/N(Q)$ is called the quotient ternary semimodule of M by N and denoted by $(M/N(Q), \oplus, \circ)$ or just $M/N(Q)$.

Lemma 3.3. ([10, Lemma 3.5]) Let N be a Q-ternary subsemimodule of a ternary R-semimodule M. If A is a subtractive ternary subsemimodule of M such that $N \subseteq A$, then N is a $Q \cap A$-ternary subsemimodule of A.

Lemma 3.4. Let N be a Q-ternary subsemimodule of a ternary R-semimodule M. If $r, s \in R$ and $m \in M$, then there exists a unique $q \in Q$ such that $rsm \in r \circ s \circ (q + N)$.

Proof. Let $r, s \in R$ and $m \in M$. Since N is a Q-ternary subsemimodule of M and $rsm \in M$, there exist unique $q, q' \in Q$ such that $m + N \subseteq q + N$ and $rsm + N \subseteq q' + N$. Also $r \circ s \circ (q + N) = q'' + N$ where $q'' \in Q$ is a unique element such that $rsq + N \subseteq q'' + N$. By Lemma 3.1, $rsm + N \subseteq rsq + N \subseteq q'' + N$. Now $rsm \in (q' + N) \cap (q'' + N)$. Hence $(q' + N) \cap (q'' + N) \neq \emptyset$. So $q' = q''$. Thus $rsm \in q' + N = q'' + N = r \circ s \circ (q + N)$.
Theorem 3.5. Let N be a Q-ternary subsemimodule of a ternary R-semimodule M and P be a subtractive ternary subsemimodule of M with $N \subseteq P$. Then

1) If P is a weakly prime ternary subsemimodule of M, then $P/N_{(Q \cap P)}$ is a weakly prime ternary subsemimodule of $M/N_{(Q)}$.

2) If N, $P/N_{(Q \cap P)}$ are weakly prime ternary subsemimodules of M, $M/N_{(Q)}$ respectively, then P is a weakly prime ternary subsemimodule of M.

Proof. Let q_0 be the unique element of Q such that $q_0 + N$ is the zero element of $M/N_{(Q)}$ ([10], Lemma 2.3).

(1) Let P be a weakly prime ternary subsemimodule of M. Let $r, s \in R$ and $q_1 + N \in M/N_{(Q)}$ be such that $q_0 + N \neq r \circ s \circ (q_1 + N) \in P/N_{(Q \cap P)}$. By Lemma 3.3, N is a $Q \cap P$-ternary subsemimodule of P. Hence there exists a unique $q_2 \in Q \cap P$ such that $r \circ s \circ (q_1 + N) = q_2 + N$ where $r \circ s \circ (q_1 + N) \in q_2 + N$. Since $N \subseteq P$, $r \circ s \circ (q_1 + N) \in P$. If $r \circ s \circ (q_1 + N) = 0$, then $rsq_1 \in (q_0 + N) \cap (q_2 + N)$, since $0 \in q_0 + N$ (by [10], Lemma 2.3). So $q_0 = q_2$ and hence $q_0 + N = q_2 + N$, a contradiction. Thus $rsq_1 \neq 0$. As P is weakly prime ternary subsemimodule, either $r \in (P : M)$ or $s \in (P : M)$ or $q_1 \in P$. If $q_1 \in P$, then $q_1 \in Q \cap P$ and hence $q_1 + N \in P/N_{(Q \cap P)}$. Without loss of generality suppose that $r \in (P : M)$. For $q + N \in M/N_{(Q)}$ and $s' \in R$, let $r \circ s' \circ (q + N) = q_3 + N$ where q_3 is a unique element of Q such that $rs' q + N \subseteq q_3 + N$. Therefore $rs' q = q_3 + n$ for some $n \in N$. Now $r \in (P : M) \Rightarrow rs' q \in P \Rightarrow q_3 + n \in P \Rightarrow q_3 \in P$, as P is a subtractive ternary subsemimodule of M and $n \in N \subseteq P$. Hence $q_3 \in Q \cap P$. Now $r \circ s' \circ (q + N) = q_3 + N \in P/N_{(Q \cap P)}$ for all $s' \in R$ and $q + N \in M/N_{(Q)}$. Therefore $r \in (P/N_{(Q \cap P)} : M/N_{(Q)})$. Thus $P/N_{(Q \cap P)}$ is a weakly prime ternary subsemimodule of $M/N_{(Q)}$.

(2) Suppose that N, $P/N_{(Q \cap P)}$ are weakly prime ternary subsemimodules of M, $M/N_{(Q)}$ respectively. Let $0 \neq rsm \in P$ where $r, s \in R, m \in M$. If $rsm \in N$, then we are through, since N is a weakly prime ternary subsemimodule of M. So suppose that $rsm \in P \setminus N$. By using Lemma 3.4, there exists a unique $q_1 \in Q$ such that $m \in q_1 + N$ and $rsm \in r \circ s \circ (q_1 + N) = q_2 + N$ where q_2 is a unique element of Q such that $rsmq_1 + N \subseteq q_2 + N$. Now $rsm \in P, rsm \in q_2 + N$ implies $q_2 \in P$, as P is a subtractive ternary subsemimodule and $N \subseteq P$. Hence $q_0 + N \neq r \circ s \circ (q_1 + N) = q_2 + N \in P/N_{(Q \cap P)}$. As $P/N_{(Q \cap P)}$ is a weakly prime ternary subsemimodule, $r \in (P/N_{(Q \cap P)} : M/N_{(Q)})$ or $s \in (P/N_{(Q \cap P)} : M/N_{(Q)})$ or $q_1 + N \in P/N_{(Q \cap P)}$. If $q_1 + N \in P/N_{(Q \cap P)}$, then $q_1 \in P$. Hence $m \in q_1 + N \subseteq P$. Now without loss of generality assume that $r \in (P/N_{(Q \cap P)} : M/N_{(Q)})$. Let $x \in M$ and $s' \in R$. By using Lemma 3.4, there exists a unique $q_3 \in Q$ such that $x \in q_3 + N$ and
rs'x \in r \odot s' \odot (q_3 + N) = q_4 + N \text{ where } q_4 \text{ is a unique element of } Q \text{ such that } rs'q_3 + N \subseteq q_4 + N. \text{ Now } q_4 + N = r \odot s' \odot (q_3 + N) \in P/N(Q \cap P) \text{ and hence } q_4 \in P. \text{ As } rs'x \in q_4 + N \text{ and } N \subseteq P, rs'x \in P. \text{ So } r \in (P : M).

Theorem 3.6. Let N be a Q-ternary subsemimodule of a ternary R-semimodule M and P be a subtractive ternary subsemimodule of M with $N \subseteq P$. Then P is a prime ternary subsemimodule of M if and only if $P/N(Q \cap P)$ is a prime ternary subsemimodule of $M/N(Q)$.

Proof. The proof is similar as in the proof of Theorem 3.5. \hfill \Box

Every ternary semiring R is a ternary semimodule over itself and hence every ideal I of a ternary semiring R is a ternary subsemimodule of a ternary R-semimodule R. So we have:

Corollary 3.7. Let I be a Q-ideal and P be a subtractive ideal of a ternary semiring R with $I \subseteq P$. Then P is a prime ideal of ternary semiring R if and only if $P/I(Q \cap P)$ is a prime ideal of quotient ternary semiring $R/I(Q)$.

Acknowledgments

The authors are thankful to the referee for his helpful suggestions.

References

J. N. Chaudhari
Department of Mathematics, M. J. College, N. M. University, Jalgaon-425002, India.

Email: jnchaudhari@rediffmail.com

H. P. Bendale
Department of Applied Sciences, J. T. Mahajan College of Engineering, Faizpur, N. M. University, Jalgaon-425524, India.

Email: hpbendale@gmail.com