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SOME APPLICATIONS OF k-REGULAR SEQUENCES
AND ARITHMETIC RANK OF AN IDEAL WITH

RESPECT TO MODULES

KH. AHMADI AMOLI ∗, Z. HABIBI, AND R. BEHBOODI

Abstract. Let R be a commutative Noetherian ring with iden-
tity, I be an ideal of R, and M be an R-module. Let k ⩾ −1 be
an arbitrary integer. In this paper, we introduce the notions of
RadM (I) and araM (I) as the radical and the arithmetic rank of
I with respect to M , respectively. We show that the existence of
some sort of regular sequences can be depended on dimM/IM and
so, we can get some information about local cohomology modules
as well. Indeed, if araM (I) = n ≥ 1 and (SuppR(M/IM))>k = ∅
(e.g., if dimM/IM = k), then there exist n elements x1, ..., xn in
I which is a poor k-regular M -sequence and generate an ideal with
the same radical as RadM (I) and so Hi

I(M) ∼= Hi
(x1,...,xn)

(M) for

all i ∈ N0. As an application, we show that araM (I) ≤ dimM +1,
which is a refinement of the inequality araR(I) ≤ dimR + 1 for
modules, attributed to Kronecker and Forster. Then, we prove
dimM − dimM/IM ≤ cd(I,M) ≤ araM (I) ≤ dimM , if (R,m) is
a local ring and IM ̸= M .

1. Introduction

Throughout this paper, R denotes a non-trivial commutative Noe-
therian ring with identity, I denotes an arbitrary ideal, and M denotes
an R-module. The set of minimal elements of AssR M (SuppR M , re-
spectively) with respect to inclusion is denoted by mAssR M (mSuppR M ,

MSC(2010): Primary: 13D45; Secondary: 13C15

Keywords: regular sequences, k-regular sequences, local cohomology modules, arithmetic

rank of an ideal with respect to modules.

Received: 25 April 2023, Accepted: 24 August 2023.

∗Corresponding author .
21



22 AHMADI AMOLI, HABIBI, AND BEHBOODI

respectively). The symbol N0 denotes the set of non-negative integers
and k ⩾ −1 is an arbitrary integer. For a subset T of Spec(R), we set

(T )>k := {p ∈ T | R/p > k}, (T )≤k := {p ∈ T | dimR/p ≤ k}.

In 1978, on a local ring, Schenzel, Trung, and Cuong [19] introduced
the concept of filter regular M -sequence as the generalization of regular
M -sequence. In 1996, on an arbitrary Noetherian ring, Ahmadi Amoli
[1] introduced the notion of I − f. gradeM(a) as the common length
of all maximal I-filter regular M -sequences contained in an ideal a
with SuppR(M/aM) \ V (I) ̸= ∅. This notion is a generalization of
filter-depth introduced by Melkersson [16], where (R,m) is a local ring.
It is notable that the filter-depth was defined as f − deptha(M) =
min{depthaRp

(Mp) | p ∈ SuppR(M/aM) \ V (m)}, not by means of
the common length of any sequences. In 2005, on a local ring, Nhan
[17] introduced the two notions of generalized regular sequence and
generalized depth which are extensions of filter regular M -sequence
and filter-depth, respectively. In 2008, on a local ring, Chinh and Nhan
[6] introduced the concept of k-regular M -sequence, as the extension
of all kind of regular sequences mentioned above. This concept was
studied basically by Ahmadi Amoli and Sanaei in 2012 [2]. In fact, for
k = −1 any k-regular M -sequence is a regular M -sequence. Also, if
(R,m) is a local ring, then any k-regular M -sequence is a filter regular
M -sequence (generalized regular M -sequence, respectively) for k = 0
(k = 1, respectively).

The local cohomology module

H i
I(M) ∼= lim−→

n≥1

ExtiR(R/In,M) (i ∈ N0)

was first introduced by Serre in 1955 [20]. This notion was generalized
to algebraic geometry by Grothendieck in 1967 [8]. All kind of reg-
ular sequences give some useful information about local cohomology
modules. In this paper, we deal with some applications of k-regular
M -sequences in conjunction with local cohomology modules, cohomo-
logical dimension of modules, and arithmetic rank of ideals with respect
to modules. Recall that the cohomological dimension ofM with respect
to I, cd(I,M), is the greatest integer i ∈ N0 such that H i

I(M) ̸= 0,
also the arithmetic rank of I, araR(I), is the least number of elements
of I required to generate an ideal with the same radical as I. We
introduce the notion of RadM(I) as the radical of I with respect to
M (Definition 2.1). Then, we introduce the notion of araM(I) as the
arithmetic rank of I with respect to M (Definition 3.2). There is an
example in which araM(I) < araR(I) and so araM(I) may give more
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information about local cohomology H i
I(M) than araR(I) (Corollary

3.4 and Example 3.7).
It is difficult to determine the least number of elements x1, ..., xn of

I such that RadM(I) = RadM(x1, ..., xn). In 2009, Mehrvarz et al. [15]
showed that if araR(I) = n ≥ 1, then there is an I-filter regular M -
sequence x1, ..., xn in I such that RadR(I) = RadR(x1, ..., xn). In this
paper, we show the existence of some sort of regular sequences which are
depended on the dimension of M/IM and then get some information
about local cohomology modules as well. Indeed, we prove that if
araM(I) = n ≥ 2 and (SuppR(M/IM))>k = ∅ (e.g., if dimM/IM =
k), then there exists a poor k-regular M -sequence x1, ..., xn ∈ I such
that RadM(I) = RadM(x1, ..., xn) (hence H i

I(M) ∼= H i
(x1,...,xn)

(M) for

all i ∈ N0) and cd((x1, ..., xi),M) = i for all 1 ≤ i ≤ n − 1 (Theorems
3.3 and 3.8).

By the Generalized Krull’s Principal Ideal Theorem with respect to
modules (Theorem 2.8) araM(I) ≥ htM(I). In the case of equality, I
is called set theoretic complete intersection with respect to M (com-
pare [10]). We show that under some conditions, araM(I) > htM(I)
(Corollary 3.6).

In sequel, we show that if dimM/IM = 1, (SuppR (M/IM))>k = ∅,
and araM(I) = n ⩾ 2, then there exists a poor k-regular M -sequence
x1, ..., xn such that H i

I(M) are (x1, ..., xt)-cofinite for all 1 ⩽ t ⩽ n and
all 0 ⩽ i < t (Theorem 3.11). In 1882, Kronecker [11] showed that in
Noetherian rings of dimension of n, any radical ideal is equal to the
radical of an ideal with n+1 generators. That was stronger than what
had been proved on polynomial rings over a field in n indeterminates. In
1964, Forster [7] showed that for any ideal I of a local ring R, araR(I) ≤
dimR. In 2009, Mehrvarz et al. [15] showed that araR(I) ≤ dimR + 1
for any ideal I of R (not necessarily local ring). In 2020, Azami [3,
Corollary 2.4] proved that, in the local ring (R,m) if HdimR

m (R) is I-
cofinite, then araR(I) = dimR. One of our main results of this paper
is to develop these results for modules. In fact, in Theorem 3.13, we
show that araM(I) ≤ dimM + 1. Also, if R is a local ring and I is an
ideal for which IM ̸= M , we show that araM(I) ≤ dimM (Corollary
3.17). By definition, on any Noetherian ring R, cd(I,M) ≤ araM(I).
The final result of this paper is to show that on a local ring (R,m), if
IM ̸= M , then dimM − dimM/IM ≤ cd(I,M) ≤ araM(I) ≤ dimM
(Theorem 3.22).
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2. Preliminaries

In this section, we introduce the notion of RadM(I) as the radical
of I with respect to M which is a generalization of RadR(I). We also
give some properties of this notion which are needed throughout the
paper. Recall that RadR(I) = {r ∈ R | ∃n, rn ∈ I} is the intersection
of all prime ideals in AssR(R/I) . It is natural to have the following
definition.

Definition 2.1. Let I be an ideal of R and M be an R-module. The
radical of I with respect to M denoted by RadM(I), is the intersection
of the family of the associated prime ideals of M/IM , i.e., RadM(I) =∩

p∈AssR(M/IM) p. It is clear that I ⊆ RadM(I).

Following, we present some properties of the radical of an ideal with
respect to an R-module.

Lemma 2.2. Let I be an ideal of R and M be a finitely generated R-
module. Then
(i) RadM(I) = RadR(AnnR(M/IM)) = RadR(AnnR(M) + I) and
RadR(I) ⊆ RadM(I).
(ii) RadM(I) = {r ∈ R | ∃n, rnM ⊆ IM}.
(iii) IM = M if and only if RadM(I) = R.
(iv) RadM(I) =

∩
p∈SuppR(M/IM) p.

(v) Let J be a second ideal of R such that I ⊆ J . Then RadM(I) ⊆
RadM(J).

Proof. (i) Let IM = ∩t
i=1Ni be a minimal primary decomposition of

IM , whereNi is a pi-primary in IM (1 ≤ i ≤ t). Since AssR(M/IM) =
{p1, ..., pt}, then

RadM(I) = ∩t
i=1RadR(AnnR(M/Ni)) = RadR(AnnR(M/IM))

= RadR(AnnR(M) + I).

(ii) It is easily followed by (i).
(iii) It is clear by (ii).
(iv) The assertion is obvious, since every ideal of SuppR(M/IM) con-
tains an ideal of AssR(M/IM).
(v) Since SuppR(M/JM) ⊆ SuppR(M/IM), the assertion is followed
by (iv). □

Corollary 2.3. Let the situation be as in Lemma 2.2 and suppose that
p ∈ SuppR(M). Then
(i) RadM(p) = p.
(ii) RadM(pn) = p for all n ∈ N.
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The following Lemma can be proved by definition and above results.

Lemma 2.4. Let I, J be two ideals of R and M be a finitely generated
R-module. Then we have the following.
(i) RadM(I + J) = RadM(RadM(I) + RadM(J)).
(ii) RadM(RadM(I)) = RadM(I).
(iii) If RadM(I) + RadM(J) = R, then (I + J)M = M .

Corollary 2.5. Let M be a finitely generated R-module. Then for any
ideal I of R, there exists a positive integer υ such that (RadM(I))υM ⊆
IM .

Proof. Use Lemma 2.2 (i) and [21, Lemma 8.21]. □
Corollary 2.6. Let (R,m) be a local ring, I be an ideal of R, and M be
a finitely generated R-module such that IM ̸= M . Then RadM(I) = m
if and only if there exists a positive integer υ such that mυM ⊆ IM .

Proof. Use Lemma 2.2 (i) and (iii) and Corollary 2.5. □
Let M be a non-zero R-module and I be an ideal of R. Let us

recall the height of I with respect to M , as htM(I) = inf{htM(p) |
p ∈ SuppR(M/IM)}, if the infimum exists, and ∞ otherwise (for a
prime ideal p ∈ SuppR(M), htM(p) := dimRp Mp). Also, recall that
if (R,m) is a local ring, then dimM = min{n ∈ N0 | ∃x1, ..., xn ∈
m, ℓR(M/(x1, ..., xn)M) < ∞} ([21, Ex. 15.24]).

Corollary 2.7. Let (R,m) be a local ring and M be a finitely generated
R-module. Let I be an ideal of R such that RadM(I) = m. Then
ℓR(M/IM) < ∞ and so dimM ≤ m(I), where m(I) is the minimum
number of generators of I.

Proof. By Lemma 2.2 (iv), SuppR(M/IM) = {m}. Hence ℓR(M/IM) <
∞. □

To achieve the main results of this paper, we need to generalize
the Krull’s Principal Ideal Theorem for modules. For this purpose,
Corollary 2.7 helps us.

Theorem 2.8 (Generalized Krull’s Principal Ideal Theorem with re-
spect to modules). Let I be an ideal of R generated by r elements. As-
sume that M is a finitely generated R-module such that IM ̸= M . If p
is a minimal prime ideal of I in SuppR(M), i.e., p ∈ mSuppR(M/IM),
then htM(p) ≤ r.

Proof. By assumption and Lemma 2.2 (iv), RadMp(IRp) = pRp. Hence
by Corollary 2.5, (pRp)

υMp ⊆ (IRp)Mp for some υ ∈ N. Now, the
assertion follows by Corollary 2.7. □
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We end this section by showing that the local cohomology is invari-
ant under taking radical, RadM . This property is used frequently in
applications. Theorem 2.10 is followed by the following lemma.

Lemma 2.9. Let I be an ideal of R and M be an R-module. Then
ΓI(M) = ΓRadM (I)M .

Proof. Clearly, ΓRadM (I)(M) ⊆ ΓI(M). Conversely, let m ∈ M be such
that Inm = 0 for some n ∈ N. By Lemma 2.2 (i), it is enough to show
that m ∈ ΓAnnR(M)+I(M). Assume that r and a are arbitrary elements
of AnnR(M) and I, respectively. Since anm = 0 and rm = 0, we have
(r + a)2n−1m = 0 as required. □
Theorem 2.10. Let I and J be two ideals of R such that RadM(I) =
RadM(J). Then H i

I(M) ∼= H i
J(M) for any R-module M and all i ∈ N0.

3. Main results

In this section, we start by introducing the notion of araM(I) as
the arithmetic rank of I with respect to M which generalizes araR(I).
Recall that araR(I) is the least number of elements of R required to
generate an ideal which has the same radical as RadR(I). First, we
remind the following definition.

Definition 3.1. ([6]) A sequence a1, . . . , an of elements of R is called
a poor k-regular M-sequence whenever ai /∈ p for all

p ∈ Ass(M/
i−1∑
j=1

ajM), dimR/p > k

for all i = 1, . . . , n. Moreover, if dim(M/
∑n

i=1 aiM) > k, a1, . . . , an is
called a k-regular M -sequence.

Definition 3.2. The arithmetic rank of I with respect to M , denoted
by araM(I), is defined as follows:

araM(I) = min{i ∈ N0 | ∃ y1, ..., yi ∈ I,RadM(y1, ..., yi) = RadM(I)}.
It is clear that if IM = M , then araM(I) = 1.

Now, we are ready to present the following theorem which plays a
main role in this article. We prove the existence of a poor k-regular
M -sequence (for all k ⩾ −1) of length araM(I) = n ≥ 1 such that the
generated ideal has the same radical as RadM(I).

Theorem 3.3. Let M be a finitely generated R-module and I be an
ideal of R such that (SuppR(M/IM))>k = ∅ (e.g., if dimM/IM = k).
If araM(I) = n ≥ 1, then there exists a poor k-regular M-sequence
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y1, ..., yn ∈ I such that RadM(I) = RadM(y1, ..., yn). Hence H i
I(M) ∼=

H i
(y1,...,yn)

(M) for all i ∈ N0.

Proof. We use induction on n. By definition, there exist x1, ..., xn ∈
I such that RadM(I) = RadM(x1, ..., xn). One can see that I ⊈
∪p∈(AssR(M))>k

p, and so (x1, ..., xn) ⊈ ∪p∈(AssR(M))>k
p. Now, by [14, Ex.

16.8], there exists a1 ∈ (x2, ..., xn) such that x1 + a1 ̸∈ ∪p∈(AssR(M))>k
p.

Put y1 := x1 + a1. So that y1 is a poor k-regular M -sequence of
length 1 contained in I. By Lemma 2.2 (ii) and (v), RadM(I) =
RadM(y1, x2, ..., xn). Let 1 ≤ s < n and y1, ..., ys ∈ I is a poor-k
regular M -sequence with RadM(I) = RadM(y1, ..., ys, xs+1, ..., xn). We
have I ⊈ ∪p∈(AssR M/(y1,...,ys)M)>k

p and so that

(y1, ..., ys, xs+1, ..., xn) ⊈
∪

p∈(AssR M/(y1,...,ys)M)>k

p.

Now, choose as+1 ∈ (y1, ..., ys, xs+2, ..., xn) such that xs+1 + as+1 ̸∈
∪p∈(AssR M/(y1,...,ys)M)>k

p. Put ys+1 := xs+1 + as+1. Then ys+1 ∈ I and
y1, ..., ys, ys+1 is a poor k-regular M -sequence in I. We can conclude
that

RadM(I) = RadM(y1, ..., ys, ys+1, xs+2, ..., xn).

Therefore, the first assertion follows by induction. The last part is
obvious by Theorem 2.10. □

As an application of Theorem 3.3, we prove a vanishing of local
cohomology functor H i

I which is a powerful tool for applications of
local cohomology to algebraic geometry.

Corollary 3.4. Let I be an ideal of R and M be a finitely generated
R-module with dimM/IM < ∞. Then H i

I(M) = 0 for all i > araM(I).

Proof. If araM(I) = 0, then RadM(I) = RadM(0). So that H i
I(M) ∼=

H i
(0)(M) = 0 for all i ∈ N0, by Theorem 2.10. Now, assume that

araM(I) = n ≥ 1. Let dimM/IM = k. By Theorem 3.3, there exists a
poor k-regular M -sequence y1, ..., yn ∈ I such that RadM(y1, ..., yn) =
RadM(I). By Theorem 2.10, H i

I(M) ∼= H i
(y1,...,yn)

(M) for all i ∈ N0.

Therefore H i
I(M) = 0 for all i > n, by [5, Theorem 3.3.1]. □

As a result of Corollary 3.4 and Theorem 2.8, htM(I) ≤ cd(I,M) ≤
araM(I).

Definition 3.5. (Compare with [10]) Let M be a finitely generated
R-module. An ideal I of R with htM(I) = h is called a set the-
oretic complete intersection with respect to M whenever there exist
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x1, ..., xh ∈ I such that RadM(x1, ..., xh) = RadM(I). In other words,
araM(I) = htM(I).

Corollary 3.6. Let R be a Cohen-Macaulay ring and M be a finitely
generated R-module. Suppose that I is an ideal of R such that htM(I) =
h and Hh+1

I (M) ̸= 0. Then I is not a set theoretic complete intersection
with respect to M .

Proof. Apply Corollary 3.4. □
The following example shows that the invariant araM(I) may give

more information about local cohomology than araR(I). It shows that
H i

I(M) = 0 even for i = araR(I).

Example 3.7. Let k be a field and R = k[x, y, z]. Consider the nat-
ural homomorphism − : R → R/(x2 − yz) = R̄. Then R̄ is a two-
dimensional ring and p̄ = (x̄, ȳ) is a prime ideal of R̄ with htR̄(p̄) = 1.
Since RadR̄(p̄) = RadR̄(ȳ), araR̄(p̄) = 1. Now, consider the R̄-module
M := R̄/p̄. Then, it is clear that RadM(p̄) = RadM(0̄), and so
araM(p̄) = 0. Therefore araM(p̄) < araR̄(p̄). Consequently, by Corol-
lary 3.4, H i

p̄(M) = 0 for all i > 0, especially for i = araR̄(p̄) = 1.

The other application of Theorem 3.3 is as follows.

Theorem 3.8. Let M be a finitely generated R-module and I be an
ideal of R with dimM/IM < ∞. Assume that araM(I) = n ⩾ 2.
Then there exists a poor k-regular M-sequence y1, ..., yn ∈ I such that
H i

(y1,...,yi)
(M) ̸= 0 for all 1 ⩽ i ⩽ n−1. In particular, cd((y1, ..., yi),M) =

i for all 1 ⩽ i ⩽ n− 1.

Proof. Let dimM/IM = k. By Theorem 3.3, there exists a poor k-
regularM -sequence y1, ..., yn ∈ I such that RadM(I) = RadM(y1, ..., yn).
Let 1 ⩽ i ⩽ n − 1. By the Generalized Krull’s Principal Ideal The-
orem with respect to modules, Theorem 2.8, htM(p) = i for all p ∈
(mAssR M/(y1, ..., yi)M))>k. Thus, there exists

q ∈ (mAssR M/(y1, ..., yi)M))>k

such that q ⊉ I, and so dim Mq = i. By the Non-Vanishing Theorem,

H i
(y1,...,yi)

(M) ̸= 0. Since for all j > i, Hj
(y1,...,yi)

(M) = 0, we get

cd((y1, ..., yi),M) = i. □
Theorem 3.9. Let I be an ideal of R and M be a finitely generated
R-module such that (SuppR(M/IM))>k = ∅. Assume that araM(I) =
n ≥ 2 and cd(I,M) < n − 1. Then there exists a poor k-regular
M-sequence x1, ..., xn ∈ I such that RadM(I) = RadM(x1, ..., xn) and
ExtiR(R/I,Hn−1

(x1,...,xn−1)
(M)) = 0 for all i ∈ N0.
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Proof. The first part of the assertion follows from Theorem 3.3. Hence,
there is a poor k-regularM -sequence x1, ..., xn ∈ I such that RadM(I) =
RadM(x1, ..., xn). For the last part, we use the following exact se-
quences ([18, Corollary 1.4]):

0 → H1
(xn)

(Hn−1
(x1,...,xn−1)

(M)) → Hn
(x1,...,xn)

(M) →

H0
(xn)

(Hn
(x1,...,xn−1)

(M)) → 0

and

0 → H1
(xn)

(Hn−2
(x1,...,xn−1)

(M)) → Hn−1
(x1,...,xn)

(M) →

H0
(xn)

(Hn−1
(x1,...,xn−1)

(M)) → 0.

By assumption, Hn
(x1,...,xn)

(M) = 0 = Hn−1
(x1,...,xn)

(M). Thus

H1
(xn)(H

n−1
(x1,...,xn−1)

(M)) = 0 = H0
(xn)(H

n−1
(x1,...,xn−1)

(M)).

Therefore, we have the R-isomorphism

Hn−1
(x1,...,xn−1)

(M) xn−→Hn−1
(x1,...,xn−1)

(M),

which induces the following R-isomorphism,

ExtiR(R/I,Hn−1
(x1,...,xn−1)

(M))xn−→ ExtiR(R/I,Hn−1
(x1,...,xn−1)

(M)),

for all i ∈ N0. Since xn ∈ I, ExtiR(R/I,Hn−1
(x1,...,xn−1)

(M)) = 0 for all

i ∈ N0. □

Remark 3.10. Let R be a local ring and the situation be as Theorem 3.9.
By virtue of the isomorphism in the proof of Theorem 3.9, Nakayama
Lemma, and Theorem 3.8, HomR(R/(x1, ..., xn−1), H

n−1
(x1,...,xn−1)

(M)) is

not a finitely generated R-module.

Theorem 3.11. Let M be a finitely generated R-module and I be an
ideal of R such that dimM/IM = 1 and (SuppR (M/IM))>k = ∅.
Suppose that araM(I) = n ⩾ 2. Then there exists a poor k-regular
M-sequence x1, ..., xn ∈ I such that RadM(I) = RadM(x1, ..., xn). If
(SuppR(M/(x1, ..., xt)M) \ V (I))⩽k = ∅ for all 1 ⩽ t ⩽ n, then the

R-modules H i
I(M) are (x1, ..., xt)-cofinite for all 1 ⩽ t ⩽ n and all

0 ⩽ i < t.
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Proof. By Theorem 3.3, there is a poor k-regular M -sequence x1, ..., xn

∈ I such that RadM(I) = RadM(x1, ..., xn). This is a k-regular M -
sequence as (SuppR(M/(x1, ..., xn)M))>k ̸= ∅. Now, let 1 ≤ t ≤ n. By
[2, Theorem 3.2], we see that H i

I(M) ∼= H i
(x1,...,xt)

(M) for all 0 ⩽ i < t.

Thus dimSuppR(H
i
(x1,...,xt)

(M)) ⩽ dim(M/IM) = 1, for all 0 ⩽ i < t,

especially for all i < cd((x1, ..., xt),M). Now H i
(x1,...,xt)

(M) and so

H i
I(M) is (x1, ..., xt)-cofinite for all 0 ⩽ i < t by [4, Corollary 2.13]. □

Lemma 3.12. Let I be an ideal of R and M be a finitely generated
R-module such that (SuppR(M/IM))>k = ∅. Let araM(I) = n ≥ 2.
Then there exists a poor k-regular M-sequence x1, ..., xn ∈ I such that
RadM(I) = RadM(x1, ...xn) and Mp is a Cohen-Macaulay Rp-module
of dimension t, for all p ∈ (mAssR M/(x1, ..., xt)M)>k and all 1 ≤ t ≤
n− 1.

Proof. By Theorem 3.3, there is a poor k-regular M -sequence x1, ..., xn

∈ I such that RadM(I) = RadM(x1, ...xn). Let 1 ≤ t ≤ n − 1 and
p be a prime ideal in (mAssR M/(x1, ..., xt)M)>k. Since x1, ..., xt ∈ p
is a poor k-regular M -sequence, depth(Mp) ≥ t, by [2, Theorem 2.3].
As p ∈ (mSuppR M/(x1, ..., xt)M)>k, htM(p) ≤ t by the Generalized
Krull’s Principal Ideal Theorem with respect to modules, Theorem
2.8. So that t ≤ depth(Mp) ≤ dimMp ≤ t. Therefore Mp is Cohen-
Macaulay Rp-module of dimension t. □

Lemma 3.12 leads to an important result of this article. As an ap-
plication, we show that araM(I) ≤ dimM +1, which is a refinement of
the inequality araR(I) ≤ dimR+1 for modules, due to Kronecker and
Forster [11], [7] (also [12], [13]).

Theorem 3.13. Let I be an ideal of R and M be a non-zero finitely
generated R-module. Then araM(I) ≤ dimM + 1.

Proof. IfM = IM , then there is nothing to prove because araM(I) = 1.
So, we may assume that IM ̸= M and dimM = d is finite. If
araM(I) = 0, the assertion is obvious. Now, let araM(I) = n ≥ 1.
Suppose that dimM/IM = k and araM(I) > d + 1. By Theorem
3.3, there exists a poor k-regular M -sequence x1, ..., xn ∈ I such that
RadM(I) = RadM(x1, ..., xn). Also, since araM(I) > d + 1, by Lemma
3.12, there exists p ∈ m(AssR M/(x1, ..., xd+1)M)>k such that Mp is a
Cohen-Macaulay Rp-module of dimension d + 1, which is a contradic-
tion. Therefore araM(I) ≤ d+ 1. □
Lemma 3.14. Let I be an ideal of R and M be a finitely generated
R-module. If p ∈ SuppR(M/IM) be such that htM(I) = htM(p), then
p is a minimal prime ideal of I in SuppR(M).
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Lemma 3.15. LetM be a finitely generated R-module and p ∈ SuppR(M)
with htM(p) = n. Then there exists an ideal I ⊆ p of R which can be
generated by n elements such that htM(I) = n.

Proof. Use induction on n ≥ 0 and apply Lemma 3.14 and Theorem
2.8. □

Lemma 3.16. Let (R,m) be a local ring and M be a non-zero finitely
generated R-module. Then dimM = araM(m).

Proof. Apply Theorem 2.8 and Lemmas 3.14 and 3.15. □

The following result is one of the main results of this paper.

Corollary 3.17. Let (R,m) be a local ring and M be a finitely gen-
erated R-module and I be an ideal of R for which IM ̸= M . Then
araM(I) ≤ dimM .

Proof. Put d := dimM . If d = 0, then by Lemma 3.16, araM(m) = 0.
Thus RadM(0) = m, and so I ⊆ RadM(0). Hence RadM(I) = RadM(0)
and hence araM(I) = 0.
Now, let d > 0 and dimM/IM = k. Suppose that araM(I) > d. Thus,
by Theorem 3.3, there exists a poor k-regularM -sequence x1, ..., xt ∈ I,
such that RadM(I) = RadM(x1, ..., xt) where t = araM(I). By Theorem
3.13, d < araM(I) ≤ d + 1. Thus araM(I) = d + 1. This follows that
araM(I) ≥ 2, and so by Lemma 3.12, there exists a poor k-regular M -
sequence y1, ..., yd+1 ∈ I such that RadM(I) = RadM(y1, ..., yd+1) and
for all p ∈ mAssR (M/(y1, ..., yd+1)M))>k, Mp is a Cohen-Macaulay
Rp-module of dimension d+ 1, which is a contradiction. □

Corollary 3.18. Let (R,m) be a local ring and I be an ideal of R. Let
M be a finitely generated R-module of dimension d with dimM/IM =
1. Suppose that htM(p) < d − 1 for all minimal prime ideal p ∈
SuppR(M). Then araM(I) = d.

Proof. First, we claim that SuppR(H
d−1
I (M)) ⊆ {m}. Let q be a prime

ideal in SuppR(H
d−1
I (M)). Then dimMq ≥ d− 1. As htM(q) ≥ d− 1,

q is not a minimal prime ideal of SuppR(M/IM). Hence, q = m as re-
quired. Since I ⊂ m, there exists x ∈ m such that x /∈ ∪p∈mAssR(M/IM)p.
Hence RadM(I + Rx) = m and H i

I+Rx(M) ∼= H i
m(M) for all i ∈ N, by

Theorem 2.10. Using [5, Theorem 8.1.2], we have the following exact
sequence

... → Hd−1
I (M) → Hd−1

I (Mx) → Hd
I+Rx(M) → Hd

I (M) → Hd
I (Mx) →

... .
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Since dimMx < d, Hd
I (Mx) = 0. Now, considering [5, Theorem 4.2], we

show that (Hd−1
I (M))x = 0. On the contrary, let q ∈ SuppR(H

d−1
I (M))

be such that q ∩ {xi | i ∈ N0} = ∅. Thus SuppR(H
d−1
I (M)) = {m},

and so q = m. This follows that m ∩ {xi | i ∈ N0} = ∅, which is
a contradiction. Therefore Hd−1

I (Mx) = 0. Now, by the above exact
sequence, we have Hd

I (M) ̸= 0. Hence d = cd(I,M) ≤ araM(I) by
Corollary 3.4. Now, the assertion follows from Corollary 3.17. □

Here, we are in position to prove the last result of this paper (Theo-
rem 3.22). In order to prove it, we need Proposition 3.21, which shows
that dimM − dimM/IM ≤ cd(I,M). To this end, we need the fol-
lowing lemmas.

Lemma 3.19. Let (R,m) be a local ring, I be an ideal of R, and M
be a finitely generated R-module such that IM ̸= M . Then dimM −
dimM/IM ≤ araM(I).

Proof. Let araM(I) = n and x1, ..., xn ∈ I be such that RadM(x1, ..., xn)
= RadM(I). Then dimM − n ≤ dimM/(x1, ..., xn)M = dimM/IM ,
as required. □
Lemma 3.20. Let (R,m) be a local ring, I be an ideal of R, and M
be a finitely generated R-module. Assume that k ⩾ −1 is an arbitrary
integer such that dimM > k. Then any poor k-regular M-sequence in
I is a part of a system of parameters for M .

Proof. Let x1, ..., xr ∈ I be a poor k-regular M -sequence. It is enough
to prove the assertion for r = 1. Hence, we assume that x ∈ I is a poor
k-regular M -sequence. By the definition (AssR(M) ∩ V (x))>k = ∅.
Assume that dimM/xM = dimM = d. So that, there exists a chain
in SuppR(M/xM) as p0 ⊂ p1 ⊂ ... ⊂ pd, where p0 is a minimal element
of SuppR(M) , and so p0 ∈ AssR(M). Since x ∈ p0, dimR/p0 ≤ k.
Hence dimM = d ≤ dimR/p0 ≤ k, which is a contradiction. Therefore
dimM/xM = dimM − 1, as required. □
Proposition 3.21. Let (R,m) be a local ring, I be an ideal of R,
and M be a finitely generated R-module such that IM ̸= M . Then
dimM − dimM/IM ≤ cd(I,M).

Proof. Put d = dimM , t = dimM − dimM/IM , and r = araM(I).
Let x′

1, ..., x
′
d ∈ m be a system of parameters for M . Then m is the only

minimal prime ideal of (x′
1, ..., x

′
d) in SuppR(M) and so RadM/IM(x′

1 +
I, ..., x′

d+ I) = m/I. As dimM/IM = d− t, we may choose x1, ..., xt ∈
I ∩ {x′

1, ..., x
′
d} and y1, ..., yd−t ∈ {x′

1, ..., x
′
d} \ I. Thus, RadM/IM(y1 +

I, ..., yd−t+I) = m/I. Asm = RadM((x1, ..., xt, y1, ..., yd−t)) ⊆ RadM(I+
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(y1, ..., yd−t)), we get m = RadM(I + (y1, ..., yd−t)). Since y1, ..., yd−t

is a part of system of parameters for M , dimM/(y1, ..., yd−t)M =
dimM − (d− t) = t. Now, by the Non-vanishing Theorem [5, Theorem
6.1.4], the Independence Theorem [5, Theorem 4.2.1], and Theorem
2.10, we get the following

0 ̸= H t
m(M/(y1, ..., yd−t)M)

∼= H t
m/(y1,...,yd−t)

(M/(y1, ..., yd−t)M)

∼= H t
I+(y1,...,yd−t)/(y1,...,yd−t)

(M/(y1, ..., yd−t)M)

= H t
I(R/(y1,...,yd−t))

(M/(y1, ..., yd−t)M

∼= H t
I(M/(y1, ..., yd−t)M).

Hence r ≤ cd(I,M/(y1, ..., yd−t)M). But cd(I,M/(y1, ..., yd−t)M) ≤
cd(I,M), and so t ≤ cd(I,M). □

It is clear that on any Noetherian ring R, for an ideal I of R and
R-module M , we have cd(I,M) ≤ araM(I) (Corollary 3.4). In the
following theorem, we get useful inequalities.

Theorem 3.22. Let (R,m) be a local ring, I be an ideal of R, and M
be a finitely generated R-module such that IM ̸= M . Then dimM −
dimM/IM ≤ cd(I,M) ≤ araM(I) ≤ dimM .

Proof. The assertion follows from Corollary 3.17 and Proposition 3.21.
□

Theorem 3.23. Let (R,m) be a local ring, M be finitely generated
R-module of dimension d ≥ 2, and I be an ideal of R. Assume that
araM(p) < d for every p ∈ SuppR(M) such that htM(p) = d− 1. Then
araM(q) < d for every q ∈ AssR(M) such that dimM/qM = d.

Proof. Suppose contrary to our claim that there exists q ∈ AssR(M)
such that dimM/qM = d and araM(q) ≥ d. By Corollary 3.17,
araM(q) ≤ d so that araM(q) = d. By Lemma 3.12, there exists a poor
d-regular M -sequence y1, ..., yd ∈ q such that RadM(q) = RadM(y1, ...,
yd) and there exists a prime ideal p in m(AssR(M/(y1, ..., yd−1)M))>d

such that htM(p) = d−1. Hence by assumption, we have araM(p) < d.
Since dimM/qM = d, q ⊈ p. Now, we claim that RadM(p + q) = m.
Let Q ∈ SuppR(M/(p + q)M) be such that Q ⊊ m. Since htM(p) =
d− 1, there is a chain

p0 ⊂ p1 ⊂ p2 ⊂ ... ⊂ pd−2 ⊂ pd−1 = p,
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where pi ∈ SuppR(M) for all 0 ≤ i ≤ d− 1. Since q ⊈ p, p ⊊ p + q ⊆
Q ⊊ m. So that, we get a chain of length of d+ 1 in SuppR(M) which
is a contradiction. Therefore by [5, Theorem 4.2.1], Theorem 2.10, and
the Non-Vanishing Theorem, we get

Hd
p (M/qM) ∼= Hd

p+q(M/qM) ∼= Hd
m(M/qM) ̸= 0.

But Hd
p (M/qM) ∼= Hd

p (M) ⊗R R/q, by [5, Exercise 6.1.10]. Thus

Hd
p (M) ̸= 0. Therefore d = cd(p,M) ≤ araM(p) < d, which is a

contradiction. □
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278.

21. R. Y. Sharp, Steps in commutative algebra: second edition, London Mathemat-
ical Society student text 51, Cambridge University Press, Cambridge, 2000.

Khadijeh Ahmadi Amoli
Department of Mathematics, Payame Noor University, P.O.Box 19395-4697, Tehran,
Iran.
Email: khahmadi@pnu.ac.ir

Zohreh Habibi
Department of Mathematics, Payame Noor University, P.O.Box 19395-4697, Tehran,
Iran.
Email: z habibi@pnu.ac.ir

Raziyeh Behboodi
Department of Mathematics, Payame Noor University, P.O.Box 19395-4697, Tehran,
Iran.
Email: r.behboodi@student.pnu.ac.ir


	1. Introduction
	2. Preliminaries
	3. Main results
	References

