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ESSENTIAL SUBMODULES RELATIVE TO A
SUBMODULE

S. RAJAEE

Abstract. In this paper, our aim is to introduce and study the
essential submodules of an R-module M relative to an arbitrary
submodule T of M . Let T be an arbitrary submodule of an R-
module M , then we say that a submodule N of M is an essential
submodule of M relative to T , whenever for every submodule X of
M , N ∩X ⊆ T implies that (T : M) ⊆e Ann(X). We investigate
some new results concerning to this class of submodules. Among
various results we prove that for a faithful multiplication R-module
M , if the submodule N of M is an essential submodule of M
relative to T , then (N : M) is an essential ideal of R relative to
(T : M). The converse is true if M is moreover a finitely generated
module.

1. Introduction

Throughout this paper, R is a commutative ring with nonzero iden-
tity and M is a nonzero unital R-module. By N ≤ M we shall mean
that N is a submodule of M and N < M denoted a proper submodule
of M . The concept of essential submodules is a well known concept
which plays an indispensable role in the context of commutative alge-
bras. A submodule N of an R-module M is said to be an essential
submodule of M , denoted by N ≤e M if for every submodule H of M ,
N ∩H = 0 implies that H = 0. In this case, the module M is said to
be an essential extension of N . Clearly, M is an essential submodule of
itself, and the zero submodule of a nonzero module is never essential.
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We denote the set of all essential submodules of M by ess(M). In par-
ticular, an ideal I of a ring R is an essential ideal, if I is an essential
submodule of R as an R-module. We denote by I ⊆e R (resp., I ⊆⊕ R)
an essential ideal (resp., a direct summand) of R.

A non-trivial R-module M is called a uniform module if every proper
submodule of M is an essential submodule of M . An R-module M with
no proper essential extension is an injective module. It is then possi-
ble to prove that every module M has a maximal essential extension
E(M), called the injective hull of M . The injective hull is necessarily an
injective module, and is unique up to isomorphism. The injective hull
is also minimal in the sense that any other injective module containing
M contains a copy of E(M).

For an R-module M , the set of all submodules of M , denoted by
L(M) and also L∗(M) = L(M) \ {M}. As usual, the rings of integers
and integers modulo n will be denoted by Z and Zn, respectively. A
module M on a ring R (not necessarily commutative) is called prime
if for every nonzero submodule K of M , Ann(K) = Ann(M). We
recall that an R-module M is called a multiplication module, if every
submodule N of M has the form N = IM for some ideal I of R, and in
this case, N = (N :R M)M , see [4, 5]. The dual notion of an essential
submodule is small (superfluous) submodule, denoted by N � M , if
for every submodule L of M , N + L = M , implies that L = M . The
Jacobson radical of a module M , denoted by J(M) is the intersection
of all maximal submodules of M and also it is the sum of all small
submodules of M . If M does not have maximal submodules, we put
J(M) = M . By Soc(M), we denote the socle of M which is defined
by Soc(M) =

∑
N∈Min(M) N = ∩E∈ess(M)E. In particular, Soc(R) is the

intersection of all essential ideals of R. If M is an Artinian module,
then Soc(M) is an essential submodule of M . We refer the reader
to [1, 3, 11, 12, 13] for the basic properties and more information on
essential and small submodules. We know that if M is a semisimple
module, then the zero submodule of M is the only small submodule
of M and M is the only essential submodule of M . Also a non-trivial
direct summand of a ring R is neither essential nor small. We know
that a ring has no proper essential ideal if and only if it is a semisimple
(Artinian) ring and so a ring has no proper small ideal if and only if it
has trivial Jacobson radical.

An R-module M is said to be a comultiplication module if for every
submodule N of M there exists an ideal I of R such that N = AnnM(I),
see [10]. All unexplained terminologies and basic results on modules
that are used in the sequel can be found in [1, 3, 6, 8, 11, 12, 13].
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An outline of this article is as follows. In section 2, we will summarize
the basic properties of essential submodules, needed for the rest of the
article. In section 3, we study and obtain some more results of essential
submodules. In section 4, we will introduce the concept of essential
submodules of M relative to an arbitrary submodule T of M .

2. Preliminaries and Notations

The study of essential ideals in a ring R is a classical problem. For
instance, Green and Van Wyk in [7] characterized essential ideals in
certain classes of commutative and non-commutative rings. Several
authors have been recently attracted by different generalizations of
essential submodules. An interesting example of this situation has
been studied in [9], they replaced an arbitrary submodule of M , say T ,
instead of 0 in the definition of essential submodules. The submodule K
of M is called T -essential provided that K * T and for each submodule
L of M , K ∩ L ⊆ T implies that L ⊆ T . In this case, K is denoted
by K �T M , see [9, Definition 2.1]. For N ≤ M , a complement of N
is a submodule of M maximal in {L ≤ M | L ∩ N = 0}. A module
M is a CS-module provided every submodule of M is essential in a
direct summand of M , equivalently, if and only if every complement
submodule is a direct summand.

By [12, Proposition 2.2], an R-module M is semisimple if and only if
M does not have a proper essential extension. If M is a finitely gener-
ated module and every maximal submodule of M is a direct summand
of M , then M is a semisimple module, see [12, Remark 2.3]. Every
Artinian module is an essential extension of its socle.

Definition 2.1. Let M be an R-module.

(i) The singular submodule of M is defined by

Z(M) = {m ∈M | mI = 0 for some I ⊆e R} = {m ∈M | Ann(m) ⊆e R}.
Then M is called singular if Z(M) = M and is non-singular if
Z(M) = 0, see [8, p. 247].

(ii) A submodule N of M is said to be closed (in M) if it does
not have a proper essential extension in M . Equivalently, if
N ( L ⊆ M and L ≤e M , then L = M . If K is a closed
submodule of M and N ≤e K, then we say that K is a closure
of N in M . Dually, a submodule N of M is called coclosed in
M if N/K � M/K implies K = N for every submodule K of
N .

(iii) For a submodule G of M , a submodule H of M is called a
complement of G in M if G ∩ H = 0, G ⊕ H is an essential



62 RAJAEE

submodule of M , and G ∩K 6= 0 for every submodule K of M
that properly contains H.

For study of other properties of closed submodules the reader refer
to [12, Remark 19.4]. In the following remark we summarize a number
of important properties of essential submodules.

Remark 2.2. Let M be an R-module, N,K and H be submodules of
M . The following assertions are true.

(i) M is semisimple if and only if M has no proper essential sub-
modules, see [6, Corollary 5.9].

(ii) Suppose that N ≤ K ≤ M . Then N ≤e M if and only if
N ≤e K and K ≤e M , see [1, Proposition 5.16 (1)].

(iii) K ∩ H ≤e M if and only if K ≤e M and H ≤e M , see [1,
Proposition 5.16 (2)].

(iv) Let A1, A2, B1, B2 be submodules of M . If A1 ≤e B1 and
A2 ≤e B2, then A1∩A2 ≤e B1∩B2, see [6, Proposition 5.6 (b)].

(v) Let A be a submodule of a module M ′ and f : M → M ′

a homomorphism. If A ≤e M ′, then f−1(A) ≤e M , see [6,
Proposition 5.6 (c)].

(vi) Suppose that K is maximal with respect to the property N ∩
K = 0. Then N ⊕K ≤e M and (N ⊕K)/K ≤e M/K, see [6,
Proposition 5.7].

(vii) If N ≤e E and N ≤e E1 such that E ⊆ E1, then E ≤e E1, see
[13, Lemma 2.4.15, p. 97].

3. Some more results on essential submodules

In this section, we investigate some more properties of essential sub-
modules.

Theorem 3.1. Let M be an R-module. If N ≤e M , then for every
submodule X of M , N ∩ X = 0, implies that Ann(X) ⊆e R. The
converse is true if Z(M) = 0.

Proof. (⇒) It is clear.
(⇐) Assume that for every submodule X of M , N∩X = 0, implies that
Ann(X) ⊆e R. By Remark 2.2 (ii), for every m ∈ X, Ann(m) ⊆e R
since Ann(X) ⊆ Ann(m) ⊆ R. This implies that m = 0 since Z(M) =
0 and so X = 0 and the proof is complete. �

Corollary 3.2. Let M be an R-module and for every submodule X of
M , N ∩X = 0, implies that Ann(X) ⊆e R. Suppose that Λ = {X|X <
M, N ∩X = 0}, then

⋃
X∈Λ X ⊆ Z(M).
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We recall that the torsion submodule of M is defined by

T (M) = {m ∈M | rm = 0 for some 0 6= r ∈ R}.
If T (M) = M , then M is called a torsion module, and torsion-free if
T (M) = 0.

Corollary 3.3. Let M be a module on a domain R with Z(M) = 0.
Then the following statements are equivalent.

(i) N ≤e M .
(ii) M/N is a torsion R-module.

(iii) For every submodule X of M , N∩X = 0, implies that Ann(X) ⊆e

R.

Proof. (i) ⇔ (ii) It concludes from [9, Corollary 2.11].
(i) ⇔ (iii) It is true by Theorem 3.1. �

Proposition 3.4. Let M be a module over a simple ring R. Then
N ≤e M if and only if for every submodule X of M , N ∩ X = 0,
implies that Ann(X) ⊆e R.

Proof. (⇒) It is clear.
(⇐) Suppose that, N ∩X = 0 for some submodule X of M . Then by
assumption, Ann(X) ⊆e R and since R is simple hence Ann(X) = R
and so X = 0 as needed. �

Theorem 3.5. Let M be a faithful comultiplication R-module and N be
a proper submodule of M . If for every submodule X of M , N ∩X = 0
implies that Ann(X) ⊆e R, then N ≮⊕ M .

Proof. Subcontrary, let N <⊕ M , then for some proper submodule X
of M , M = N + X and N ∩X = 0. By assumption, AnnR(X) ⊆e R.
Now we have

AnnR(M) = AnnR(N + X) = AnnR(N) ∩ AnnR(X) = 0.

Since AnnR(X) ⊆e R hence AnnR(N) = 0. Since M is a comultiplica-
tion module hence N = AnnM(AnnR(N)) = AnnM(0) = M which is a
contradiction. �

Corollary 3.6. If M is a faithful R-module and N <⊕ M such that
Ann(N) 6= 0, then there exists a submodule X of M such that Ann(X)
is not essential in R.

From Corollary 3.6, we obtain the following corollary.

Corollary 3.7. Let M be a faithful R-module. Then the following
assertions hold.
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(i) If N ∈ Max(M) \ ess(M) and Ann(N) 6= 0, then there exists a
submodule X of M such that N ∩X = 0 and Ann(X) is not an
essential ideal of R.

(ii) If M is a CS-module, then for every complement submodule N
of M with Ann(N) 6= 0, there exists an submodule X of M such
that N ∩X = 0 and Ann(X) is not an essential ideal of R.

Proof. (i) Since N ∈ Max(M), then either N <⊕ M or N ≤e M . By
assumption, the second case does not happen and hence N <⊕ M .
Now by use of Corollary 3.6, the proof is complete.
(ii) The proof is striaghtforward by Corollary 3.6, because every com-
plement submodule of a CS-module M is a direct summand of M . �

Theorem 3.8. Let M be an R-module and N be a maximal submodule
of a coclosed submodule K of M . If for every submodule X/N of M/N ,
K/N ∩ X/N = 0, implies that Ann(X/N) ⊆e R, then there exists a
X ∈ Max(M) such that Ann(X/N) ⊆e R.

Proof. Let N be a maximal submodule of K. Since K is coclosed,
hence K/N is not small in M/N , otherwise K = N which is impossible.
Therefore we have K/N + X/N = M/N for some proper submodule
X/N of M/N . Then (K/N) ∩ (X/N) = 0, because K/N is a simple
module and by assumption, Ann(X/N) ⊆e R. We note that M/N =
K/N ⊕X/N and so K ∩X = N . Then K/N ∼= M/X is also simple,
hence X is a maximal submodule of M , as needed. �

4. essential submodules relative to a submodule

In this section, we introduce the concept of essential submodules of
an R-module M relative to an arbitrary submodule T of M . Our aim
is to make a further study of these objects.

We begin with the following definition.

Definition 4.1. Let M be an R-module and T be a proper arbitrary
submodule of M .

(i) We say that a submodule N of M is an essential submodule
relative to T , provided that for each submodule X of M with
N ∩ X ⊆ T implies that (T : M) ⊆e Ann(X). We write
N ≤e

T M to denote this situation. Equivalently, if for some
submodule X of M , (T : M) *e Ann(X), then N ∩X * T .

(ii) We say that an ideal I of R is an essential ideal relative to ideal
A of R, denoted by I ⊆e

A R, if I is an essential submodule of R
as an R-module relative to A.
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(iii) We say that M is a uniform module relative to T , if every
submodule N of M is an essential submodule of M relative to
T .

(iii) Let f : M → M ′ be an R-monomorphism, we say that f is an
essential monomorphism relative to T , whenever Im(f) ≤e

f(T )

M ′.

The set of all essential submodules of M relative to T , denoted by
Le
T (M).

Example 4.2. Consider M = Z6 as a Z-module. Clearly, M is a
multiplication Z-module.

(a) Take, T = 〈0̄〉 and N = 〈2̄〉. Then the following cases hold:
(i) N ∩ 〈3̄〉 = 〈0̄〉, implies that 6Z = (〈0̄〉 :Z Z6) ⊆e Ann(〈3̄〉) =
2Z.
(ii) N ∩ 〈0̄〉 = 〈0̄〉, implies that 6Z = (〈0̄〉 :Z Z6) ⊆e Ann(〈0̄〉) =
Z. Therefore N is an essential submodule of M relative to
T = 〈0̄〉, but clearly it is not an essential submodule of M .

(b) Take, N = T = 〈2̄〉. Then we have the following cases:
(i) 〈0̄〉 = N ∩ 〈3̄〉 ⊆ 〈2̄〉, implies that 2Z = (〈2̄〉 :Z Z6) ⊆e

Ann(〈3̄〉) = 2Z.
(ii) 〈0̄〉 = N ∩ 〈0̄〉 ⊆ T , implies that 2Z = (〈2̄〉 :Z Z6) ⊆e

Ann(0̄) = Z.
(iii) N = N ∩ Z6 ⊆ T , but 2Z = (〈2̄〉 :Z Z6) *e Ann(Z6) = 6Z.
Therefore N is not an essential submodule of M relative to T .

Example 4.3. Consider M = Z as a Z-module and T = kZ be a
nonzero submodule of M such that k ∈ N. We know that mZ∩nZ ⊆ kZ
whenever k | [m,n]. Then (kZ : Z) = kZ *e Ann(nZ) = 0 hence Z
has no essential submodule relative to T .

Theorem 4.4. Let M be an R-module. Then the following assertions
hold.

(i) The only essential submodule of M relative to M is the zero
submodule.

(ii) If M is a uniform module relative to M , then M is simple.

Proof. (i) Assume that N ≤e
M M . Since N ∩N ⊆M hence by assump-

tion, (M : M) = R ⊆e Ann(N) and so Ann(N) = R therefore N = 0.
(ii) Clearly by (i), M has no nonzero submodule and so M is a simple
module. �

In the sequel, we suppose that T is a proper submodule of M as we
mentioned in Definition 4.1. Let N ≤e

T M and N ⊆ T . Take, X = M ,
then we have N ∩ M = N ⊆ T , hence (T : M) ⊆e Ann(M). This
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implies that, (T : M) = Ann(M) and so (T : M) ⊆e Ann(M), as
needed.

Proposition 4.5. Let M be an R-module and T be a proper submodule
of M . If (T : M) = 0 and N ≤e

T M , then for every submodule X of M
with N ∩X = 0, Ann(X) = 0.

Proof. Clearly, if N ≤e
T M , then for every submodule X of M with

N ∩ X = 0 ⊆ T , we must have Ann(X) = 0, because otherwise, 0 =
(T : M) *e Ann(X) which is impossible. In particular, if Ann(M) = 0
and N ≤e

0 M , then for every submodule X of M with N ∩ X = 0,
Ann(X) = 0, (take T = 0). �

Proposition 4.6. Let M be an R-module, T be an arbitrary proper
submodule of M , and N ≤e

T M . Then the following statements are
true.

(i) For any m ∈ T with AnnR(m) 6= 0, (T : M) 6= 0. In particular,
for any nonzero ideal J of R with Jm = 0, (T : M) ∩ J 6= 0.

(ii) If there exists 0 6= m ∈ T ∩ Z(M), then AnnR(M/T ) 6= 0.

Proof. (i) Since N ≤e
T M , hence for any m ∈ T with Ann(Rm) 6= 0 we

must have (T : M) 6= 0, because N ∩Rm ⊆ T implies that (T : M) ⊆e

Ann(Rm). Thus (T : M) 6= 0. For the second part, assume that there
exists a nonzero ideal J of R with Jm = 0 for some m ∈ T . Then
N ∩ Jm = 0 ⊆ T and by assumption (T : M) ⊆e Ann(Jm) = R and
so (T : M) ∩ J 6= 0.
(ii) Assume m ∈ T ∩ Z(M), then there exists an essential ideal J of R
such that Jm = 0. By (i), (T : M) 6= 0 and so (T : M) ∩ J 6= 0. �

Proposition 4.7. Let M be either a prime module or Ann(M) ⊆e R.
Then every submodule of M is an essential submodule of M relative to
zero submodule.

Proof. Assume that N is an arbitrary submodule of M and N ∩X = 0
for some submodule X of M . Since M is prime, hence Ann(M) =
Ann(X), and so Ann(M) ⊆e Ann(X), as needed. Also, if Ann(M) ⊆e

R, then by [1, Proposition 5.16 (1)], Ann(M) ⊆e Ann(X) and the proof
is complete. �

Theorem 4.8. Let M be a nonzero R-module and T be a proper sub-
module of M . The following assertions hold.

(i) If N ≤e
T M with (T : M) ⊆e R, then for every submodule X of

M , N ∩X = 0, implies that Ann(X) ⊆e R.
(ii) If N ≤ L ≤ M , and N ≤e

T M , then L ≤e
T M . The converse is

true if M is a prime module.
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(iii) If N ∩N ′ ≤e
T M , then N ≤e

T M and N ′ ≤e
T M .

(iv) If M is a faithful multiplication R-module and N ≤e
T M , then

(N : M) is an essential ideal of R relative to (T : M). The
converse is true if M is also a finitely generated module.

Proof. (i) Assume that N ≤e
T M and N ∩ X = 0 ⊆ T for some sub-

module X of M . Then (T : M) ⊆e Ann(X) ⊆ R. This implies that
Ann(X) ⊆e R since (T : M) ⊆e R and the proof is complete.
(ii) Suppose that L ∩ X ⊆ T for some submodule X of M , then
N ∩ X ⊆ T . Since N ≤e

T M hence (T : M) ⊆e Ann(X) and so
L ≤e

T M .
Conversely, let M be a prime module and N ∩ X ⊆ T for some

submodule X of M . Take the submodule X∩L of L, then L∩(N∩X) ⊆
T . Since L ≤e

T M , hence (T : M) ⊆e Ann(N ∩ X) = Ann(X), as
needed.
(iii) It is clear by (ii).
(iv) Assume that (N : M) ∩ J ⊆ (T : M) for some ideal J of R, then
we have (N : M)M ∩ JM ⊆ T = (T : M)M . Since N ≤e

T M hence
(T : M) ⊆e Ann(JM) = Ann(J) and the proof is complete.

Conversely, let N ∩X ⊆ T for some submodule X of M . Then (N :
M)M ∩ (X : M)M ⊆ (T : M)M and so (N : M)∩ (X : M) ⊆ (T : M),
since M is a cancellation module. By assumption, (T : M) = ((T :
M) : R) ⊆e Ann(X : M) = Ann(X).

�

Corollary 4.9. Let M be a finitely generated faithful multiplication
R-module and T be an arbitrary proper submodule of M . Then M is a
uniform module relative to T if and only if R is a uniform ring relative
to (T : M).

Theorem 4.10. Let M be a nonzero R-module and T be an arbitrary
proper submodule of M such that (T : M) 6= 0. Then the following
assertions are true.

(i) If M is a faithful prime R-module, then Le
T (M) = ∅.

(ii) Let M be a Noetherian R-module and S be a m.c.s. of R. If
S−1N is an essential submodule of S−1R-module S−1M relative
to S−1T , then N is an essential submodule of M relative to T .

(iii) If R is a simple ring, then Le
T (M) = ∅.

Proof. (i) Suppose that N ∩X ⊆ T for some submodule X of M . By
hypothesis, for every submodule X of M , Ann(X) = 0 hence (T : M)
can not be essential in Ann(X).
(ii) Let N ∩X ⊆ T for some submodule X of M . We must show that
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(T :R M) ⊆e Ann(X). By virtue of [3, Corollary 3.4],

S−1(N ∩X) = S−1N ∩ S−1X ⊆ S−1T.

By hypothesis, (S−1T :S−1R S−1M) ⊆e AnnS−1R(S−1X) and so by [3,
Proposition 3.14, Corollary 3.15] we have

S−1(T :R M) : = (S−1T :S−1R S−1M) ⊆e AnnS−1R(S−1X)

= (S−10 :S−1R S−1X) = S−1(0 :R X).

It concludes that (T :R M) ⊆e AnnR(X) and the proof is complete.
(iii) If T = 0, then by hypothesis, (T : M) = Ann(M) = R and so
M = 0 which is impossible. Now assume that N ≤e

T M for some
nonzero submodule T of M . Take X = T , then N ∩ T ⊆ T implies
that (T : M) ⊆e Ann(T ). By hypothesis, (T : M) = Ann(T ) = R and
so T = 0 which is impossible. �

Proposition 4.11. Let M be an R-module and N ≤M . Assume that
T < T ′ < M and (T : M) ⊆e R. If N ≤e

T ′ M , then N ≤e
T M .

Proof. Let N ∩X ⊆ T for some submodule X of M . Then N ∩X ⊆ T ′

and by hypothesis, (T ′ : M) ⊆e Ann(X). Since (T : M) ⊆ (T ′ :
M) ⊆ Ann(X) ⊆ R and (T : M) ⊆e R hence by Remark 2.2 (iii),
(T : M) ⊆e Ann(X), as needed. �

We recall that a submodule N of an R-module M is said to be
completely irreducible if N =

⋂
i∈Λ Ni where {Ni}i∈Λ is a family of

submodules of M , then N = Ni for some i ∈ Λ.

Corollary 4.12. Let M be an R-module and {Ti}i∈Λ be a family of
submodules of M . Then the following statements are true.

(i) If T =
⋂

i∈Λ Ti with (T : M) ⊆e R and N ≤e
Ti
M for some i ∈ Λ,

then N ≤e
T M . Conversely, if T is a completely irreducible

submodule and for any i ∈ Λ, N ≤e
Ti
M , then N ≤e

T M .
(ii) If T =

∑
i∈Λ Ti with N ≤e

T M , then for every i ∈ Λ with
(Ti : M) ⊆e R, N ≤e

Ti
M .

Theorem 4.13. Let M1,M2 be R-modules and N1 ≤e
T1

M1, N2 ≤e
T2

M2

for submodules T1 �M1 and T2 �M2, then N1⊕N2 ≤e
T1⊕T2

M1⊕M2.

Proof. Suppose that X = X1 ⊕X2 is a submodule of M1 ⊕M2, then

(N1 ⊕N2) ∩ (X1 ⊕X2) ⊆ T1 ⊕ T2

⇒ (N1 ∩X1)⊕ (N2 ∩X2) ⊆ T1 ⊕ T2

⇒ (N1 ∩X1) ⊆ T1 and (N2 ∩X2) ⊆ T2.
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By hypothesis (T1 : M1) ⊆e Ann(X1) and (T2 : M2) ⊆e Ann(X2) and
then by Remark 2.2 (iii), we conclude that

(T1 ⊕ T2 : M1 ⊕M2) = (T1 : M1) ∩ (T2 : M2)

⊆e Ann(X1) ∩ Ann(X2) = Ann(X1 + X2).

�

Corollary 4.14. The class of uniform modules relative to T is closed
under finite direct sums.

Let Mi be an Ri-module for each 1 ≤ i ≤ n with n ∈ N. Assume
that M = M1×M2×· · ·×Mn and R = R1×R2×· · ·×Rn. Then M is
clearly an R-module with componentwise addition and multiplication.
Each submodule of M is of the form N = N1 × N2 × · · · × Nn where
Ni is a submodule of Mi for 1 ≤ i ≤ n.

Theorem 4.15. Let M = Πn
i=1Mi be an R-module with R = Πn

i=1Ri

such that every Mi is an Ri-module. Suppose that T is an arbitrary
submodule of M , if for any 1 ≤ i ≤ n, Ni ≤e

Ti
Mi, then N ≤e

T M .

Proof. Assume that X = Πn
i=1Xi is a submodule of M with N∩X ⊆ T .

This implies that Ni ∩Xi ⊆ Ti for any 1 ≤ i ≤ n. By assumption for
any 1 ≤ i ≤ n, (Ti :Ri

Mi) ⊆e Ann(Xi). Therefore

(T :R M) : = (Πn
i=1Ti :Πn

i=1Ri
Πn

i=1Mi) =
n⋂

i=1

(Ti :Ri
Mi)

⊆e

n⋂
i=1

AnnRi
(Xi) = AnnR(X).

�

We recall that a module is faithfully flat if taking the tensor product
with a sequence produces an exact sequence if and only if the original
sequence is exact.

Theorem 4.16. Let F be a faithfully flat R-module, M be an R-
module, and T be an arbitrary proper submodule of M . If F ⊗N is an
essential submodule of F ⊗M relative to F ⊗T , then N is an essential
submodule of M relative to T .

Proof. Suppose that F ⊗N ≤e
F⊗T F ⊗M and also N ∩X ⊆ T for some

submodule X of M , then F ⊗ (N ∩X) = (F ⊗N)∩ (F ⊗X) ⊆ F ⊗T .
By assumption, (F ⊗ T :R F ⊗ M) ⊆e Ann(F ⊗ X). It is easy to
see that (T :R M) = (F ⊗ T :R F ⊗M) and since F is faithfully flat
Ann(X) = Ann(F ⊗X). It concludes that (T :R M) ⊆e Ann(X) and
the proof is complete. �
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Conclusions

In this article, we introduced the concept of essential submodules
of an R-module M relative to an arbitrary submodule T of M . We
showed that this concept of submodules is in general different from the
concept of essential submodules, but in certain conditions they are the
same. For example, if we take T = M , then every essential submodule
of M relative to M is essential.

In section 3, we investigated some more properties of essential sub-
modules. In Theorem 3.1, we proved that if N ≤e M , then for every
submodule X of M , N ∩ X = 0, implies that Ann(X) ⊆e R and the
converse is true if M is a non-singular module. In Corollary 3.3, we
gave a characterization of essential submodules of a non-singular R-
module M on a domain R. Also, we proved more theorems and results
concerning to essential submodules, see Theorem 3.5, Corollary 3.6,
Corollary 3.7, and Theorem 3.8.

In section 4, we introduced the concept of essential submodules of an
R-module M relative to an arbitrary submodule T of M . Several prop-
erties, examples and characterizations of essential submodules relative
to T have been investigated. Among various results, in Theorem 4.8,
we proved that in a faithful finitely generated multiplication R-module
M there is a bijection between the class of essential submodules of M
relative to T and the class of essential ideals of R relative to (T : M).
More properties and results of such submodules have been proved, see
Theorem 4.10, Proposition 4.11, Theorem 4.13, Theorem 4.16.
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