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ON WEAKLY NIL-SEMICOMMUTATIVE RINGS

D. M. DUTTA AND A. M. BUHPHANG ∗

Abstract. We introduce the concept of weakly nil - semicommu-
tative or WNSC rings and provide a condition that establishes the
equivalence of WNSC rings to three generalised classes of semicom-
mutative rings. We prove the equivalence between WNSC Laurent
polynomial rings and WNSC polynomial rings. We supply exam-
ples of these classes of rings by considering Nagata and Dorroh
extensions. We also give a characterization for a ring of Morita
context with zero pairings to be WNSC.

1. Introduction

Semicommutative rings are an interesting class of rings as they prop-
erly include reversible rings which were introduced by P.M. Cohn in
[3]. A ring is called semicommutative if for a, b ∈ R, aRb = 0 whenever
ab = 0 [6]. Shin [14] first mentioned this class of rings. Many gen-
eralizations of semicommutative rings have been investigated during
the last three decades. We record few of them which are of inter-
est in our study. A ring R is weakly semicommutative [10] if for any
a, b ∈ R, ab = 0 implies aRb ⊆ Nil(R), where Nil(R) is the set of all
nilpotent elements of R. A ring R is nil-semicommutative-II [2] if for
any a, b ∈ R, ab ∈ Nil(R), then aRb ⊆ Nil(R). Another generalization
of semicommutative ring is the class of nil-semicommutative-I rings [11]
where for any a, b ∈ Nil(R) with ab = 0, aRb = 0. In this paper, we
introduce a new class of rings called the weakly nil-semicommutative
rings which are related to the class of rings that we have mentioned.
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We define a ring R as a weakly nil-semicommutative ring when for
any a, b ∈ Nil(R), if ab = 0, then aRb ⊆ Nil(R). It follows naturally
that subrings and direct products of weakly nil-semicommutative rings
are weakly nil-semicommutative. Each of these classes of rings contains
the class of reduced rings.

The following figure shows the relations between the newly defined
class of rings and the rings mentioned above.

Figure 1

The reverse implications of these relations are not true. For ex-
ample, in Section 2, we will see that R = M2(Z2), the 2 × 2 matrix
ring over Z2 is weakly nil-semicommutative. However, it is not nil
semicommutative-I as the set Nil(R) is not an ideal of R [Theorem
2.5, [11]].

2. Basic Results

In this section, we collect a few basic properties of the class of weakly
nil-semicommutative rings introduced in Section 1. Specifically, in
Proposition 2.5, we put a condition on the ring R which establishes the
equivalence of semi-commutativity and its four generalisations men-
tioned in the introduction. In this section, we also discuss weakly
nil-semicommutativity in various ring extensions, namely the trivial
extensions, the Nagata extensions and the Dorroh extensions.

Proposition 2.1. For a ring R, if Nil(R) is an ideal of R, then R is
weakly nil-semicommutative.

Proof. Suppose a, b ∈ Nil(R). Hence as Nil(R) is an ideal of R,
Rb ⊆ Nil(R) implying that aRb ⊆ Nil(R). Hence, R is weakly nil-
semicommutative. □
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Notice that in the proof of Proposition 2.1, it is enough to assume
either a ∈ Nil(R) or b ∈ Nil(R).

Let us now recall that a ring R is reduced if zero is its only nilpotent
element. Similarly an ideal of a ring is called reduced if it contains no
non-zero nilpotent element.

A common observation is that we can find cases when a factor ring
R/I is weakly nil-semicommutative but the ring R is not weakly nil-
semicommutative. For example, the ring R = M3(Z2) × Z2 factored
by the ideal I = M3(Z2) × {0} is weakly nil-semicommutative, but R
is not (Proposition 2.8). However, if I is either a reduced ideal or a
nil-ideal, then the result holds.

Proposition 2.2. If R is a ring and I is a reduced ideal of R such that
R/I is weakly nil-semicommutative, then R is weakly nil- semicommu-
tative.

Proof. Let a, b ∈ Nil(R) such that ab = 0. Hence there exist k1, k2 ∈
N>0 such that ak1 = 0 = bk2 . We define R̄ = R/I, ā = a+ I, b̄ = b+ I
and r̄ = r + I, for any r ∈ R. Then āk1 = 0̄ = b̄k2 in R̄. Therefore
ā, b̄ ∈ Nil(R̄) such that āb̄ = 0̄ in R̄. By weak nil-semicommutativity
of R̄, ār̄b̄ ∈ Nil(R̄), ∀ r̄ ∈ R̄. This implies that for each r ∈ R, there
exists kr ∈ N>0 such that (arb)kr ∈ I. Now (bIa)2 = 0 and bIa ⊆ I.
As I is a reduced ideal of R, we have bIa = 0 and (aRbI)2 = 0.
Also aRbI ⊆ I, yielding aRbI = 0. Now (arb)kr+1 ∈ arbI = 0, i.e.,
(arb)kr+1 = 0, hence arb ∈ Nil(R), ∀ r ∈ R. Thus R is weakly nil-
semicommutative. □

An ideal J is nil if each of its elements is nilpotent.

Proposition 2.3. For a nil ideal J in R, if R/J is weakly nil- semi-
commutative, then R is weakly nil-semicommutative.

Proof. We define R̄ = R/J, ā = a+ J and b̄ = b+ J . Let a, b ∈ Nil(R)
such that ab = 0. Then ā, b̄ ∈ Nil(R̄) such that āb̄ = 0̄. As R̄ is weakly
nil-semicommutative, āR̄b̄ ⊆ Nil(R̄), i.e., there exists k ∈ N>0 such
that (aRb)k ⊆ J ⊆ Nil(R). This implies aRb ⊆ Nil(R). Hence R is
weakly nil-semicommutative. □

By recalling that the prime radical of a ring R, denoted by P (R)
is the intersection of all the prime ideals of R, we get the following
corollary.

Corollary 2.4. If R/P (R) is weakly nil-semicommutative, then R is
weakly nil-semicommutative
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As observed in Figure 1, the rings that we mentioned there are weakly
nil-semicommutative. A natural question is, for which class of rings will
the converse also hold? As an answer to that, we have the following
proposition.

Let us denote the set of all zero divisors of R as D(R). Then

Proposition 2.5. For a ring R with the property that aRb is a reduced
subring of R, for all a, b ∈ D(R), the following statements are equiva-
lent:
(1) R is semicommutative.
(2) R is weakly semicommutative.
(3) R is nil semicommutative-I.
(4) R is nil semicommutative-II.
(5) R is weakly nil-semicommutative.

Proof. It follows from [9, 11] and the definitions of the classes of rings
involved here that

(1) =⇒ (5), (3) =⇒ (4) =⇒ (2).

Hence, we only need to show (5) =⇒ (3) and (2) =⇒ (1) to complete
the proof.

(5) =⇒ (3) : Let a, b ∈ Nil(R) ⊆ D(R) such that ab = 0. Since
R is weakly nil-semicommutative, aRb ⊆ Nil(R). As aRb is a reduced
subring, aRb = 0. Thus R is nil semicommutative-I.

(2) =⇒ (1) : Let a, b ∈ R such that ab = 0. Hence, a, b ∈ D(R).
Now since R is weakly semicommutative, aRb ⊆ Nil(R). Since aRb is
reduced for a, b ∈ D(R), aRb = 0. Thus R is semicommutative. □
Proposition 2.6. M2(Z2) is weakly nil-semicommutative.

Proof. The set of all the nilpotent elements of M2(Z2) is

Nil(M2(Z2)) =

{(
0 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
1 1
1 1

)}
Now it is easy to see that if a, b ∈ Nil(M2(Z2)) such that ab = 0, then

a = b. Take

(
a′ b′

c′ d′

)
∈ M2(Z2). Then(

0 1
0 0

)(
a′ b′

c′ d′

)(
0 1
0 0

)
=

(
0 c′

0 0

)
∈ Nil(M2(Z2)),(

0 0
1 0

)(
a′ b′

c′ d′

)(
0 0
1 0

)
=

(
0 0
b′ 0

)
∈ Nil(M2(Z2))
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Also,(
1 1
1 1

)(
a′ b′

c′ d′

)(
1 1
1 1

)
=

(
0 0
0 0

)
or

(
1 1
1 1

)
∈ Nil(M2(Z2))

Hence M2(Z2) is weakly nil-semicommutative. □
Remark 2.7. The nilradical of a weakly nil-semicommutative ring does
not necessarily form an ideal, in general. In fact, it may not even form

a subring. For instance in M2(Z2),

(
0 0
1 0

)
,

(
0 1
0 0

)
∈ Nil(M2(Z2) but(

0 0
1 0

)(
0 1
0 0

)
=

(
0 0
0 1

)
/∈ Nil(M2(Z2)).

Proposition 2.8. For a ring R with a non zero-divisor, Mn(R) is not
weakly nil-semicommutative for all n ≥ 3.

Proof. Let R be a ring with identity. For 1 ≤ i, j ≤ n, let Eij denote
the n× n matrix with ij-entry 1 and other entries 0. Then En2, E1n ∈
Nil(Mn(R)) and En2E1n = 0. But for E21 ∈ Mn(R), En2E21E1n =
Enn /∈ Nil(Mn(R)). The proof for a ring without identity is similar
where we can replace the identity element in Eij with a non zero-divisor
of the ring R. □

While we still cannot yet establish whether polynomial rings over
weakly nil- semicommutative rings are again weakly nil- semicommu-
tative or not, [Example 2, [8]] indicates that there are some weakly nil-
semicommutative rings where this statement hold.

Let us define Ω to be a multiplicatively closed subset of a ring R
consisting of central regular elements of R and Z(R) be the center of
R. Then we have the following result:

Proposition 2.9. R is a weakly nil-semicommutative ring if and only
if Ω−1R is a weakly nil-semicommutative ring.

Proof. The proof for the sufficient condition is straightforward as sub-
rings of weakly nil- semicommutative rings are again weakly nil- semi-
commutative. Hence it is enough for us to prove the necessary condi-
tion. Let α1 = u−1

1 a1, α2 = u−1
2 a2 ∈ Nil(Ω−1R) such that α1α2 = 0.

Since Ω ⊆ Z(R), we have u1, u2 ∈ Ω and a1, a2 ∈ Nil(R). Now 0 =
α1α2 = u−1

1 a1u
−1
2 a2 = u−1

1 u−1
2 a1a2 = (u1u2)

−1a1a2. Therefore a1a2 = 0.
Since R is weakly nil-semicommutative, a1Ra2 ⊆ Nil(R). This im-
plies, for every r ∈ R, there exists kr ∈ N>0 such that (a1ra2)

kr = 0.
Now for each β = v−1r ∈ Ω−1R, where v ∈ Ω and r ∈ R, we have
(α1βα2)

kr = ((u1vu2)
−1a1ra2)

kr = (u1vu2)
−kr(a1ra2)

kr = 0. Thus
α1βα2 ∈ Nil(Ω−1R) for each β ∈ Ω−1R and hence Ω−1R is weakly
nil-semicommutative. □
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Corollary 2.10. For a ring R, R[x] is weakly nil-semicommutative if
and only if R[x, x−1] is weakly nil-semicommutative.

Proof. Let us assume Ω = {1, x, x2, ...}, then it is easy to see that Ω is
a multiplicatively closed subset of R[x] and R[x, x−1] = Ω−1R[x]. Thus
from Proposition 2.9, it follows thatR[x] is weakly nil-semicommutative
if and only if R[x, x−1] is weakly nil-semicommutative. □

We now construct new examples of weakly nil -semicommutative
rings with respect to Nagata and Dorroh extensions of weakly nil -
semicommutative rings.

Let R be a commutative ring, M be an R-module and ρ be an en-
domorphism of R. The abelian group R⊕M has a ring structure with
multiplication

(r1,m1)(r2,m2) = (r1r2, ρ(r1)m2 + r2m1),

where ri ∈ R,mi ∈ M . This extension is called the Nagata extension
of R by M and ρ, and is denoted by N(R,M, ρ) [12].

Lemma 2.11. For N(R,M, ρ), Nil(R⊕M) = Nil(R)⊕M .

Proof. Let r ∈ R and m ∈ M such that (r,m) ∈ Nil(R ⊕M). Then,
there exists k ∈ N>0 such that (0, 0) = (r,m)k = (rk,m′), for some
m′ ∈ M . This implies that rk = 0, that is r ∈ Nil(R). Thus we get
Nil(R⊕M) ⊆ Nil(R)⊕M .

Conversely, let (r,m) ∈ Nil(R) ⊕ M such that rk
′
= 0, where

k′ ∈ N>0. Then (r,m)k
′
= (0,m′′), for some m′′ ∈ M . Now

(r,m)2k
′
= (0,m′′)(0,m′′) = (0, ρ(0).m′′ + 0.m′′) = (0, 0), yielding

(r,m) ∈ Nil(R⊕M) and therefore Nil(R)⊕M ⊆ Nil(R⊕M).

Thus we get Nil(R)⊕M = Nil(R⊕M). □
Remark 2.12. It may be noted that in the first part of the proof of

Lemma 2.11, m′ = (
k−1∑
n=0

ρ(r)(k−1)−nrn)m = 0. If m ̸= 0 then we get

that the homogeneous bivariate polynomial
k−1∑
n=0

x(k−1)−nyn evaluated

at (ρ(r), r) annihilates m.

Theorem 2.13. For a commutative ring R, N(R,M, ρ) is a weakly
nil-semicommutative ring.

Proof. Let (r1,m1), (r2,m2) ∈ Nil(R⊕M) such that (r1,m1)(r2,m2) =
(r1r2, ρ(r1)m2 + r2m1) = (0, 0). Then by Lemma 2.11 we have, r1, r2 ∈
Nil(R) such that r1r2 = 0. Since R is commutative, R is trivially
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weakly nil-semicommutative. Hence for all r ∈ R, r1rr2 ∈ Nil(R). Now
let (r,m) be any arbitrary element of (R⊕M). Then (r1,m1)(r,m)(r2,
m2) = (r1rr2,m

′) ∈ Nil(R)⊕M , for some m′ ∈ M . Hence by Lemma
2.11, (r1,m1)(r,m)(r2,m2) ∈ Nil(R⊕M). Thus N(R,M, ρ) is weakly
nil-semicommutative. □

Let R be a ring and RNR be a bimodule which itself is a general ring
(not necessarily with unity) such that (mn)r = m(nr), (mr)n = m(rn)
and (rm)n = r(mn) holds for all m,n ∈ N and r ∈ R. Then the
abelian group R ⊕ N has the structure of a ring with multiplication
given by:

(r,m)(s, n) = (rs, rn+ms+mn)

where r, s ∈ R, and m,n ∈ N . This extension is called the Dorroh
extension D(R;N) of R by N [4, 5].

Proposition 2.14. For D(R;N), N is a nil ring if and only if

Nil(D(R;N)) = Nil(R)⊕N.

Proof. Assume that N is a nil ring. Let (r, n) ∈ Nil(D(R;N)). Then
there exists k ∈ N>0 such that (0, 0) = (r, n)k = (rk, n′), for some
n′ ∈ N . This yields that r ∈ Nil(R) and so (r, n) ∈ Nil(R) ⊕ N .
Hence Nil(D(R;N)) ⊆ Nil(R)⊕N .

To prove the other inclusion, let (r, n) ∈ Nil(R) ⊕ N such that
rk

′
= 0, where k′ ∈ N>0. Then (r, n)k

′
= (rk

′
, n′) = (0, n′), for some

n′ ∈ N . Since N is a nil ring, there exists some s ∈ N such that n′s = 0.
Now taking the sth power of (0, n′) we have, (0, n′)s = (0, n′s) = (0, 0).
Thus we obtain that (r, n)k

′s = (0, 0), that is, (r, n) ∈ Nil(D(R;N))
an hence finally, Nil(R)⊕N ⊆ Nil(D(R;N)).

For the converse, let us assume that Nil(D(R;N)) = Nil(R) ⊕ N .
Let n be an arbitrary element of N . Then (0, n) ∈ Nil(R) ⊕ N =
Nil(D(R;N)). Hence, there exists some s ∈ N>0 such that (0, n)s =
(0, ns) = (0, 0). Therefore, ns = 0 implying that n is a nilpotent
element of N . Since n was chosen arbitrarily from N , thus N is a nil
ring. □

Proposition 2.15. For a weakly nil-semicommutative ring R and a nil
ring N , the Dorroh extension D(R;N) is weakly nil-semicommutative.

Proof. The proof of this proposition is similar to the proof of Theorem
2.13. □
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3. Main results

In Section 2, we discussed in detail the weakly nil- semicommutative
condition in various ring extensions. Moving ahead, we explore further
in this section the weakly nil-semicommutativity in Morita contexts
and we prove that the ring of Morita context with zero pairings is
weakly nil-semicommutative if and only if each of the associated rings
is weakly nil-semicommutative.

A Morita context denoted by (R, S,M,N, ξ, χ) consists of rings R, S,
bimodules RNS, SMR and a pair of bimodule homomorphisms (called
pairings) ξ : N

⊗
S M → R and χ : M

⊗
R N → S which satisfy the

following associativity conditions:

ξ(n
⊗

m)n′ = nχ(m
⊗

n′) ; χ(m
⊗

n)m′ = mξ(n
⊗

m′).

These conditions ensure that the set T of generalized matrices

T=

{(
r n
m s

)
| r ∈ R, s ∈ S, m ∈ M, n ∈ N

}
forms a ring, called the ring of the Morita context (R,S,M,N, ξ, χ) [1].

Lemma 3.1. Let T be the ring of a Morita context (R,S,M,N, ξ, χ)
with zero pairings. Then

Nil(T ) =

(
Nil(R) N
M Nil(S)

)
Proof. Let

(
r n
m s

)
∈ Nil(T ). This implies

(
0 0
0 0

)
=

(
r n
m s

)2

=

(
r2 rn+ ns

mr + sm s2

)
So, r2 = 0 = s2 i.e., r ∈ Nil(R), s ∈ Nil(S). Hence

(
r n
m s

)
∈(

Nil(R) N
M Nil(S)

)
.

Conversely, let

(
r n
m s

)
∈

(
Nil(R) N
M Nil(S)

)
. Then rk1 = 0 and

sk2 = 0, for some k1, k2 ∈ N>0. Write k = max{k1, k2}. Then(
r n
m s

)k

=

(
0 n′

m′ 0

)
, for some n′ ∈ N and m′ ∈ M . Now squar-

ing both sides we have,(
r n
m s

)2k

=

(
0 n′

m′ 0

)2

=

(
0 0
0 0

)
.
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Thus

(
r n
m s

)
∈ Nil(T ).

□
Theorem 3.2. Let T be the ring of a Morita context (R,S,M,N, ξ, χ)
with zero pairings. Then T is weakly nil-semicommutative if and only
if so are R and S.

Proof. If T is weakly nil-semicommutative then R and S are trivially
weakly nil-semicommutative.

Conversely, let R and S be weakly nil-semicommutative. Consider(
r1 n1

m1 s1

)
,

(
r2 n2

m2 s2

)
∈ Nil(T ) such that(

r1 n1

m1 s1

)(
r2 n2

m2 s2

)
=

(
0 0
0 0

)
i.e.,

(
r1r2 r1n2 + n1s2

m1r2 + s1m2 s1s2

)
=

(
0 0
0 0

)
By Lemma 3.1 and from the above equation we have, r1, r2 ∈ Nil(R),
r1r2 = 0 and s1, s2 ∈ Nil(S), s1s2 = 0. Now the weak nil- semicommu-
tativity of R and S ensure that r1Rr2 ⊆ Nil(R) and s1Ss2 ⊆ Nil(S).

Consider any element

(
r n
m s

)
∈ T . Then(

r1 n1

m1 s1

)(
r n
m s

)(
r2 n2

m2 s2

)
=

(
r1rr2 r1rn2 + r1ns2 + n1ss2

m1rr2 + s1mr2 + s1sm2 s1ss2

)
∈
(
Nil(R) N
M Nil(S)

)
Therefore by Lemma 3.1,(

r1 n1

m1 s1

)(
r n
m s

)(
r2 n2

m2 s2

)
∈ Nil(T ).

Thus T is weakly nil-semicommutative. □

A Formal triangular matrix ring is a ring of the form(
R 0
M S

)
=

{(
r 0
m s

)
| r ∈ R, s ∈ S and m ∈ M

}
under the usual matrix operations, where R, S are rings and SMR is a
bimodule [13].
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Corollary 3.3. The formal triangular matrix ring

(
R 0
M S

)
is weakly

nil-semicommutative if and only if so are R and S.

Given a ring R and an RMR-bimodule, the trivial extension of R
by M is the ring T (R,M) = R ⊕ M with the usual addition and
multiplication defined as:

(r1,m1)(r2,m2) = (r1r2, r1m2 +m1r2)

where r1, r2 ∈ R,m1,m2 ∈ M [7].

This is isomorphic to the ring of matrices of the form

(
r m
0 r

)
, where

r ∈ R,m ∈ M and usual matrix operations are used.

Corollary 3.4. A ring R is weakly nil-semicommutative if and only if
the trivial extension T (R,M) is weakly nil-semicommutative.

Remark 3.5. An analogue of Theorem 3.2 may or may not hold for a
ring of a Morita context with non zero pairings. For instance, taking
R = S = M = N = Z2 in T we can see from Proposition 2.6 that
M2(Z2) is a weakly nil-semicommutative ring. But taking R = S =
M = N = M2(Z2) in T we have

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 ,


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 ∈ Nil(T )

such that


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0



0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

But


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0



0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0



0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0



=


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 /∈ Nil(T )

Thus T is not a weakly nil-semicommutative ring in this case.
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