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GENERALIZED LOCAL COHOMOLOGY AND SERRE
COHOMOLOGICAL DIMENSION

M. LOTFI PARSA ∗

Abstract. Let R be a commutative Noetherian ring, I, J be two
ideals of R, and M, N be two R-modules. Let S be a Serre subcate-
gory of the category of R-modules. We introduce Serre cohomolog-
ical dimension of N,M with respect to (I, J), as cdS(I, J,N,M) =
sup{i ∈ N0 : Hi

I,J(N,M) 6∈ S}. We study some properties of

cdS(I, J,N,M), and we get some formulas and upper bounds for
it.

1. Introduction

Throughout this paper, R is a commutative Noetherian ring with
a non-zero identity, I, J are two ideals of R, and M, N are two R-
modules. For notations and terminologies not given in this paper, the
reader is referred to [10], [11] and [23] if necessary.

The local cohomology theory has been a significant tool in com-
mutative Algebra and Algebraic Geometry. There are some general-
izations of this theory. For any non-negative integer i, Herzog [17]
introduced the i-th generalized local cohomology functor H i

I(−,−) as
H i
I(N,M) = lim−→t∈N ExtiR(N/I tN,M) for all R-modules N,M . It is

clear that if N = R, then H i
I(N,−) is just the ordinary local cohomol-

ogy functor H i
I(−).

Takahashi et al. [23] defined another generalization of the local co-
homology theory. To be more precise, let ΓI,J(M) = {x ∈ M : ∃ t ∈
N, I tx ⊆ Jx}. It is easy to see that ΓI,J(M) is a submodule of M , and
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ΓI,J(−) is a covariant, R-linear functor from the category of R-modules
to itself. For any non-negative integer i, the local cohomology functor
H i
I,J(−) with respect to (I, J), is defined to be the i-th right derived

functor of ΓI,J(−). If J = 0, then H i
I,J(−) coincides with the ordinary

local cohomology functor H i
I(−).

Let W̃(I, J) = {a ≤ R : I t ⊆ J + a for some positive integer t}.
One can see that x ∈ ΓI,J(M) if and only if Ann(x) ∈ W̃(I, J). Let
W(I, J) = {p ∈ Spec(R) : I t ⊆ J + p for some positive integer t}. It is
shown in [23, Corollary 1.8] that x ∈ ΓI,J(M) if and only if Supp(Rx) ⊆
W(I, J).

Nam et al. [21] introduced a common generalization of the above-
mentioned notions as follows. The module ΓI,J(HomR(N,M)) is de-
noted by ΓI,J(N,M). It is easy to see that ΓI,J(N,−) is a left ex-
act, covariant functor from the category of R-modules to itself. For
a non-negative integer i, the i-th generalized local cohomology func-
tor with respect to (I, J), denoted by H i

I,J(N,−), is defined as the

i-th right derived functor of ΓI,J(N,−). Also H i
I,J(N,M) is called the

i-th generalized local cohomology module of N, M with respect to
(I, J). If N = R, then H i

I,J(N,M) ∼= H i
I,J(M). It is easy to see that

H i
I,J(N,M) ∼= lim−→a∈W̃(I,J)

ExtiR(N/aN,M). It follows that if J = 0,

then H i
I,J(N,M) ∼= H i

I(N,M). When N is a finitely generated R-

module, then H i
I,J(N,M) is just the i-th generalized local cohomology

of N,M relative to (I, J), which is defined by Zamani [27]. Note that
the generalized local cohomology with respect to a pair of ideals, is
a special case of the generalized local cohomology with respect to a
system of ideals, which was introduced by Bijan-Zadeh [8].

The cohomological dimension of M with respect to I, is an important
invariant linked to the local cohomology modules H i

I(M). This notion,
denoted by cd(I,M), is defined as the supremum of all non-negative
integers i for which H i

I(M) 6= 0. Amjadi and Naghipour [4] introduced
the cohomological dimension of two modules N, M with respect to an
ideal I as cd(I,N,M) = sup{i ∈ N0 : H i

I(N,M) 66= 0}. It is clear that if
N = R, then cd(I,N,M) = cd(I,M). As another generalization of this
concept, Chu and Wang [13] introduced the cohomological dimension
of M with respect to a pair of ideals (I, J), equal to the supremum of
all non-negative integers i for which H i

I,J(M) 6= 0. It is obvious that if
J = 0, then cd(I, J,M) = cd(I,M). Let S be a Serre subcategory of
the category of R-modules. In this direction, Aghapournahr et al. [2]
introduced Serre cohomological dimension of M with respect to (I, J),
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as cdS(I, J,M) = sup{i ≥ 0 : H i
I,J(M) 6∈ S}. For more study, see [1],

[12], [14], and [24].
In this paper, we generalize all of these notions, and we introduce

Serre cohomological dimension of N, M with respect to (I, J) as

cdS(I, J,N,M) = sup{i ∈ N0 : H i
I,J(N,M) 6∈ S}.

It is clear that if N = R, then cdS(I, J,N,M) = cdS(I, J,M), and if
S = {0} and J = 0, then cdS(I, J,N,M) = cd(I,N,M).

In section 2, we get some basic properties of cdS(I, J,N,M). In
section 3, the cohomological dimensions are studied on a special Serre
subcategory, namely localizing subcategory. Recall that a localizing
subcategory is a Serre subcategory that is closed under taking direct
limits. In section 4, we study the cohomological dimension of N, M
with respect to (I + I ′, J) and (I, J ∩ J ′), where I ′, J ′ are two ideals
of R. More precisely, in Corollary 4.4, we show that the inequalities

cdS(I + I ′, J,N,M) ≤ cdS(I, J,N,M) + cdS(I ′, J,M),
cdS(I, J ∩ J ′, N,M) ≤ cdS(I, J,N,M) + cdS(I, J ′,M),

are true, where S is a localizing subcategory of the category of R-
modules, M is a finitely generated R-module, and N is a finitely gen-
erated R-module of finite projective dimension. Finally, in section 5,
we investigate the relations between different types of the cohomologi-
cal dimensions, and we get some upper bounds for cdS(I, J,N,M). It
is shown, in Theorem 5.3, that if either S is a localizing subcategory of
the category of R-modules or R is a local ring, then cdS(I, J,N,M) ≤
pd(N) + cdS(I, J,M), whenever N is a finitely generated R-module
of finite projective dimension. As a consequence, it follows that if
M is a finitely generated R-module, and N is a finitely generated R-
module of finite projective dimension, then cd(I, J,N,M) ≤ pd(N) +
dim(M/JM) + 1; see Proposition 5.4.

2. Basic properties of Serre cohomological dimensions

Recall that R is a Noetherian ring, I, J are two ideals of R, and
M, N are two R-modules.

Definition 2.1. A full subcategory of the category of R-modules is
said to be a Serre subcategory, if it is closed under taking submodules,
quotients, and extensions.

Example 2.2. [3, Example 2.4] The following classes of modules are
Serre subcategories of the category of R-modules.

(a) The class of zero modules.
(b) The class of Artinian R-modules.
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(c) The class of finitely generated R-modules.
(d) The class of all R-modules M with dim(M) ≤ k, where k is an

integer. When k = −1, we get the part (a).
(e) Let Φ ⊆ Spec(R) be a closed set under specialization, that is,

if q ⊇ p ∈ Φ, then q ∈ Φ. The class of all R-modules M with
Ass(M) ⊆ Φ (equivalently Supp(M) ⊆ Φ). For example, Φ
could be a closed set Φ = V(c), for a given ideal c of R. If we
take Φ = {p ∈ Spec(R) : dim(R/p) ≤ k} where k is an integer,
then we recover part (d).

In the rest of the paper, S denotes a Serre subcategory of the category
of R-modules.

Definition 2.3. Serre cohomological dimension of N , M with respect
to (I, J), denoted by cdS(I, J,N,M), is defined as

cdS(I, J,N,M) = sup{i ∈ N0 : H i
I,J(N,M) 6∈ S}.

If S = {0}, then cdS(I, J,N,M) = cd(I, J,N,M), which is just the
supremum of all non-negative integers i for which H i

I,J(N,M) 6= 0. If
N = R, then cdS(I, J,N,M) = cdS(I, J,M), which was defined in [2].
If J = 0, then cdS(I, J,N,M) = cdS(I,N,M), which was defined in
[14] (see also [1]).

Now, we get some basic properties of this invariant. The proof of
the next result is trivial.

Proposition 2.4. Suppose that S1 and S2 are two Serre subcategories
such that S1 ⊆ S2. Then cdS2(I, J,N,M) ≤ cdS1(I, J,N,M). In patic-
ular, cdS(I, J,N,M) ≤ cd(I, J,N,M) for every Serre subcategory S.

The following Lemma is key for the next result.

Lemma 2.5. Let I ′, J ′ be two ideals of R. Then the following state-
ments are valid for all i ∈ N0.

(i) H i√
I,J

(N,M) = H i
I,J(N,M) = H i

I,
√
J
(N,M).

(ii) H i
II′,J(N,M) = H i

I∩I′,J(N,M).

(iii) H i
I,JJ ′(N,M) = H i

I,J∩J ′(N,M).

(iv) If J ′ ⊆ J , then H i
I+J ′,J(N,M) = H i

I,J(N,M). In particular,

H i
I+J,J(N,M) = H i

I,J(N,M).

Proof. The parts (i), (ii) and (iii) follow by [19, Lemma 2.5] and [8,
Lemma 2.1]. If J ′ ⊆ J , it is easy to see that W̃(I + J ′, J) = W̃(I, J).
Now, the part (iv) follows by [8, Lemma 2.1]. �

The following result collects some basic properties of cdS(I, J,N,M),
and it is a direct consequence of Lemma 2.5.
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Corollary 2.6. Let I ′, J ′ be two ideals of R.

(i) cdS(I, J,N,M) = cdS(
√
I, J,N,M) = cdS(I,

√
J,N,M).

(ii) cdS(II ′, J,N,M) = cdS(I ∩ I ′, J,N,M).
(iii) cdS(I, JJ ′, N,M) = cdS(I, J ∩ J ′, N,M).
(iv) If J ′ ⊆ J , then cdS(I + J ′, J,N,M) = cdS(I, J,N,M). In par-

ticular,

cdS(I + J, J,N,M) = cdS(I, J,N,M).

In the following result, the behavior of cdS(I, J,N,M) along exact
sequences is studied.

Proposition 2.7. Let 0 −→ M ′ −→ M −→ M ′′ −→ 0 be an exact
sequence of R-modules. Then

cdS(I, J,N,M) ≤ max{cdS(I, J,N,M ′), cdS(I, J,N,M ′′)}.

Proof. The claim follows from the long exact sequence

· · · −→ H i
I,J(N,M ′) −→ H i

I,J(N,M) −→ H i
I,J(N,M ′′) −→ · · · .

�

In the next two Lemmas, the relations on the generalized local co-
homology modules and their supports from the upper bound, are in-
vestigated.

Lemma 2.8. Let M be a finitely generated R-module, and t be an
integer. If H i

I,J(N,R/p) ∈ S for all p ∈ Supp(M) and all i > t, then

H i
I,J(N,M) ∈ S for all i > t.

Proof. Let i > t be an integer. There is a filtration 0 = Mk ⊆Mk−1 ⊆
· · · ⊆M0 = M of submodules of M , such that for each j with 1 ≤ j ≤
k, Mj−1/Mj

∼= R/qj where qj ∈ Supp(M). Now, for each j with 1 ≤
j ≤ k, the exact sequence 0 −→ Mj −→ Mj−1 −→ R/qj −→ 0 yields
the exact sequence H i

I,J(N,Mj) −→ H i
I,J(N,Mj−1) −→ H i

I,J(N,R/qj).

It follows by these sequences that H i
I,J(N,M) ∈ S. �

The following result is a direct consequence of Lemma 2.8.

Corollary 2.9. Let M be a finitely generated R-module. Then

cdS(I, J,N,M) ≤ sup{cdS(I, J,N,R/p) : p ∈ Supp(M)}.

Lemma 2.10. Let N be an R-module of finite projective dimension, M
be a finitely generated R-module, and t be an integer. If H i

I,J(N,M) ∈
S for all i > t, then H i

I,J(N,R/p) ∈ S for all p ∈ Supp(M) and all
i > t.
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Proof. We prove the claim by the descending induction on t. It fol-
lows by [18, Lemma 3.1] that, for any sufficiently large t, the claim
is valid. So assume, inductively, that the result has been proved for
i > t + 1. It is enough to show that H t+1

I,J (N,R/p) ∈ S for all
p ∈ Supp(M). We suppose that q is maximal of those p ∈ Supp(M)
such that H t+1

I,J (N,R/p) 6∈ S, and look for a contradiction. It follows
by [9, Chapter II, Section 4, Proposition 20] that there is a non-zero R-
homomorphism f : M −→ R/q. Let b be the ideal of R such that q ( b
and Im f = b/q. Since Supp(Ker f) ⊆ Supp(M), it follows by the in-
ductive hypothesis that H i

I,J(N,R/p) ∈ S for all p ∈ Supp(Ker f) and

all i > t+1, and by Lemma 2.8, H t+2
I,J (N,Ker f) ∈ S. Now, the exact se-

quence 0 −→ Ker f −→M −→ Im f −→ 0 induces the exact sequence
H t+1
I,J (N,M) −→ H t+1

I,J (N, Im f) −→ H t+2
I,J (N,Ker f), and it follows

that H t+1
I,J (N, Im f) ∈ S. There is a filtration 0 = Lk ⊆ Lk−1 ⊆ · · · ⊆

L0 = R/b of submodules of R/b, such that for each i with 1 ≤ i ≤ k,
Li−1/Li ∼= R/qi where qi ∈ V(b). It follows by the maximality of q
that H t+1

I,J (N,R/qi) ∈ S for each i with 1 ≤ i ≤ k. Now, for each i with
1 ≤ i ≤ k, the exact sequence 0 −→ Li −→ Li−1 −→ R/qi −→ 0 yields
the exact sequence H t+1

I,J (N,Li) −→ H t+1
I,J (N,Li−1) −→ H t+1

I,J (N,R/qi).

Hence H t+1
I,J (N,R/b) ∈ S. Next the exact sequence 0 −→ Im f −→

R/q −→ R/b −→ 0 induces the exact sequence H t+1
I,J (N, Im f) −→

H t+1
I,J (N,R/q) −→ H t+1

I,J (N,R/b). It follows that H t+1
I,J (N,R/q) ∈ S,

which is a contradiction. �

The next Proposition provides some formulas which are useful in the
computation of Serre cohomological dimensions.

Proposition 2.11. Let N be an R-module of finite projective dimen-
sion, and M , M ′, and M ′′ be finitely generated R-modules.

(i) If Supp(M) ⊆ Supp(M ′), then cdS(I, J,N,M) ≤ cdS(I, J,N,M ′).
(ii) Let 0 −→M ′ −→M −→M ′′ −→ 0 be an exact sequence. Then

cdS(I, J,N,M) = max{cdS(I, J,N,M ′), cdS(I, J,N,M ′′)}.
(iii)

cdS(I, J,N,M) = sup{cdS(I, J,N,R/p) : p ∈ Supp(M)}
= sup{cdS(I, J,N,R/p) : p ∈ Min(M)}.

Proof. (i) Set t = cdS(I, J,N,M ′). Then H i
I,J(N,M ′) ∈ S for all

i > t, and it follows by Lemma 2.10 that H i
I,J(N,R/p) ∈ S for all

p ∈ Supp(M ′) and all i > t. Therefore H i
I,J(N,R/p) ∈ S for all

p ∈ Supp(M) and all i > t. Now, it follows by Lemma 2.8 that
H i
I,J(N,M) ∈ S for all i > t, and so cdS(I, J,N,M) ≤ t.
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(ii) The inequality≥ follows from (i), and the other inequality follows
from Proposition 2.7.

(iii) The first equality follows by Corollary 2.9 and Lemma 2.10. For
the second, we show that

sup{cdS(I, J,N,R/p) : p ∈ Supp(M)}
= sup{cdS(I, J,N,R/p) : p ∈ Min(M)}.

Let p ∈ Supp(M). There is q ∈ Min(M) such that q ⊆ p, and it follows
by part (i) that cdS(I, J,N,R/p) ≤ cdS(I, J,N,R/q). Therefore

sup{cdS(I, J,N,R/p) : p ∈ Supp(M)}
≤ sup{cdS(I, J,N,R/p) : p ∈ Min(M)}.

The inequality ≥ is trivial. �

The following result is a direct consequence of Proposition 2.11(i),
and is used in the next results.

Corollary 2.12. Let N be an R-module of finite projective dimen-
sion, and M be a finitely generated R-module. Then cdS(I, J,N,M) =
cdS(I, J,N,R/Ann(M)).

Now, we characterize the membership of H i
I,J(N,R) in a Serre sub-

category from above.

Lemma 2.13. Let N be an R-module of finite projective dimension,
and t be an integer. The following are equivalent.

(i) H i
I,J(N,R) ∈ S for all i > t.

(ii) H i
I,J(N,M) ∈ S for all i > t and for every R-module M .

Proof. The only non-trivial part is (i)⇒(ii). We prove the claim by
the descending induction on t. It follows by [18, Lemma 3.1] that,
for any sufficiently large t, the claim is valid. So assume, induc-
tively, that the result has been proved for i > t + 1, and for every
R-module M . It is enough to show that H t+1

I,J (N,M) ∈ S. There
is an epimorphism f : F −→ M where F is a free R-module. Set
K = Ker f . The exact sequence 0 −→ K −→ F −→ M −→ 0 induces
the exact sequence H t+1

I,J (N,F ) −→ H t+1
I,J (N,M) −→ H t+2

I,J (N,K).

Since H i
I,J(N,−) commutes with direct sums, it follows by the hy-

pothesis that H t+1
I,J (N,F ) ∈ S. Also, by the inductive hypothesis,

H t+2
I,J (N,K) ∈ S, and the claim follows. �

The following result is obtained directly from Lemma 2.13.
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Corollary 2.14. Let N be an R-module of finite projective dimension.
Then

cdS(I, J,N,R) = sup{cdS(I, J,N,M) : M is an R-module}
= sup{i ∈ N0 : H i

I,J(N,M) 6∈ S for some R-module M}.

3. Cohomological dimensions on localizing subcategories

In this section, we study the cohomological dimension of two modules
with respect to a pair of ideals on localizing subcategories. Recall that
a Serre subcategory S is localizing, if it is closed under direct limits. It
is shown in [16] that there is a bijection between the set of localizing
subcategories of the category ofR-modules, and the set of specialization
closed subsets of Spec(R):

{Localizing subcategories}
Supp

�
Supp−1

{Specialization closed subsets of Spec(R)}

where for a localizing subcategory S, Supp(S) =
⋃
M∈S Supp(M), and

for a specialization closed subset Φ of Spec(R), Supp−1(Φ) denotes the
class of all R-modules M with Supp(M) ⊆ Φ. Therefore, a localizing
subcategory is the same as the class of R-modules, which is mentioned
in Example 2.2(e).

The following Lemma is key for the next results.

Lemma 3.1. Let S be a localizing subcategory of the category of R-
modules. Then

cdS(I, J,N,M) ≤
sup{cdS(I, J,N, L) : L is a finitely generated submodule of M}.

Proof. The claim follows from these facts that the R-module M is equal
to the direct limit of its finitely generated submodules, and the functor
H i
I,J(N,−) commutes with direct limits. �

The next result improves Corollary 2.9.

Proposition 3.2. Let S be a localizing subcategory of the category of
R-modules.

(i) cdS(I, J,N,M) ≤ sup{cdS(I, J,N,R/p) : p ∈ Supp(M)}.
(ii) If N is an R-module of finite projective dimension, then

cdS(I, J,N,M) ≤ sup{cdS(I, J,N,R/p) : p ∈ Min(M)}.
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Proof. (i) It follows by Lemma 3.1 that there is a finitely generated
submodule L of M such that cdS(I, J,N,M) ≤ cdS(I, J,N, L). There-
fore we can assume that M is finitely generated. Now the claim follows
by Corollary 2.9.

(ii) By a similar method to that of Proposition 2.11(iii), one can
show that

sup{cdS(I, J,N,R/p) : p ∈ Supp(M)}
= sup{cdS(I, J,N,R/p) : p ∈ Min(M)}.

Now the claim follows by part (i). �

The following Theorem is essential in this section.

Theorem 3.3. Let S be a localizing subcategory of the category of R-
modules. Let N be an R-module of finite projective dimension, and let
M ′ be a finitely generated R-module such that Supp(M) ⊆ Supp(M ′).
Then cdS(I, J,N,M) ≤ cdS(I, J,N,M ′).

Proof. It follows by Lemma 3.1 that there is a finitely generated sub-
module L of M with cdS(I, J,N,M) ≤ cdS(I, J,N, L). Now, we have
Supp(L) ⊆ Supp(M ′), and it follows from Proposition 2.11(i) that
cdS(I, J,N, L) ≤ cdS(I, J,N,M ′). �

The next result is a direct consequence of Theorem 3.3.

Corollary 3.4. Let S be a localizing subcategory of the category of R-
modules. Let N be an R-module of finite projective dimension, and b be
an ideal of R with b ⊆ Ann(M). Then cdS(I, J,N,M) ≤ cdS(I, J,N,R/b).

The following result improves Proposition 2.11(ii).

Corollary 3.5. Let S be a localizing subcategory of the category of R-
modules. Let N be an R-module of finite projective dimension, M be
a finitely generated R-module, and let 0 −→ M ′ −→ M −→ M ′′ −→ 0
be an exact sequence of R-modules. Then

cdS(I, J,N,M) = max{cdS(I, J,N,M ′), cdS(I, J,N,M ′′)}.

Proof. It follows by Proposition 2.7, Theorem 3.3, and Corollary 3.4
that

cdS(I, J,N,M) ≤ max{cdS(I, J,N,M ′), cdS(I, J,N,M ′′)}
≤ max{cdS(I, J,N,R/Ann(M ′)), cdS(I, J,N,R/Ann(M ′′))}

≤ cdS(I, J,N,R/Ann(M)).

Finally, the extreme terms are equal according to Corollary 2.12. �

The next result is a generalization of [4, Theorem C].
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Proposition 3.6. Let either S be a localizing subcategory of the cat-
egory of R-modules or M be a finitely generated R-module. Let N
be a finitely generated R-module of finite projective dimension, and
M ′ be a finitely generated R-module such that Supp(M/ΓI,J(M)) ⊆
Supp(M ′/ΓI,J(M ′)). Then

cd(I, J,N,M) ≤ max{cd(I, J,N,M ′), pd(N)}.

Proof. Let i be an integer such that i > max{cd(I, J,N,M ′), pd(N)}.
It is enough to show that H i

I,J(N,M) = 0. The exact sequence

0 −→ ΓI,J(M) −→M −→M/ΓI,J(M) −→ 0

induces the following long exact sequence

· · · → H i
I,J(N,ΓI,J(M))→ H i

I,J(N,M)→ H i
I,J(N,M/ΓI,J(M))→ · · · .

Since Supp(M/ΓI,J(M)) ⊆ Supp(M ′/ΓI,J(M ′)) ⊆ Supp(M ′), it follows
by either Proposition 2.11(i) or Theorem 3.3 that

cdS(I, J,N,M/ΓI,J(M)) ≤ cdS(I, J,N,M ′) < i,

and therefore H i
I,J(N,M/ΓI,J(M)) = 0. Also, by [21, Proposition 2.6],

H i
I,J(N,ΓI,J(M)) ∼= ExtiR(N,ΓI,J(M)), and so H i

I,J(N,ΓI,J(M)) = 0.

Now, it follows by the above long exact sequence that H i
I,J(N,M) =

0. �

4. Cohomological dimensions with respect to sum and
intersection of ideals

In this section, we study the cohomological dimension of N, M with
respect to (I + I ′, J) and (I, J ∩ J ′), where I ′, J ′ are two ideals of R.
The following Theorem is essential in this direction.

Theorem 4.1. Let I ′, J ′ be two ideals of R, N be a finitely generated
R-module, and let t be a non-negative integer.

(i) If H t−i
I,J (N,H i

I′,J(M)) ∈ S for all 0 ≤ i ≤ t, then H t
I+I′,J(N,M) ∈

S.
(ii) If H t−i

I,J (N,H i
I,J ′(M)) ∈ S for all 0 ≤ i ≤ t, then H t

I,J∩J ′(N,M) ∈
S.

Proof. (i) Let F (−) = ΓI,J(N,−) and G(−) = ΓI′,J(−) be functors
from the category of R-modules to itself. It follows by [21, Proposition
2.2] and [23, Proposition 1.4] that

FG(M) = ΓI,J(N,ΓI′,J(M)) = ΓI,J(HomR(N,ΓI′,J(M)))

= ΓI,J(ΓI′,J(HomR(N,M))) = ΓI+I′,J(HomR(N,M))

= ΓI+I′,J(N,M).
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Let E be an injective R-module. It follows by [5, Lemma 4.4] that
G(E) = ΓI′,J(E) is an injective R-module. So H i

I,J(N,ΓI′,J(N,E)) = 0
for all i > 0. Now, by [22, Theorem 10.47], there is the Grothendieck
third quadrant spectral sequence

Ep,q
2 := Hp

I,J(N,Hq
I′,J(M)) =⇒

p
Hp+q
I+I′,J(N,M).

Hence there is a bounded filtration

0 = φp+q+1Hp+q ⊆ φp+qHp+q ⊆ · · · ⊆ φ0Hp+q = Hp+q
I+I′,J(N,M)

such that Ep+q−i,i
∞

∼= φp+q−iHp+q/φp+q+1−iHp+q for all 0 ≤ i ≤ p + q.
Also we have Ep,q

p+q+2 = Ep,q
p+q+3 = · · · = Ep,q

∞ for all p ≥ 0 and q ≥ 0.

We have to show that H t
I+I′,J(N,M) = φ0H t ∈ S. Since Et−i,i

j is

a subquotient of Et−i,i
2 for all j ≥ 2 and 0 ≤ i ≤ t, it follows by

the hypothesis that Et−i,i
j ∈ S for all j ≥ 2 and 0 ≤ i ≤ t, and

therefore Et−i,i
∞ ∈ S for all 0 ≤ i ≤ t. Now the exact sequences 0 −→

φt−i+1H t −→ φt−iH t −→ Et−i,i
∞ −→ 0 for all 0 ≤ i ≤ t, imply that

φ0H t ∈ S.
(ii) Let F (−) = ΓI,J(N,−) and G(−) = ΓI,J ′(−) be functors from

the category of R-modules to itself. The proof is quite similar to the
proof of part (i). �

Proposition 4.2. Let I ′, J ′ be two ideals of R, and N be a finitely
generated R-module of finite projective dimension.

(i) cdS(I + I ′, J,N,M) ≤ cdS(I, J,N,R) + cdS(I ′, J,M).
(ii) cdS(I, J ∩ J ′, N,M) ≤ cdS(I, J,N,R) + cdS(I, J ′,M).

Proof. (i) Let t be an integer such that t > cdS(I, J,N,R)+cdS(I ′, J,M).
In view of Theorem 4.1(i), it is enough to show thatH t−i

I,J (N,H i
I′,J(M)) ∈

S for all 0 ≤ i ≤ t. If i > cdS(I ′, J,M), then H i
I′,J(M) ∈ S and so

H t−i
I,J (N,H i

I′,J(M)) ∈ S. Otherwise, i ≤ cdS(I ′, J,M) and so t − i >
cdS(I, J,N,R). By Corollary 2.14, we have

cdS(I, J,N,H i
I,J(M)) ≤ cdS(I, J,N,R) < t− i,

and so H t−i
I,J (N,H i

I′,J(M)) ∈ S as desired.
(ii) The proof is similar to that of (i). �

Proposition 4.3. Let S be a localizing subcategory of the category of
R-modules. Let I ′, J ′ be two ideals of R, and N be a finitely generated
R-module of finite projective dimension.

(i) cdS(I + I ′, J,N,M) ≤ cdS(I, J,N,R/Ann(M)) + cdS(I ′, J,M).
(ii) cdS(I, J ∩J ′, N,M) ≤ cdS(I, J,N,R/Ann(M))+cdS(I, J ′,M).
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Proof. (i) It follows by Theorem 4.1(i) that

cdS(I + I ′, J,N,M) ≤ max{i+ j : H i
I,J(N,Hj

I′,J(M)) 6∈ S}.
By [21, Proposition 2.6] and [6, Lemma 2.1], we have

max{i+ j : H i
I,J(N,Hj

I′,J(M)) 6∈ S}
≤ cdS(I, J,N,Hj

I′,J(M)) + cdS(I ′, J,M).

It follows by Corollary 3.4 that

cdS(I, J,N,Hj
I′,J(M)) ≤ cdS(I, J,N,R/Ann(Hj

I′,J(M))).

Moreover, since the functor H i
I′,J(−) is R-linear, therefore Ann(M) ⊆

Ann(Hj
I′,J(M)). So, by Proposition 2.11(i),

cdS(I, J,N,R/Ann(Hj
I′,J(M))) ≤ cdS(I, J,N,R/Ann(M)),

and the claim follows.
(ii) The proof is similar to that of (i). �

The following result is a generalization of [25, Theorem 2.1 and Corol-
lary 2.1].

Corollary 4.4. Let S be a localizing subcategory of the category of
R-modules. Let I ′, J ′ be two ideals of R, M be a finitely generated R-
module, and let N be a finitely generated R-module of finite projective
dimension.

(i) cdS(I + I ′, J,N,M) ≤ cdS(I, J,N,M) + cdS(I ′, J,M).
(ii) cdS(I, J ∩ J ′, N,M) ≤ cdS(I, J,N,M) + cdS(I, J ′,M).

Proof. The claim follows by Corollary 2.12 and Proposition 4.3. �

The next result is obtained directly from Corollary 4.4 by assuming
N = R.

Corollary 4.5. Let S be a localizing subcategory of the category of R-
modules. Let I ′, J ′ be two ideals of R, and M be a finitely generated
R-module.

(i) cdS(I + I ′, J,M) ≤ cdS(I, J,M) + cdS(I ′, J,M).
(ii) cdS(I, J ∩ J ′,M) ≤ cdS(I, J,M) + cdS(I, J ′,M).

The following result is a generalization of [15, Corollary 2.2(iii)].

Corollary 4.6. Let S be a localizing subcategory of the category of R-
modules. Let M be a finitely generated R-module, and N be a finitely
generated R-module of finite projective dimension. If q ∈ Min(J), then

cdS(I, J,N,M) ≤ cdS(I, q, N,M) +
∑

p∈Min(J)−{q}

cdS(I, p,M).
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Proof. It follows by Corollary 2.6(i), Corollary 4.4(ii), and Corollary
4.5(ii) that

cdS(I, J,N,M) = cdS(I,
√
J,N,M) = cdS(I,

⋂
p∈Min(J)

p, N,M)

≤ cdS(I, q, N,M) + cdS(I,
⋂

p∈Min(J)−{q}

p,M)

≤ cdS(I, q, N,M) +
∑

p∈Min(J)−{q}

cdS(I, p,M).

�

5. Some relations between different cohomological
dimensions

In this section, we investigate the relations between different types
of cohomological dimensions. In the first, the relations between the
cohomological dimension of two modules with respect to a pair of ideals,
and the cohomological dimension of a module with respect to a pair
of ideals, are studied. The following two Lemmas are key for the next
Theorem.

Lemma 5.1. Let S be a localizing subcategory of the category of R-
modules, and let N be a projective R-module. Then cdS(I, J,N,M) =
cdS(I, J,M).

Proof. It follows by [20, Theorem 2.5] that any projective R-module
is locally free, i.e., its localization at every prime ideal is free over the
corresponding localization of the ring. Let p be a prime ideal of R, and
Λ be a set such that Np

∼= ⊕λ∈ΛRp. Now, it follows by [8, Lemma 2.1]
that

(H i
I,J(N,M))p ∼= ( lim−→

a∈W̃(I,J)

H i
a(N,M))p ∼= lim−→

a∈W̃(I,J)

H i
aRp

(Np,Mp)

∼= lim−→
a∈W̃(I,J)

H i
aRp

(
⊕
λ∈Λ

Rp,Mp) ∼=
∏
λ∈Λ

lim−→
a∈W̃(I,J)

H i
aRp

(Rp,Mp)

∼=
∏
λ∈Λ

lim−→
a∈W̃(I,J)

H i
aRp

(Rp,Mp) ∼=
∏
λ∈Λ

lim−→
a∈W̃(I,J)

H i
aRp

(Mp)

∼=
∏
λ∈Λ

( lim−→
a∈W̃(I,J)

H i
a(M))p

∼=
∏
λ∈Λ

(H i
I,J(M))p.

Therefore Supp(H i
I,J(N,M)) = Supp(H i

I,J(M)) for any non-negative
integer i, and the claim follows. �
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Lemma 5.2. Let R be a local ring, and let N be a finitely generated
and projective R-module. Then cdS(I, J,N,M) = cdS(I, J,M).

Proof. It follows by [20, Theorem 2.5] that N is a finitely generated

free R-module. Let k be a positive integer such that N ∼=
⊕k

j=1R.
Then

H i
I,J(N,M) ∼= lim−→

a∈W̃(I,J)

H i
a(N,M) ∼= lim−→

a∈W̃(I,J)

(
k⊕
j=1

H i
a(M)) ∼=

k⊕
j=1

H i
I,J(M).

It follows that cdS(I, J,N,M) = cdS(I, J,M). �

The following Theorem is the main result of this section.

Theorem 5.3. Let either S be a localizing subcategory of the category
of R-modules or R be a local ring. Let N be a finitely generated R-
module of finite projective dimension. Then cdS(I, J,N,M) ≤ pd(N)+
cdS(I, J,M).

Proof. We use induction on pd(N). If pd(N) = 0, then the claim
follows by Lemma 5.1 and Lemma 5.2. Now assume inductively that
pd(N) > 0, and the result has been proved for all R-modules with
projective dimensions less than pd(N). Let t > pd(N) + cdS(I, J,M)
be fixed. We have to show that H t

I,J(N,M) ∈ S. There is the exact
sequence 0 −→ K −→ F −→ N −→ 0, whenever F is a finitely
generated free R-module, and K is a finitely generated R-module with
pd(K) = pd(N)− 1. Therefore, there exists the exact sequence

H t−1
I,J (K,M) −→ H t

I,J(N,M) −→ H t
I,J(F,M).

It follows by the inductive hypothesis that cdS(I, J,K,M) ≤ pd(K) +
cdS(I, J,M), and so H i

I,J(K,M) ∈ S for all i > pd(K) + cdS(I, J,M).

Hence H t−1
I,J (K,M) ∈ S. Let k be a positive integer such that F =⊕k

j=1R. Then H t
I,J(F,M) ∼=

⊕k
j=1 H

t
I,J(M) ∈ S. Now, the claim

follows by the above exact sequence. �

In the next result, we get some upper bounds for cohomological
dimensions.

Proposition 5.4. Let N be a finitely generated R-module of finite
projective dimension.

(i) cd(I, J,N,M) ≤ pd(N)+ara(IR̄), where R̄ = R/
√
J + Ann(M).

(ii) cd(I, J,N,M) ≤ pd(N) + ara(I).
(iii) cd(I, J,N,M) ≤ pd(N) + dim(M).
(iv) If M is a finitely generated R-module, then

cd(I, J,N,M) ≤ pd(N) + dim(M/JM) + 1.
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(v) If M is a finitely generated R-module of finite Krull dimension,
then

cd(I, J,N,M) ≤ pd(N) + dim(M ⊗R N).

Proof. (i) By [23, Proposition 4.11], we have cd(I, J,M) ≤ ara(IR̄).
Now, the claim follows by Theorem 5.3 by assuming S = {0}.

(ii) It is easy to show that ara(IR̄) ≤ ara(I). Now, the claim follows
by part (i).

(iii) By [7, Part 2.7], we have cd(I, J,M) ≤ dim(M). Now, the claim
follows by Theorem 5.3 by assuming S = {0}.

(iv) By [23, Theorem 4.7](2), we have cd(I, J,M) ≤ dim(M/JM)+1.
Now, the claim follows by Theorem 5.3 by assuming S = {0}.

(v) The claim follows by [26, Theorem 3.7]. �

The following result is a generalization of [15, Corollary 2.4].

Corollary 5.5. Let I ′, J ′ be two ideals of R, and let N be a finitely gen-
erated R-module of finite projective dimension. Set R̄ = R/

√
J + Ann(M).

(i) cd(I + I ′, J,N,M) ≤ pd(N) + ara(IR̄) + cd(I ′, J,M).
(ii) cd(I, J ∩ J ′, N,M) ≤ pd(N) + ara(IR̄) + cd(I, J ′,M).

Proof. The claim follows by Proposition 4.3 and Proposition 5.4(i). �

Corollary 5.6. Let J ′ be an ideal of R, and N be a finitely generated
R-module of finite projective dimension. Then

cd(I, J∩J ′, N,M) ≤ pd(N)+dim(R/(J + Ann(M)))+1+cd(I, J ′,M).

Proof. The claim follows by Proposition 4.3(ii) and Proposition 5.4(iv).
�

Proposition 5.7. Let R be a local ring, and let N be a finitely gener-
ated R-module of finite projective dimension.

(i) If M is a finitely generated R-module, and J 6= R, then

cd(I, J,N,M) ≤ pd(N) + dim(M/JM).

(ii) cd(I, J,N,M) ≤ pd(N) + dim(R/J).

Proof. (i) By [23, Theorem 4.3], we have cd(I, J,M) ≤ dim(M/JM).
Now, the claim follows by Theorem 5.3 by assuming S = {0}.

(ii) By [23, Corollary 4.4], we have cd(I, J,M) ≤ dim(R/J). Now,
the claim follows by Theorem 5.3 by assuming S = {0}. �

Corollary 5.8. Let R be a local ring, J ′ be an ideal of R, and let N be
a finitely generated R-module of finite projective dimension. If J 6= R,
then

cd(I, J ∩ J ′, N,M) ≤ pd(N) + dim(R/(J + Ann(M))) + cd(I, J ′,M).
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Proof. The claim follows by Proposition 4.3(ii) and Proposition 5.7(i).
�

Finally, we get some formulas on the connections between the coho-
mological dimension with respect to a pair of ideals and the cohomo-
logical dimension with respect to an ideal. The following Lemma is key
for the next result.

Lemma 5.9. For each non-negative integer i,

H i
I,J(N,M) ∼= lim−→

a∈W̃(I,J)

H i
a(N/aN,M).

Proof. Note that, H i
a(N/aN,M) ∼= ExtiR(N/aN,M) for any i ∈ N0 and

a ∈ W̃(I, J). �

Proposition 5.10. Let S be a localizing subcategory of the category of
R-modules.

(i) cdS(I, J,N,M) ≤ sup{cdS(a, N,M) : a ∈ W̃(I, J)}.
(ii) cdS(I, J,N,M) ≤ sup{cdS(a, N/aN,M) : a ∈ W̃(I, J)}.

(iii) If N is a projective R-module, then

cdS(I, J,N,M) ≤ sup{cdS(a, R/a,HomR(N,M)) : a ∈ W̃(I, J)}.

(iv) cdS(I, J,M) ≤ sup{cdS(a, R/a,M) : a ∈ W̃(I, J)}.

Proof. (i) The claim follows by [8, Lemma 2.1].
(ii) The claim follows by Lemma 5.9.
(iii) By [22, Corollary 10.65], we have

H i
a(N/aN,M) ∼= ExtiR(N/aN,M) ∼= ExtiR(R/a⊗R N,M)

∼= ExtiR(R/a,HomR(N,M)) ∼= H i
a(R/a,HomR(N,M)).

Now the claim follows by part (ii).
(iv) In part (iii), put N = R. �
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