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A k-IDEAL-BASED GRAPH OF COMMUTATIVE
SEMIRINGS

F. ESMAEILI KHALIL SARAEI ∗ AND S. RAMINFAR

Abstract. Let R be a commutative semiring and I be a k-ideal
of R. In this paper, we introduce the k-ideal-based graph of R,
denoted by ΓI∗(R). The basic properties and possible structures
of the graph are studied.

1. Introduction

Throughout this paper, all semirings are commutative with nonzero
identity. The semirings appear naturally in diverse mathematics areas
such as combinatorics, functional analysis, topology, graph theory, Eu-
clidean geometry, probability theory, and optimization theory. From
an algebraic point of view, semirings give the most natural common
generalization of the theories of rings and bounded distributive lat-
tices. The techniques used in analyzing them are taken from both
areas. There is much research on various graphs associated with al-
gebraic structures (see [1],[3],[5],[9]-[14] and [18]). The paper aims to
investigate the interaction between a semiring R’s semiring proper-
ties and its k-ideal-based graphs’ properties. Let R be a commuta-
tive semiring and let I be an ideal of R with I∗ = I \ {0}. Here,
we introduce a new class of graphs associated to a semiring R, de-
noted by G = ΓI∗(R), as the (undirected) simple graph with vertices
V (G) = {v ∈ R \ I : v + v′ ∈ I∗for some v 6= v′ ∈ R \ I}, where
distinct vertices v and v′ are adjacent if and only if v + v′ ∈ I∗. Let
r ∈ V (G). Then NG(r) = {r′ ∈ V (G) : r′ 6= r, r + r′ ∈ I∗} is the
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neighborhood of vertex r in G consisting of all vertices adjacent to r
in G. The graph for modules over commutative rings has been defined
by Abbasi and Jahromi in [1]. The corresponding results are obtained
by modification, and here, we present a complete image of this graph.
In the next section, we give all the necessary definitions. Section 3 of
this paper investigates some basic properties of the graph ΓI∗(R). In
sections 4 and 5, we determine the diameter and the girth of ΓI∗(R)
when I is a k-ideal and a QR-ideal of R, respectively. We also explore
the structure of ΓI∗(R), when I is a QR-ideal of R (see Theorem 5.3
and Theorem 5.5 )

2. Preliminaries

Now, we recall some definitions and notations on graphs and semi-
modules theory. Let Γ be a simple graph. The vertex set of Γ is
denoted by V (Γ). We recall that a graph is connected if a path
connects two distinct vertices. The distance d(a, b) is the length of
the shortest path from a to b; if such a path does not exist, then
d(a, b) =∞. The diameter of a graph Γ, denoted by diam(Γ), is equal
to sup{d(a, b) : a, b ∈ V (Γ)}. A graph is complete if it is connected
with a diameter less than or equal to one. The girth of a graph Γ,
denoted by gr(Γ), is the length of the shortest cycle in Γ, provided
Γ contains a cycle; otherwise, gr(Γ) = ∞, in this case Γ is called an
acyclic graph. We say that two (induced) subgraphs Γ1 and Γ2 of Γ are
disjoint if Γ1 and Γ2 have no common vertices and no vertex of Γ1 (re-
spectively, Γ2) is adjacent (in Γ) to any vertex not in Γ1 (respectively,
Γ2). We denote the complete bipartite graph on m and n vertices by
Km,n. A component (connected component) of graph Γ is a subgraph
in which any two vertices are connected to each other by paths and
which is connected to no additional vertices in the graph Γ. We say
that u is a universal vertex of Γ if u is adjacent to all other vertices
of Γ. A vertex v in an undirected connected graph G is a cut-point
(cut vertex) of G if removing it (and edges through it) disconnects the
graph.
Now, we recall various notions from semimodule theory, which will be
used in the sequel. For the definitions of semirings theory, we refer
[2],[4]-[8], [15]-[17], and [19]. An ideal I of R is a k-ideal if x, x+ y ∈ I
implies that y ∈ I (so {0R} is a k-ideal of R). An element s of R
is a zero-sum in R if s + t = 0 for some t ∈ R. We use S(R) to
denote the set of all zero-sum elements of R. Similarly, if K is a sub-
set of R, then S(K) = {r ∈ K : r + s = 0, for some s ∈ K}. An
ideal I of a semiring R is called a QR-ideal if there exists a subset
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QR of R such that R = ∪{q + I : q ∈ QR} and if q1, q2 ∈ QR then
(q1 + I) ∩ (q2 + I) 6= ∅ if and only if q1 = q2. Let I be a QR-ideal of
R and let R/I = {q + I : q ∈ QR}. Then R/I forms a semiring under
the operations ⊕ and � defined as follows: (q1 + I)⊕ (q2 + I) = q3 + I,
where q3 ∈ QR is the unique element such that q1 + q2 + I ⊆ q3 + I
and (q4 + I)� (q1 + I) = q5 + I, where q5 ∈ QR is the unique element
such that q4q1 + I ⊆ q5 + I. The semiring R/I is the quotient semiring
of R by I (see [2]). There exists a unique element q0 ∈ QR such that
q0 + I = I. Thus, q0 + I is the zero element of R/I. It is shown that
every QR-ideal is a k-ideal of R by [16, 8.23]. Throughout this paper,
R is a commutative semiring, and I is an ideal of R with I∗ = I \ {0}.

3. Some properties of ΓI∗(R)

We devote this section to some properties of ΓI∗(R) graph. The
following lemma contains several results, which we will use throughout
this paper.

Lemma 3.1. Let I be a k-ideal of semiring R. Then the following
hold:
(1) If r and s are adjacent for some r, s ∈ ΓI∗(R), then 2r + s /∈ I.
(2) If s ∈ V (ΓI∗(R)) and s+ s′ = 0 for some s′ ∈ R, then s′ /∈ I.
(3) Let r, s ∈ V (ΓI∗(R)) with r 6= s and NG(r)∩NG(s) 6= ∅. If s+s′ = 0
for some s′ ∈ R, then r + s′ ∈ I∗.
(4) If r, s ∈ V (ΓI∗(R)) with r+r′ = 0 and s+s′ = 0 for some r′, s′ ∈ R,
then r + s ∈ I∗ if and only if r′ + s′ ∈ I∗.
Proof. (1) Let 2r + s ∈ I. Then 2r + s = r + (r + s) ∈ I. This implies
that r ∈ I, since r + s ∈ I and I is a k-ideal of R, contradicts our
assumption.
(2) It is clear since I is a k-ideal of R.
(3) Assume that u ∈ NG(r)∩NG(s). So r+u, s+u ∈ I∗. Let r+s′ = a
for some a ∈ R. Then r + u = r + s′ + s + u = a + s + u. So a ∈ I
since I is a k-ideal of R. If r + s′ = 0, then r = r + s′ + s = s is a
contradiction. Hence r + s′ ∈ I∗.
(4) It is clear that r + s = 0 if and only if r′ + s′ = 0. Now, let
r+ s ∈ I∗. Then r+ s = a for some 0 6= a ∈ I. Therefore a+ r′ + s′ =
r+s+r′+s′ = 0 ∈ I, thus r′+s′ ∈ I since I is a k-ideal of R. Similarly,
the other side holds. �

Remark 3.2. Let I be an ideal of semiring R and I ′ = {r ∈ R : r+ s ∈
I, for some s ∈ R \ I where s 6= r}. If I is a k-ideal, then I ′ ⊆ R \ I.

In the following proposition, we consider the conditions under which
V (ΓI∗(R)) 6= ∅.
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Proposition 3.3. Let I be a k-ideal of R with |I∗| ≥ 2. If S(R)∩ I ′ 6=
∅, then V (ΓI∗(R)) 6= ∅.

Proof. Let r ∈ S(R)∩ I ′. Then r+ s = 0 for some s ∈ R \ I and s 6= r.
If r = s+a for every 0 6= a ∈ I, then r = s+a = s+b for some distinct
nonzero elements a, b ∈ I. So we have a = r + s + a = r + s + b = b,
which is a contradiction. Thus there exists 0 6= t ∈ I such that r 6= s+t.
Hence r + s+ t = t ∈ I∗ and so r, s+ t ∈ V (ΓI∗(R)). �

The next result is used to identify the adjacency between the vertices
of the ΓI∗(R).

Theorem 3.4. Let I be a k-ideal of R. If r, s ∈ V (ΓI∗(R)) are distinct
vertices connected by a path of length 3 and r+ s 6= 0, then r and s are
adjacent.

Proof. Let r − t1 − t2 − s be a path of length 3 between r and s for
distinct vertices r, t1, t2, s ∈ V (ΓI∗(R)). So r + t1, t1 + t2, t2 + s ∈ I∗.
Therefore we have (r+s)+(2(t1+t2)) = (r+t1)+(t1+t2)+(t2+s) ∈ I.
Then r + s ∈ I∗ because t1 + t2 ∈ I and I is a k-ideal. Thus, r and s
are adjacent. �

Theorem 3.5. Let I be a k-ideal of R. If r, s ∈ V (ΓI∗(R)) are distinct
vertices connected by a path of length 4, then there exists a path of
length 2 between them. In particular, NG(r) ∩NG(s) 6= ∅.

Proof. Let r − t1 − t2 − t3 − s be a path of length 4 between r and s
for distinct vertices r, t1, t2, t3, s ∈ V (ΓI∗(R)). If either r + t3 6= 0 or
t1 + s 6= 0, then r and t3 or t1 and s are adjacent by Theorem 3.4,
as we desired. So we may assume that r + t3 = 0 and t1 + s = 0. If
r = t1 + t2 + t3, then r+ s = t1 + t2 + t3 + s = t2 + t3 ∈ I∗. This implies
that r and s are adjacent, a contradiction. Similarly, if s = t1 + t2 + t3,
then r+ s = r+ t1 + t2 + t3 = t1 + t2 ∈ I∗ which is also a contradiction.
Therefore r−(t1+ t2+ t3)−s is a path of length 2 between r and s. �

Corollary 3.6. Let I be a k-ideal of R. If P is a path of length 4 in
ΓI∗(R), then ΓI∗(R) has a cycle.

Proof. Let r− t1− t2− t3− s be a path of length 4 between r and s for
distinct vertices r, t1, t2, t3, s ∈ V (ΓI∗(R)). If either r+t3 6= 0 or t1+s 6=
0, then r and t3 or t1 and s are adjacent by Theorem 3.4, as we desired.
So we may assume that r+t3 = 0 and t1+s = 0. Then r−(t1+t2+t3)−s
is a path of length 2 between r and s by Theorem 3.5. If t1+t2+t3 = t1,
then s + t1 + t2 + t3 = s + t1 and t2 + t3 = 0, a contradiction. Thus
t1 + t2 + t3 6= t1. Similarly, t1 + t2 + t3 6= t3. If t1 + t2 + t3 = t2, then
r− t1− t2− r and t2− t3− s− t2 are two cycles of length 3 in ΓI∗(R).



A k-IDEAL-BASED GRAPH OF COMMUTATIVE SEMIRINGS 45

If t1 + t2 + t3 6= t2, then r− t1− t2− t3− s− (t1 + t2 + t3)− r is a cycle
of length 6 in ΓI∗(R), as we desired. �

4. The diameter and the girth of ΓI∗(R)

In this section, we compute the diameter and the girth of graph
ΓI∗(R). In the next example, we introduce an ideal such that ΓI∗(R)
is a union of two disjoint complete bipartite subgraphs.

Example 4.1. Let R = Z+ ∪ {0}. Assume that I = 5Z+ ∪ {0},
so I is a k-ideal of R. Assume that r ∈ V (ΓI∗(R)), then r 6= 5k.
Therefore either r = 5k + 1, r = 5k + 2, r = 5k + 3 or 5k + 4 for some
nonnegative integer k. Let V1 = {x ∈ V (ΓI∗(R)) : r = 5k + 1 or r =
5k + 4 for some nonnegative integer k} and V2 = {r ∈ V (ΓI∗(R)) :
r = 5k + 2 or r = 5k + 3 for some nonnegative integer k}. It is easy
to see that the induced subgraphs of ΓI∗(R) with vertex set V1 and V2
are complete bipartite graphs and these two subgraphs are disjoint. So
gr(ΓI∗(R)) = 4 and diam(ΓI∗(R)) =∞.

Theorem 4.2. Let I be a k-ideal of R. Then diam(ΓI∗(R)) ≤ 3.

Proof. We can reduce every path of length greater than 3 to a path of
length at most 3 by Theorem 3.5. �

Theorem 4.3. Let I be a k-ideal of a semiring R and ΓI∗(R) be a
connected graph. If 2u = 0 for every u ∈ V (ΓI∗(R)), then ΓI∗(R) is a
complete graph.

Proof. By Theorem 4.2, we have diam(ΓI∗(R)) ≤ 3. First suppose that
r, s ∈ V (ΓI∗(R)) with r 6= s and d(r, s) = 2, so we have r − u − s in
ΓI∗(R), that this is a path in ΓI∗(R) . Hence r + s = r + s + 2u =
(r + u) + (s + u) ∈ I. If r + s = 0, then s = 2r + s = r, which is a
contradiction. So r + s 6= 0 and r and s are adjacent. If d(r, s) = 3,
then r and s are adjacent by Theorem 3.4. �

In the following example we introduce an ideal such that ΓI∗(R) is a
complete graph but 2u 6= 0 for every u ∈ V (ΓI∗(R)). So, the converse
of Theorem 4.3 is not always true.

Example 4.4. Let R = Z+ ∪ {0} be the semiring of all non-negative
integers. Then I = 2Z+ ∪ {0} is a k-ideal of R. Assume that r ∈
V (ΓI∗(R)) so r 6= 2k and so r = 2k + 1 for some nonnegative integer
k. Let r, s ∈ V (ΓI∗(R)). Then r = 2k + 1 and s = 2k′ + 1 for some
nonnegative integers k and k′. So r+s = 2k+1+2k′+1 = 2(k+k′+1) ∈
I∗, thus ΓI∗(R) is a complete graph and diam(ΓI∗(R)) = 1. Also
gr(ΓI∗(R)) = 3. It is clear that 2r 6= 0 for every r ∈ V (ΓI∗(R)).
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Our next goal is to determine the girth of ΓI∗(R).

Theorem 4.5. Let I be a k-ideal of R and ΓI∗(R) has a cycle. Then
gr(ΓI∗(r)) ≤ 6.

Proof. Let r1− r2− r3− r4− r5− r6− r7− r1 be a cycle of length 7 in
ΓI∗(R). Then there exist a path r1−m− r5 of length 2 between r1 and
r5 by Theorem 3.5. If m /∈ {r2, r3, r4}, then r1 −m− r5 − r6 − r7 − r1
is a cycle of length 5 in ΓI∗(R). Now suppose that m ∈ {r2, r3, r4}.
Then, we have a cycle with a length of less than 6. �

Theorem 4.6. Let I be a k-ideal of R. If |S(R) \ I| ≥ 4 and 2r ∈ I∗
for every 0 6= r ∈ R, then gr(ΓI∗(R)) ≤ 4.

Proof. Let 0 6= a ∈ S(R) \ I. Then there exists b ∈ S(R) such that
a + b = 0. It is clear that b /∈ I∗ since I is a k-ideal. If a = b, then
2a = 0, which contradicts our assumption. Now let c ∈ S(R) \ I and
c 6= a, b. Similarly c+ d = 0 for some d ∈ S(R) \ I and d /∈ {a, b, c}.
Case 1. If a + c ∈ I, then b + c = a + c + 2b ∈ I since 2b ∈ I. If
b + c = 0, then b = b + c + d = d, a contradiction. This implies that
b+ c ∈ I∗. By a similar argument, we can show that b+ d, d+ a ∈ I∗.
So in this case we have a cycle a− d− b− c− a of length 4 in ΓI∗(R).
Case2. Assume that a+c /∈ I. If a+d ∈ I, then a+c = a+d+2c ∈ I by
assumption, which is a contradiction. So we have a+ d /∈ I. Similarly,
we can show that b + d, b + c /∈ I. Now we show that (a + c) − (a +
d) − (b + d) − (b + c) − (a + c) is a cycle of length 4 in ΓI∗(R). It
suffices to show that a + c 6= b + d and a + d 6= b + c. Suppose that
a+ c = b+d. Then 2a = 2a+ c+d = a+ c+a+d = b+d+a+d = 2d.
This implies that 2(a + c) = 2a + 2c = 2d + 2c = 2(d + c) = 0 which
contradicts our assumption. So a + c 6= b + d. If a + d = b + c, then
2a = 2a + c + d = a + d + a + c = b + c + a + c = 2c and we have
2(a+ d) = 2a+ 2d = 2c+ 2d = 0, a contradiction. So we have a cycle
(a+ c)− (a+ d)− (b+ d)− (b+ c)− (a+ c) of length 4 in ΓI∗(R). �

Theorem 4.7. Let I be a k-ideal of R and |I∗ \ S(R)| ≥ 2. Then
ΓI∗(R) is an acyclic graph if and only if it is a distinct union of some
star components.

Proof. Let ΓI∗(R) be an acyclic graph. If ΓI∗(R) has no star compo-
nents, then there exists a path r − t1 − t2 − s of length 3 in ΓI∗(R). If
r + s 6= 0, then r and s are adjacent by Theorem 3.4. So we have a
cycle in ΓI∗(R), which is a contradiction. Then, we may assume that
r + s = 0.
Let a, b ∈ I∗\S(R) and a 6= b. If r+a = t1, then s+t1 = s+r+a = a ∈
I∗. So we have a cycle t1−t2−s−t1 in ΓI∗(R), a contradiction. Now as-
sume that r+a = s, then 2r+a = r+s = 0. This implies that a ∈ S(R),
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which contradicts the assumption. Therefore r + a /∈ {r, t1, s}. By a
similar argument we have r + b /∈ {r, t1, s} and s + a /∈ {s, r, t2}. If
either r + a 6= t2 or s + a 6= t1, then r − t1 − t2 − s − (r + a) or
(s+ a)− r− t1− t2− s is a path of length 4 in ΓI∗(R). Thus we have a
cycle in ΓI∗(R) by Corollary 3.6. So we may assume that r+a = t2 and
s + a = t1. If r + b = t2 = r + a, then we have a = b, a contradiction.
Then r + b 6= t2 and so r − t1 − t2 − s − (r + b) is a path of length 4
in ΓI∗(R). So we have a cycle in ΓI∗(R) by Corollary 3.6, which is a
contradiction. �

Lemma 4.8. Let I be a k-ideal of R with 2t ∈ I∗ for all t ∈ V (ΓI∗(R)).
Then:
(1) If r and s are adjacent with r 6= s and r + r′ = 0 for some r′ ∈ R,
then s+ r′ ∈ I∗.
(2) If t− r− v is the shortest path from t to v and 2r+ t = 2t+ r = r,
then t+ v = 0 and 2r + v = 2v + r = r.
(3) If v − r − w is the shortest path from v to w, then v + w = 0.

Proof. (1) It is clear that s+r′ 6= 0, since s 6= r by assumption. Suppose
that s+ r′ = w for some w ∈ R, then s+ r = s+ r′ + 2r = w + 2r. So
s+ r′ ∈ I, since I is a k-ideal of R and s+ r, 2r ∈ I.
(2) Assume that 2r + t = r, so 2r + t + v = r + v ∈ I. This implies
that t+ v ∈ I, since I is a k-ideal of R and 2r ∈ I. Therefore t+ v = 0
since d(t, v) = 2. Also r + t = 2t + v + r = v + r. Therefore we have
2r + v = 2v + r = r.
(3) Let v− r−w be the shortest path from v to w. Then 2r+ v+w =
v + r + r + w ∈ I and so v + w ∈ I since 2r ∈ I and I is a k-ideal.
Therefore, v + w = 0 since v and w are not adjacent. �

We end this section with the following theorem.

Theorem 4.9. Let I be a k-ideal of R. If ΓI∗(R) is a connected graph
with |R \ I∗| ≥ 4 and 2u ∈ I∗ for all u ∈ R, then ΓI∗(R) has no
cut-points.

Proof. Suppose that r is a cut-point of ΓI∗(R). So there exist vertices
v, w ∈ V (ΓI∗(R)) such that r 6= v, w and r lies on every path from v to
w. Then the shortest path from v to w is of length 2 or 3 by Theorem
4.2.
Case 1. Suppose that v−r−s−w is a path of the shortest length from v
to w. So v+w = 0 by Theorem 3.4. Also, 2r+v, 2s+w /∈ I by Lemma
3.1. First suppose that r /∈ S(R) and s /∈ S(R). If 2r + v = r, then
r+w = 2r+ v+w = 2r ∈ I∗. This implies that r and w are adjacent,
which is contradictory. Similarly, 2s + w 6= r. If 2r + v = 2r + w,
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then v − 2r + v − w is a path of length 2 which is a contradiction.
Hence v − (2r + v) − (2s + w) − w is a path between v and w which
also contradicts our assumption. Now, suppose that either r ∈ S(R)
or s ∈ S(R). If r ∈ S(R), then v − r′ − w is a path from v to w by
Lemma 3.1 and Lemma 4.8, where r+ r′ = 0 which is a contradiction.
The case s ∈ S(R) is similar.
Case 2. Assume that v − r−w is a path of the shortest length from v
to w. Then v + w = 0 by Lemma 4.8. First, suppose that r ∈ S(R).
So r+r′ = 0 for some r′ ∈ R\I by Lemma 3.1. Therefore, v−r′−w is
a path from v to w by Lemma 4.8, which contradicts our assumption.
Now assume that r /∈ S(R). If either 2r + v 6= r or r + 2v 6= r, then
v − (2r + v) − w or v − (2v + r) − w is a path from v to w, which
is a contradiction. So, we may assume that 2r + v = 2v + r = r.
Since |R \ I∗| ≥ 4 and ΓI∗(R) is a connected graph, there exists a ∈
R \ {v, r, w} such that a /∈ I∗ and a is adjacent to one vertex of path
v−r−w. First, suppose that a and r are not adjacent and a−v−r−w
is a path from a to w. If a− v − r − w is the shortest path from a to
w, then by Case.1, we have a path P from a to w which r /∈ V (P ), so
P ′ = P ∪ {v, a} is a path from v to w which is a contradiction. Now,
assume that a−t−w is the shortest path from a to w where t 6= r. Thus
v−a− t−w is a path from v to w, a contradiction. If v−r−w−a is a
path, the proof is similar. So we may assume that a and r are adjacent
and a+r ∈ I∗. This implies that 2r+v+a = r+a ∈ I, thus v+a ∈ I.
If v+a = 0, then a = v+a+w = w, a contradiction. Thus v+a ∈ I∗.
Now we show that w+a ∈ I∗. We have w+ 2r+a = w+ r+ r+a ∈ I.
So w + a ∈ I since 2r ∈ I and I is a k-ideal. If w + a = 0, then
v = v+w+a = a, a contradiction. Therefore, v−a−w is a path from
v to w, which is also a contradiction. �

5. The case when I is a QR-ideal of R

In this section, we assume that I is a QR-ideal of R, and we shall
describe the ΓI∗(R) graph with its structure, girth, and diameter. First,
we begin with the following lemma.

Lemma 5.1. Let I be a QR-ideal of R with Q′R = QR \ {q0}. Then the
following hold:
(1) Q′R ⊆ R \ I.
(2) If q ∈ Q′R and q + q′ = 0 for some q′ ∈ R, then q′ ∈ R \ I.
(3) Let q ∈ Q′R ∩ S(R) and a+ q and b+ q are adjacent in ΓI∗(R) for
some a, b ∈ I. Then 2q = 0.

Proof. (1) Let q ∈ Q′R. If q ∈ I, then q ∈ I ∩ QR. So q + q0 ∈
(q + I) ∩ (q0 + I) and (q + I) ∩ (q0 + I) 6= ∅. This implies that q = q0,
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which is a contradiction.
(2) It is clear by part (1), and Since I is a k-ideal of R by [16, 8.23].
(3) Let a + q and b + q be adjacent. Then 2q + a + b = n for some
n ∈ I∗. Since q ∈ S(R), so q + p = 0 for some p ∈ R \ I. We have
p ∈ q′ + I for some q′ ∈ Q′R. Then p = q′ + i for some i ∈ I. Hence
q+ q′+ i = 0 and q+a+ b = q+ q′+ i+ q+a+ b = q′+ 2q+a+ b+ i =
q′+n+ i ∈ (q+ I)∩ (q′+ I). Then (q+ I)∩ (q′+ I) 6= ∅ and so q = q′.
Thus, we have 2q = 0. �

In the following lemma, we see that if 2 ∈ I, then the adjacent
vertices of ΓI∗(R) are in the same coset of QR-ideal I of semiring R.

Lemma 5.2. Let I is a QR-ideal of R with 2 ∈ I and Q′R = QR \{q0}.
Then the following hold:
(1) If r and s are adjacent in ΓI∗(R), then there exists q ∈ QR \ {q0}
such that r, s ∈ q + I.
(2) If r ∈ V (ΓI∗(R)), then NG(r) ⊆ q + I for some q ∈ QR \ {q0}.
(3) If q ∈ Q′R ∩ S(R) and |I∗| ≥ 1, then 2q + i = 0 for some i ∈ I.

Proof. (1) Let r ∈ q1 + I and s ∈ q2 + I for some q1, q2 ∈ QR \ {q0}.
We show that q1 = q2 and so r and s are in a same coset. Assume
that r = q1 + a and s = q2 + b for some a, b ∈ I. Therefore we
have q1 + q2 + a + b = r + s ∈ I∗ since r and s are adjacent. Hence
q1 + q2 ∈ I since a + b ∈ I and I is a k-ideal ideal by [16, 8.23]. So
q2 + 2q1 = q1 + (q1 + q2) ∈ q1 + I. Likewise, q2 + 2q1 ∈ q2 + I since
2 ∈ I. So q2 + 2q1 ∈ (q1 + I) ∩ (q2 + I); hence q1 = q2.
(2) It is clear by part (1).
(3) Let q+p = 0 for some p ∈ R\I. So p ∈ q′+I for some q′ ∈ Q′R. Then
p = q′+ i for some i ∈ I. Hence q+q′+ i = 0 and q+q′+ i+r = r ∈ I∗
for every r ∈ I∗. So q and q′ + i + r are adjacent vertices and there
exists q′′ ∈ QR \ {q0} such that q, q′ + i+ r ∈ q′′ + I by Part (1). This
implies that q ∈ (q + I) ∩ (q′′ + I) and (q + I) ∩ (q′′ + I) 6= ∅. Thus
q = q′′. On the other hand, q′ + i + r ∈ (q′ + I) ∩ (q′′ + I) and then
(q + I)∩ (q′ + I) 6= ∅. So we have q′ = q′′ and 2q + i = q + q′i = 0. �

We can now prove the following theorem that provides a characteri-
zation of ΓI∗(R), when 2 ∈ I.

Theorem 5.3. Let I be a QR-ideal of R with 2 ∈ I and Q′R = QR\{q0}.
If |I∗| ≥ 1, α = |Q′R \ S(R)| and β = |Q′R ∩ S(R)|, then ΓI∗(R) is a
union of disjoint α complete subgraphs and β connected subgraphs with
a universal vertex.

Proof. Let q ∈ Q′R. First suppose that q /∈ S(R), then q+ n+ q+ n′ =
2q+n+n′ ∈ I∗ for every n, n′ ∈ I. So the induced subgraph of ΓI∗(R)
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with vertices set q + I is complete. So we have α disjoint complete
subgraphs by Lemma 5.2. Now, assume that q ∈ S(R). So 2q + i = 0
for some i ∈ I by Lemma 5.2. Then q+ q+ i+ r = 2q+ i+ r = r ∈ I∗
for every r ∈ I∗. Then the induced subgraph of ΓI∗(R) with vertices
set q + I is connected and q + i is a universal vertex of this subgraph.
Also, these subgraphs are disjoint by Lemma 5.2. �

Proposition 5.4. Let I be a QR-ideal of R with Q′R = QR \ {q0} and
|I∗| ≥ 1. If q+q′ ∈ I for some q, q′ ∈ Q′R, then the induced subgraphs of
ΓI∗(R) with vertices set V = (q+ I)∪ (q′+ I) are connected subgraphs.

Proof. First, suppose that q+ q′ = 0. Then q+ (q′+ r) = (q+ r) + q′ =
r ∈ I∗ for every r ∈ I∗. This implies that every element of q + I is
adjacent to q′ in q′+I, and also, every element of q′+I is adjacent to q in
q+I. Therefore the induced subgraph with vertices set (q+I)∪(q′+I)
is a connected subgraph. Now suppose that q + q′ 6= 0. We split the
proof into two following cases:
Case.1. If S(I) = I, then q + q′ + r = 0 for some r ∈ I. Now let
0 6= u ∈ I. Then q+u+ q′+ r = q+u+ q′+ r = u ∈ I∗. It means that
every element of q + I is adjacent to q′ + r in q′ + I, and also, every
element of q′ + I is adjacent to q + r in q + I. Therefore the induced
subgraph with vertices set (q + I) ∪ (q′ + I) is a connected subgraph.
Case.2. Assume that S(I) 6= I, then there exists t ∈ I such that t+u′ 6=
0 for every u′ ∈ I. This implies that q+ t+q′+u′ = q+u′+q′+ t ∈ I∗.
Hence, every element of q + I is adjacent to q′ + t in q′ + I, and also,
every element of q′ + I is adjacent to q + t in q + I, as required. �

Theorem 5.5. Let I be a QR-ideal of R. Then diam(ΓI∗(R)) =
{1, 2, 3,∞} and gr(ΓI∗(R)) = {3, 4,∞}.

Proof. Let 2 /∈ I and q ∈ Q′R = QR \ {q0}. If either q ∈ S(R) or
NG(q) 6= ∅, then q+q′ ∈ I for some q′ ∈ QR. So the induced subgraphs
of ΓI∗(R) with vertices set V = (q+I)∪(q′+I) is a connected subgraph
by Proposition 5.4. Now assume that q /∈ S(R) and NG(q) = ∅. If
2q ∈ I, then q+u+ q+u′ = 2q+u+u′ ∈ I∗ and the induced subgraph
with vertices set q + I is a complete graph. Now, we may assume that
2q /∈ I, then q+a+q+b = 2q+a+b /∈ I since I is a k-ideal. Therefore,
the induced subgraph with vertices set q + I is a totally disconnected
subgraph. So the proof is complete by Theorem 5.3. �

We end the paper with the following example.

Example 5.6. (i) Let R = Z∗ = Z+∪{0}. Set I = {0, 2, 4, 6, 8, ...}
and QR = {0, 1}. Then I is a QR-ideal of R. It is clear that 2 ∈ I.
Since |R/I| = 2, so ΓI∗(R) is a complete graph by Theorem 5.3 with
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diam(ΓI∗(R)) = 1 and gr(ΓI∗(R)) = 3.
(ii) Let R = Z∗ = Z+∪{0} . If I = 3R = {0, 3, 6, 9, ...} and QR =
{0, 1, 2}, then I is a QR-ideal of R and 2 /∈ I. Then ΓI∗(R) is a graph
with vertices set (1 + I) ∪ (2 + I). It is easy to see that this graph is
bipartite with diam(ΓI∗(R)) = 2 and gr(ΓI∗(R)) = 4.
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