Journal of Algebra and Related Topics

Vol. 12, No 1, (2024), pp 79-87

MODULAR REPRESENTATION OF SYMMETRIC 2-DESIGNS

O. SHIMABUKURO*

Abstract

Complementary pairs of symmetric 2-designs are equivalent to coherent configurations of type $(2,2 ; 2)$. D. G. Higman studied these coherent configurations and adjacency algebras of coherent configurations over a field of characteristic zero. These are always semisimple. We investigate these algebras over fields of any characteristic prime and the structures.

1. Introduction

Many researchers have studied the p-ranks of incidence matrices of combinatorial designs $[1,3,8]$. The p-ranks of incidence matrices of some 2-designs have been investigated in the majority of decodable codes because we can obtain a linear code having a relatively large number of information symbols from a 2-design whose incidence matrix having a relatively small p-rank [3]. Furthermore, these results help us classify 2 -designs with the same parameters.

Complementary pairs of symmetric 2-designs are equivalent to coherent configurations of type $(2,2 ; 2)$. The types of coherent configurations were considered in [5]. An algebra accompanies each coherent configuration. It is called adjacency algebra. We consider the structures of adjacency algebras of coherent configurations obtained from symmetric 2-designs. An adjacency algebra of a coherent configuration over a field of characteristic zero is always semisimple. This case was

[^0]studied by Higman [6]. The author has considered symmetric 2-design in [4] and determined the structure of modular adjacency algebras of coherent configurations obtained from symmetric 2-designs over a field of characteristic 2 .

This paper determined the structure of modular adjacency algebras of coherent configurations obtained from symmetric 2-designs over a field of any characteristic prime. We define a coherent configuration in Section 2 and consider structures of modular adjacency algebras of coherent configurations obtained from symmetric 2-designs in Section 3.

2. Preliminaries

We give some definitions of coherent configurations. The reader is referred to [5] for basic notation on coherent configurations. Let X be a finite nonempty set, C a set of nonempty binary relations on X so that $X^{2}=\bigcup_{c \in C} c$ is a disjoint union of X^{2}. The pair (X, C) is called a coherent configuration if the following three axioms hold.
(C1) There is a subset C_{0} of C such that $\bigcup_{f \in C_{0}} f=\{(x, x) \mid x \in X\}$,
(C2) if $c \in C$, then $c^{*}=\{(y, x) \mid(x, y) \in c\} \in C$,
(C3) for $a, b, c \in C$ and $(x, y) \in c$, a non-negative integer $p_{a, b}^{c}=$ $\sharp\{z \in X \mid(x, z) \in a,(z, y) \in b\}$ is independent of the choice of x and y.
We put $X_{f}=\{x \in X \mid(x, x) \in f\}\left(f \in C_{0}\right)$ and call X_{f} a fiber. A coherent configuration (X, C) is said to be homogeneous if $\left|C_{0}\right|=1$. It is also called an association scheme in a sense of [2] and [10].

Let (X, C) be a coherent configuration with fibers $\left\{X_{f} \mid f \in C_{0}\right\}$. We denote by $\operatorname{Mat}_{\mathrm{X}}(\mathbb{Z})$ the ring of matrices over \mathbb{Z} whose rows and columns are indexed by X. For $c \in C$, we denote by A_{c} the adjacency matrix of c, namely

$$
\left(A_{c}\right)_{x, y}= \begin{cases}1 & (x, y) \in c \\ 0 & \text { otherwise }\end{cases}
$$

The above three axioms are equivalent to the following condition in term of adjacency matrices $\left\{A_{c} \mid c \in C\right\}$ such that $\sum_{c \in C} A_{c}=J_{|X|}$, where $J_{|X|}$ is the all one matrix of order $|X|$.
(C1)' There is the subset C_{0} of C such that $\sum_{f \in C_{0}} A_{c}=I_{|X|}$, where $I_{|X|}$ is the identity matrix of order $|X|$.
(C2)' $A_{c^{*}}={ }^{t} A_{c} \in\left\{A_{c} \mid c \in C\right\}$ for any $c \in C$, where ${ }^{t} A_{c}$ is the transpose of the matrix A_{c}.
(C3)' For $a, b, c \in C$, there are integers $p_{a, b}^{c}$ such that

$$
A_{a} A_{b}=\sum_{c \in C} p_{a, b}^{c} A_{c}
$$

$\mathbb{Z} C=\oplus_{c \in C} \mathbb{Z} A_{c}$ is a subalgebra of $\operatorname{Mat}_{\mathrm{X}}(\mathbb{Z})$ under the usual matrix multiplication by the above axioms. For a commutative ring R with the identity element, we can define $R C=R \otimes_{\mathbb{Z}} \mathbb{Z} C$ and call this R algebra the adjacency algebra of (X, C) over R. We use the notation A_{c} for the corresponding element in $R C$. Since $R C$ is defined as a subalgebra of $\operatorname{Mat}_{X}(R)$, the inclusion map is a representation and we call it the standard representation of (X, C) over R. The corresponding $R C$-module is called the standard module of (X, C) over R. The standard module has a natural basis X, so we denote it by $R X$. A modular adjacency algebra $F C$ is the adjacency algebra of (X, C) over a field F of positive characteristic p and a modular standard module $F X$ is the standard module of (X, C) over F.

For $c \in C$, there is a unique pair $(f, g) \in C_{0}{ }^{2}$ such that $A_{f} A_{c} A_{g}=A_{c}$. Subsets $C(f, g)=\left\{c \in C \mid A_{f} A_{c} A_{g}=A_{c}\right\}$ of C give a partition of C like $C=\bigcup_{f, g \in C_{0}} C(f, g)$. The sub-configuration $\left(X_{f}, C(f, f)\right)$ is homogeneous and $R C(f, f)=\oplus_{c \in C(f, f)} R A_{c}$ is a subalgebra of $R C$ (with non-common identity).

3. Types of adjacency algebras of symmetric 2-DESIGNS

We construct coherent configurations from symmetric 2-designs. The author studied the structure of modular adjacency algebras of coherent configurations obtained from 2-designs over a field of characteristic 2 in [4]. This paper considers the structure of modular adjacency algebras of coherent configurations obtained from symmetric 2-designs over a field of characteristic prime p.

Let \mathfrak{D} be a symmetric $2-(v, \ell, \lambda)$ design, that is, an incidence structures $(\mathfrak{P}, \mathfrak{B}, \mathfrak{F})$ consisting of disjoint sets \mathfrak{P} and \mathfrak{B}, whose elements are called points and blocks respectively, and a subset \mathfrak{F} of the Cartesian product $\mathfrak{P} \times \mathfrak{B}$, whose elements are called flags. A point ω and a block B are incident if (ω, B) is a flag. A symmetric 2 -design \mathfrak{D} with parameters v, b, r, ℓ, λ is an arrangement of v points \mathfrak{P} into b blocks \mathfrak{B} such that:
(D1) each block is incident with ℓ points (we assume that with $\ell<v$),
(D2) each point is incident with r blocks,
(D3) any two distinct points are incident with λ blocks, and
(D4) any two distinct blocks are incident with λ points.

Among parameters v, b, r, ℓ, λ, there are the following relations:

$$
v=b, r=\ell \text { and } \lambda(v-1)=\ell(\ell-1) .
$$

The incidence matrix N of \mathfrak{D} will have rows indexed by the points and columns by the blocks, namely,

$$
(N)_{\omega, B}= \begin{cases}1 & (\omega, B) \in \mathfrak{F}(\subset \mathfrak{P} \times \mathfrak{B}) \\ 0 & \text { otherwise }\end{cases}
$$

For an incidence matrix N of \mathfrak{D}, the following equation holds.

$$
N^{t} N={ }^{t} N N=(\ell-\lambda) I_{v}+\lambda J_{v} .
$$

Associated with a symmetric 2-design $(\mathfrak{P}, \mathfrak{B}, \mathfrak{F})$ is the configuration (X, C) defined by $X=\mathfrak{P} \cup \mathfrak{B}(\mathfrak{P} \cap \mathfrak{B}=\emptyset)$ and $C=\left\{c_{i}: 1 \leq i \leq 8\right\}$, where

$$
\begin{aligned}
c_{1} & =\{(x, x) \mid x \in \mathfrak{P}\}, c_{2}=\{(x, x) \mid x \in \mathfrak{B}\}, c_{3}=\mathfrak{P}^{2}-c_{1}, \\
c_{4} & =\mathfrak{B}^{2}-c_{2}, c_{5}=\mathfrak{F}, c_{6}=\mathfrak{P} \times \mathfrak{B}-\mathfrak{F}, \\
c_{7} & =c_{5}{ }^{*}=\left\{(y, x) \mid(x, y) \in c_{5}\right\}, \\
c_{8} & =c_{6}{ }^{*}=\left\{(y, x) \mid(x, y) \in c_{6}\right\} .
\end{aligned}
$$

Putting $A_{i}=A_{c_{i}}(1 \leq i \leq 8)$, they can be written as block matrices:

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{ll}
I_{v} & O \\
O & O
\end{array}\right], A_{2}=\left[\begin{array}{ll}
O & O \\
O & I_{v}
\end{array}\right], A_{3}=\left[\begin{array}{cc}
J_{v}-I_{v} & O \\
O & O
\end{array}\right] \\
& A_{4}=\left[\begin{array}{cc}
O & O \\
O & J_{v}-I_{v}
\end{array}\right], A_{5}=\left[\begin{array}{cc}
O & N \\
O & O
\end{array}\right], A_{6}=\left[\begin{array}{cc}
O & J_{v}-N \\
O & O
\end{array}\right], \\
& A_{7}={ }^{t} A_{5}=\left[\begin{array}{cc}
O & O \\
{ }^{t} N & O
\end{array}\right], A_{8}={ }^{t} A_{6}=\left[\begin{array}{cc}
O & O \\
t^{t} N & O
\end{array}\right] .
\end{aligned}
$$

We provide tables of multiplications of algebras obtained by these configurations.

	A_{1}	A_{3}	A_{5}	A_{6}
A_{1}	A_{1}	A_{3}	A_{5}	A_{6}
A_{3}	A_{3}	$(v-1) A_{1}+(v-2) A_{3}$	$(\ell-1) A_{5}+\ell A_{6}$	$(v-\ell) A_{5}+(v-\ell-1) A_{6}$
A_{7}	A_{7}	$(\ell-1) A_{7}+\ell A_{8}$	$\ell A_{2}+\lambda A_{4}$	$(\ell-\lambda) A_{4}$
A_{8}	A_{8}	$(v-\ell) A_{7}+(v-\ell-1) A_{8}$	$(\ell-\lambda) A_{4}$	$(v-\ell) A_{2}+(v-2 \ell+\lambda) A_{4}$

Table 1. The first multiplication table of (X, C).

These tables show that the configuration (X, C) is a coherent configuration of type $(2,2 ; 2)$. Consequently, we can prove that (X, C) is a coherent configuration of type $(2,2 ; 2)$, where $C=\left\{c_{i}\right\}_{1 \leq i \leq 8}$. On the

	A_{2}	A_{4}	A_{7}	A_{8}
A_{2}	A_{2}	A_{4}	A_{7}	A_{8}
A_{4}	A_{4}	$(v-1) A_{2}+(v-2) A_{4}$	$(\ell-1) A_{7}+\ell A_{8}$	$(v-\ell) A_{7}+(v-\ell-1) A_{8}$
A_{5}	A_{5}	$(\ell-1) A_{5}+\ell A_{6}$	$\ell A_{1}+\lambda A_{3}$	$(\ell-\lambda) A_{3}$
A_{6}	A_{6}	$(v-\ell) A_{5}+(v-\ell-1) A_{6}$	$(\ell-\lambda) A_{3}$	$(v-\ell) A_{1}+(v-2 \ell+\lambda) A_{3}$

Table 2. The second multiplication table of (X, C).
other hand, every coherent configuration of type $(2,2 ; 2)$ is equivalent to complementary pairs of symmetric designs. Higman considered the types of coherent configurations and gave a method to compute irreducible ordinary characters of a coherent configuration by characters of its fibers [6]. We generalize them to modular representations [4]. In the rest of this paper, we assume that F is a field of characteristic a prime p and (K, R, F) is a p-modular system [7].

Let (X, C) be a coherent configuration defined by a symmetric 2 design \mathfrak{D}. Since $\left(X_{1}, C\left(c_{1}, c_{1}\right)\right)$ and $\left(X_{2}, C\left(c_{2}, c_{2}\right)\right)$ are complete graphs, the character table of (X, C) over a field characteristic zero is as follows:

	A_{1}	A_{3}	A_{2}	A_{4}	multiplicity[4]
χ_{1}	1	$v-1$	1	$v-1$	1
χ_{2}	1	-1	1	-1	$v-1$

Note that character values of $A_{i}(i=5,6,7,8)$ are zero and we omit them.

Suppose $p \nmid v$. Consider the central primitive idempotent corresponding to χ_{1} :

$$
e_{\chi_{1}}=\frac{1}{v}\left(A_{1}+A_{3}+A_{2}+A_{4}\right) .
$$

Then $e_{\chi_{1}}$ is also a central idempotent of $F C$. We can also quickly check that

$$
e_{\chi_{1}} F C e_{\chi_{1}} \cong M_{2}(F)
$$

Hence, there are two possibilities.
(A). The modular character table is

	A_{1}	A_{3}	A_{2}	A_{4}	multiplicity
1	$v-1$	1	$v-1$	1	
1	-1	1	-1	$v-1$	

The decomposition and the Cartan matrices [4, 7] are

$$
\mathcal{D}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \mathcal{C}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

In this case,

$$
F C \cong M_{2}(F) \oplus M_{2}(F)
$$

and this is semisimple.
(B). The modular character table is

	A_{1}	A_{3}	A_{2}	A_{4}	multiplicity
1	$v-1$	1	$v-1$	1	
1	-1	0	0	$v-1$	
0	0	1	-1	$v-1$	

The decomposition and the Cartan matrices are

$$
\mathcal{D}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right), \mathcal{C}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

We can choose primitive idempotents $e_{U}=A_{1}+A_{2}+A_{3}+A_{4}$, $e_{V}=A_{3}$ and $e_{W}=A_{4}$. Let us put $\alpha=A_{5}$ and $\beta=A_{7}$.

Then we have the following theorem.
Theorem 3.1. The adjacency algebra of Type (B) is isomorphic to

$$
M_{2}(F) \oplus F Q /(\alpha \beta, \beta \alpha)
$$

where $F Q$ is a path algebra, Q is the following quiver:

$$
Q: \circ \lll \lll \lll<
$$

Suppose $p \mid v$. Modular character table of fibers are as follows:

	A_{1}	A_{3}	multiplicity				
	1	-1	v	,	A_{2}	A_{4}	multiplicity
:---:	:---:	:---:					
	1	-1					

Hence, there are two possibilities.
(C). The modular character table is

| | A_{1} | A_{3} | A_{2} | A_{4} |
| :---: | :---: | :---: | :---: | :---: | multiplicity.

The decomposition and the Cartan matrices are

$$
\mathcal{D}=\binom{1}{1}, \mathcal{C}=(2)
$$

In this case,

$$
F C \cong M_{2}(F) \otimes_{F} F[x] /\left(x^{2}\right)
$$

(D). The modular character table is

| | A_{1} | A_{3} | A_{2} | A_{4} |
| :---: | :---: | :---: | :---: | :---: | multiplicity.

The decomposition and the Cartan matrices are

$$
\mathcal{D}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), \mathcal{C}=\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right) .
$$

Only (D) is the non-trivial case. We can choose primitive idempotents $e_{U}=A_{1}$ and $e_{V}=A_{2}$. Put $\alpha_{1}=A_{1}+A_{3}, \alpha_{2}=A_{5}, \alpha_{3}=A_{5}+A_{6}$, $\alpha_{4}=A_{7}, \alpha_{5}=A_{7}+A_{8}$ and $\alpha_{6}=A_{2}+A_{4}$. We have the following theorem.

Theorem 3.2. The adjacency algebra of Type (D) is isomorphic to

$$
F Q /\left(\left\{\alpha_{i} \alpha_{j} \mid \quad 1 \leq i, j \leq 6\right\}\right)
$$

where $F Q$ is a path algebra, Q is the following quiver:

It is difficult to determine the structure of the standard module and we could not do that.
3.1. Characterization of types by parameters of designs. Let (X, C) be a coherent configuration defined by a symmetric $2-(v, \ell, \lambda)$ design. The Frame number [9] is

$$
\mathcal{F}(C)=\frac{v^{8}(v-\ell)^{2} \ell^{2}}{(v-1)^{2}} .
$$

We show that the following theorem.
Theorem 3.3. Let (X, C) be a coherent configuration obtained from a symmetric $2-(v, \ell, \lambda)$ design.
(1) Type (A) if and only if $\mathcal{F}(C) \not \equiv 0(\bmod p)$,
(2) Type (B) if and only if $v \not \equiv 0(\bmod p)$ and $\mathcal{F}(C) \equiv 0(\bmod p)$,
(3) Type (C) if and only if $v \equiv 0(\bmod p)$ and $\ell \not \equiv \lambda(\bmod p)$,
(4) Type (D) if and only if $v \equiv \ell \equiv \lambda \equiv 0(\bmod p)$.

Proof. Statements (1) and (2) are clear. Suppose $v \equiv 0(\bmod p)$. Suppose that $\ell \equiv \lambda(\bmod p)$. Then by $\lambda(v-1)=\ell(\ell-1)$, we have $v \equiv \ell \equiv \lambda \equiv 0(\bmod p)$. In this case, $F C\left(c_{1}, c_{2}\right) \subset \operatorname{Rad}(F C)$ and $F C$ is of type (D), where $\operatorname{Rad}(F C)$ is the Jacobson radical of $F C$. Suppose that $\ell \not \equiv \lambda(\bmod p)$. Then $A_{7} A_{5}$ is not nilpotent, and so is not in $\operatorname{Rad}(F C)$. So $F C$ is of type (C).
3.2. Structure of $F X$ of type (A). We will determine the structure of $F C$ of type (A). There are two simple modules U and V with $\operatorname{dim}_{F} U=\operatorname{dim}_{F} V=2$. The structure of the standard module is determined. We can write

$$
F X \cong[U] \oplus(v-1)[V] .
$$

3.3. Structure of $F X$ of type (B). We will determine the structure of $F C$ of type (B). There are three simple modules U, V, and W with $\operatorname{dim}_{F} U=2, \operatorname{dim}_{F} V=\operatorname{dim}_{F} W=1$, and the Loewy structure of the projective covers is as follows:

$$
P(U)=[U], P(V)=\left[\begin{array}{c}
V \\
W
\end{array}\right], P(W)=\left[\begin{array}{l}
W \\
V
\end{array}\right] .
$$

The structure of the standard module is entirely determined. We can write

$$
F X \cong[U] \oplus g_{1}[V] \oplus g_{2}\left[\begin{array}{c}
V \\
W
\end{array}\right] \oplus h_{1}[W] \oplus h_{2}\left[\begin{array}{l}
W \\
V
\end{array}\right]
$$

for some non-negative g_{1}, g_{2}, h_{1} and h_{2}.
By multiplicities $m_{V}=m_{W}=v-1$, we have

$$
\begin{align*}
& g_{1}+g_{2}+h_{2}=v-1, \tag{3.1}\\
& g_{2}+h_{1}+h_{2}=v-1, \tag{3.2}
\end{align*}
$$

$g_{2}=\operatorname{rank}(\alpha)=\operatorname{rank}\left(A_{5}\right), h_{2}=\operatorname{rank}(\beta)=\operatorname{rank}\left(A_{7}\right)$. Since ${ }^{t} A_{5}=$ $A_{7}, g_{2}=h_{2}$. We put $w=\operatorname{rank}\left(A_{5}\right)$,
$F X \cong[U] \oplus(v-2 w-1)[V] \oplus w\left[\begin{array}{c}V \\ W\end{array}\right] \oplus(v-2 w-1)[W] \oplus w\left[\begin{array}{l}W \\ V\end{array}\right]$.
In this case, multiplicities must be a non-negative integer. Consequently, we know the upper ranks of N.

Corollary 3.4. Let N be an incidence matrix of a symmetric 2-($v, \ell, \lambda)$ design with $v \not \equiv 0(\bmod p)$ and $\mathcal{F}(C) \equiv 0(\bmod p)$. Then

$$
\operatorname{rank}_{p}(N) \leq \frac{v-1}{2}
$$

3.4. Structure of $F X$ of type (C). We determine the structure of $F C$ of type (C). The module category of $F C$ is Morita equivalent to the module category of $F[x] /\left(x^{2}\right)$. Hence, we know there are two isomorphic classes of indecomposable modules and $\operatorname{dim}_{F} \operatorname{Rad}(F C)=4$. We know the fact that $A_{1}+A_{3}, A_{2}+A_{4}, A_{5}+A_{6}$ and $A_{7}+A_{8}$ are the basis of $\operatorname{Rad}(F C)$ and $\operatorname{dim}_{F}(F X) \operatorname{Rad}(F C)=2$ by computation. According to these facts, we know the standard module $F X$ structure. Then

$$
F X \cong[U] \oplus(v-2)[V]
$$

where $\operatorname{dim}_{F} U=4$ and $\operatorname{dim}_{F} V=2$.

Acknowledgments

The authors would like to thank the referee for careful reading.

References

1. E. F. Assmus Jr and J.D. Key, Designs and their codes, Press Syndicate of the University of Cambridge, New York, 1992.
2. E. Bannai and T. Ito, Algebraic Combinatorics I Association Schemes, The Benjamin/Cummings Publishing Company, Inc., Menlo Park, California, 1984.
3. N. Hamada, On the p-rank of the incidence matix of a balanced or partially balanced incomplete block design and its applications to error correcting codes, Hiroshima Math. J. 3 (1973), 153-226.
4. A. Hanaki, Y. Miyazaki, and O. Shimabukuro, Modular representation theory of BIB designs, Linear Algebra Appl. 514 (2017), 174-197.
5. D. G. Higman, Coherent configurations Part I : Ordinary Representation Theory, Geom. Dedicata, 4 (1975), 1-32.
6. \qquad , Coherent algebras, Linear Algebra Appl. 93 (1987), no. C, 209-239.
7. N. Hiroshi and T. Yukio, Representation of Finite Groups, Academic Press, INC., San Diego, CA, 1987.
8. M. Klemm, Uber den p-Rang von lnzidenzmatrizen, J. Combin. Theory Ser. A, 43 (1986), 138-139.
9. R. Sharafdini, Semisimplicity of adjacency algebras of coherent configurations, Electron. Notes Discrete Math. 45 (2014), 159-165.
10. P. H. Zieschang , An algebraic approach to association schemes, Lecture Notes in Mathematics 1628, Springer Berlin, Germany, 1996.

Osamu Shimabukuro

Department of Mathematics, Faculty of Education, Gifu Shotoku University, 1-1
Takakuwanishi, Yanaizu-cho, Gifu, Japan
Email: shimabukuro@gifu.shotoku.ac.jp

[^0]: MSC(2010): Primary: 05E30; Secondary: 16G10
 Keywords: coherent configuration, symmetric design, p-rank, modular adjacency algebra, modular standard module.
 Received: 26 May 2022, Accepted: 17 January 2024.
 $*$ Corresponding author .

