Journal of Algebra and Related Topics Vol. 12, No 1, (2024), pp 79-87

MODULAR REPRESENTATION OF SYMMETRIC 2-DESIGNS

O. SHIMABUKURO*

ABSTRACT. Complementary pairs of symmetric 2-designs are equivalent to coherent configurations of type (2, 2; 2). D. G. Higman studied these coherent configurations and adjacency algebras of coherent configurations over a field of characteristic zero. These are always semisimple. We investigate these algebras over fields of any characteristic prime and the structures.

1. INTRODUCTION

Many researchers have studied the *p*-ranks of incidence matrices of combinatorial designs [1, 3, 8]. The *p*-ranks of incidence matrices of some 2-designs have been investigated in the majority of decodable codes because we can obtain a linear code having a relatively large number of information symbols from a 2-design whose incidence matrix having a relatively small *p*-rank [3]. Furthermore, these results help us classify 2-designs with the same parameters.

Complementary pairs of symmetric 2-designs are equivalent to coherent configurations of type (2, 2; 2). The types of coherent configurations were considered in [5]. An algebra accompanies each coherent configuration. It is called adjacency algebra. We consider the structures of adjacency algebras of coherent configurations obtained from symmetric 2-designs. An adjacency algebra of a coherent configuration over a field of characteristic zero is always semisimple. This case was

MSC(2010): Primary: 05E30; Secondary: 16G10

Keywords: coherent configuration, symmetric design, p-rank, modular adjacency algebra, modular standard module.

Received: 26 May 2022, Accepted: 17 January 2024.

^{*}Corresponding author .

SHIMABUKURO

studied by Higman [6]. The author has considered symmetric 2-design in [4] and determined the structure of modular adjacency algebras of coherent configurations obtained from symmetric 2-designs over a field of characteristic 2.

This paper determined the structure of modular adjacency algebras of coherent configurations obtained from symmetric 2-designs over a field of any characteristic prime. We define a coherent configuration in Section 2 and consider structures of modular adjacency algebras of coherent configurations obtained from symmetric 2-designs in Section 3.

2. Preliminaries

We give some definitions of coherent configurations. The reader is referred to [5] for basic notation on coherent configurations. Let X be a finite nonempty set, C a set of nonempty binary relations on X so that $X^2 = \bigcup_{c \in C} c$ is a disjoint union of X^2 . The pair (X, C) is called a *coherent configuration* if the following three axioms hold.

- (C1) There is a subset C_0 of C such that $\bigcup_{f \in C_0} f = \{(x, x) \mid x \in X\},\$
- (C2) if $c \in C$, then $c^* = \{(y, x) \mid (x, y) \in c\} \in C$,
- (C3) for $a, b, c \in C$ and $(x, y) \in c$, a non-negative integer $p_{a,b}^c =$ $\sharp \{z \in X \mid (x, z) \in a, (z, y) \in b\}$ is independent of the choice of x and y.

We put $X_f = \{x \in X \mid (x, x) \in f\}$ $(f \in C_0)$ and call X_f a fiber. A coherent configuration (X, C) is said to be homogeneous if $|C_0| = 1$. It is also called an association scheme in a sense of [2] and [10].

Let (X, C) be a coherent configuration with fibers $\{X_f | f \in C_0\}$. We denote by $Mat_X(\mathbb{Z})$ the ring of matrices over \mathbb{Z} whose rows and columns are indexed by X. For $c \in C$, we denote by A_c the *adjacency matrix* of c, namely

$$(A_c)_{x,y} = \begin{cases} 1 & (x,y) \in c, \\ 0 & \text{otherwise.} \end{cases}$$

The above three axioms are equivalent to the following condition in term of adjacency matrices $\{A_c | c \in C\}$ such that $\sum_{c \in C} A_c = J_{|X|}$, where $J_{|X|}$ is the all one matrix of order |X|.

- (C1)' There is the subset C_0 of C such that $\sum_{f \in C_0} A_c = I_{|X|}$, where $I_{|X|}$ is the identity matrix of order |X|.
- (C2)' $A_{c^*} = {}^t A_c \in \{A_c | c \in C\}$ for any $c \in C$, where ${}^t A_c$ is the transpose of the matrix A_c .

80

(C3)' For $a, b, c \in C$, there are integers $p_{a,b}^c$ such that

$$A_a A_b = \sum_{c \in C} p_{a,b}^c A_c.$$

 $\mathbb{Z}C = \bigoplus_{c \in C} \mathbb{Z}A_c$ is a subalgebra of $\operatorname{Mat}_X(\mathbb{Z})$ under the usual matrix multiplication by the above axioms. For a commutative ring R with the identity element, we can define $RC = R \otimes_{\mathbb{Z}} \mathbb{Z}C$ and call this Ralgebra the *adjacency algebra* of (X, C) over R. We use the notation A_c for the corresponding element in RC. Since RC is defined as a subalgebra of $\operatorname{Mat}_X(R)$, the inclusion map is a representation and we call it the *standard representation* of (X, C) over R. The corresponding RC-module is called the *standard module* of (X, C) over R. The standard module has a natural basis X, so we denote it by RX. A modular *adjacency algebra* FC is the adjacency algebra of (X, C) over a field Fof positive characteristic p and a modular standard module FX is the standard module of (X, C) over F.

For $c \in C$, there is a unique pair $(f,g) \in C_0^2$ such that $A_f A_c A_g = A_c$. Subsets $C(f,g) = \{c \in C \mid A_f A_c A_g = A_c\}$ of C give a partition of C like $C = \bigcup_{f,g \in C_0} C(f,g)$. The sub-configuration $(X_f, C(f,f))$ is homogeneous and $RC(f,f) = \bigoplus_{c \in C(f,f)} RA_c$ is a subalgebra of RC(with non-common identity).

3. Types of adjacency algebras of symmetric 2-designs

We construct coherent configurations from symmetric 2-designs. The author studied the structure of modular adjacency algebras of coherent configurations obtained from 2-designs over a field of characteristic 2 in [4]. This paper considers the structure of modular adjacency algebras of coherent configurations obtained from symmetric 2-designs over a field of characteristic prime p.

Let \mathfrak{D} be a symmetric 2- (v, ℓ, λ) design, that is, an incidence structures $(\mathfrak{P}, \mathfrak{B}, \mathfrak{F})$ consisting of disjoint sets \mathfrak{P} and \mathfrak{B} , whose elements are called *points* and *blocks* respectively, and a subset \mathfrak{F} of the Cartesian product $\mathfrak{P} \times \mathfrak{B}$, whose elements are called *flags*. A point ω and a block *B* are *incident* if (ω, B) is a flag. A symmetric 2-design \mathfrak{D} with parameters v, b, r, ℓ, λ is an arrangement of v points \mathfrak{P} into b blocks \mathfrak{B} such that:

- (D1) each block is incident with ℓ points (we assume that with $\ell < v$),
- (D2) each point is incident with r blocks,
- (D3) any two distinct points are incident with λ blocks, and
- (D4) any two distinct blocks are incident with λ points.

Among parameters v, b, r, ℓ, λ , there are the following relations:

$$v = b$$
, $r = \ell$ and $\lambda(v - 1) = \ell(\ell - 1)$.

The incidence matrix N of \mathfrak{D} will have rows indexed by the points and columns by the blocks, namely,

$$(N)_{\omega,B} = \begin{cases} 1 & (\omega, B) \in \mathfrak{F}(\subset \mathfrak{P} \times \mathfrak{B}), \\ 0 & \text{otherwise.} \end{cases}$$

For an incidence matrix N of \mathfrak{D} , the following equation holds.

$$N^{t}N = {}^{t}NN = (\ell - \lambda)I_{v} + \lambda J_{v}.$$

Associated with a symmetric 2-design $(\mathfrak{P}, \mathfrak{B}, \mathfrak{F})$ is the configuration (X, C) defined by $X = \mathfrak{P} \cup \mathfrak{B}$ $(\mathfrak{P} \cap \mathfrak{B} = \emptyset)$ and $C = \{c_i : 1 \le i \le 8\}$, where

$$c_{1} = \{(x, x) \mid x \in \mathfrak{P}\}, \ c_{2} = \{(x, x) \mid x \in \mathfrak{B}\}, \ c_{3} = \mathfrak{P}^{2} - c_{1}, \\ c_{4} = \mathfrak{B}^{2} - c_{2}, \ c_{5} = \mathfrak{F}, \ c_{6} = \mathfrak{P} \times \mathfrak{B} - \mathfrak{F}, \\ c_{7} = c_{5}^{*} = \{(y, x) \mid (x, y) \in c_{5}\}, \\ c_{8} = c_{6}^{*} = \{(y, x) \mid (x, y) \in c_{6}\}.$$

Putting $A_i = A_{c_i}$ $(1 \le i \le 8)$, they can be written as block matrices:

$$A_{1} = \begin{bmatrix} I_{v} & O \\ O & O \end{bmatrix}, A_{2} = \begin{bmatrix} O & O \\ O & I_{v} \end{bmatrix}, A_{3} = \begin{bmatrix} J_{v} - I_{v} & O \\ O & O \end{bmatrix},$$
$$A_{4} = \begin{bmatrix} O & O \\ O & J_{v} - I_{v} \end{bmatrix}, A_{5} = \begin{bmatrix} O & N \\ O & O \end{bmatrix}, A_{6} = \begin{bmatrix} O & J_{v} - N \\ O & O \end{bmatrix},$$
$$A_{7} = {}^{t}A_{5} = \begin{bmatrix} O & O \\ {}^{t}N & O \end{bmatrix}, A_{8} = {}^{t}A_{6} = \begin{bmatrix} O & O \\ {}^{t}N & O \end{bmatrix}.$$

We provide tables of multiplications of algebras obtained by these configurations.

	A_1	A_3	A_5	A_6
A_1	A_1	A_3	A_5	A_6
A_3	A_3	$(v-1)A_1 + (v-2)A_3$	$(\ell-1)A_5 + \ell A_6$	$(v-\ell)A_5 + (v-\ell-1)A_6$
A_7	A_7	$(\ell-1)A_7 + \ell A_8$	$\ell A_2 + \lambda A_4$	$(\ell-\lambda)A_4$
A_8	A_8	$(v-\ell)A_7 + (v-\ell-1)A_8$	$(\ell - \lambda)A_4$	$(v-\ell)A_2 + (v-2\ell+\lambda)A_4$

TABLE 1. The first multiplication table of (X, C).

These tables show that the configuration (X, C) is a coherent configuration of type (2, 2; 2). Consequently, we can prove that (X, C) is a coherent configuration of type (2, 2; 2), where $C = \{c_i\}_{1 \le i \le 8}$. On the

82

	A_2	A_4	$ $ A_7	A_8
A_2	A_2	A_4	A7	A_8
A_4	A_4	$(v-1)A_2 + (v-2)A_4$	$(\ell-1)A_7 + \ell A_8$	$(v-\ell)A_7 + (v-\ell-1)A_8$
A_5	A_5	$(\ell - 1)A_5 + \ell A_6$	$\ell A_1 + \lambda A_3$	$(\ell - \lambda)A_3$
A_6	A_6	$(v-\ell)A_5 + (v-\ell-1)A_6$	$(\ell - \lambda)A_3$	$(v-\ell)A_1 + (v-2\ell+\lambda)A_3$

TABLE 2. The second multiplication table of (X, C).

other hand, every coherent configuration of type (2, 2; 2) is equivalent to complementary pairs of symmetric designs. Higman considered the types of coherent configurations and gave a method to compute irreducible ordinary characters of a coherent configuration by characters of its fibers [6]. We generalize them to modular representations [4]. In the rest of this paper, we assume that F is a field of characteristic a prime p and (K, R, F) is a p-modular system [7].

Let (X, C) be a coherent configuration defined by a symmetric 2design \mathfrak{D} . Since $(X_1, C(c_1, c_1))$ and $(X_2, C(c_2, c_2))$ are complete graphs, the character table of (X, C) over a field characteristic zero is as follows:

	A_1	A_3	A_2	A_4	multiplicity[4]
χ_1	1	v-1	1	v-1	1
χ_2	1	-1	1	-1	v-1

Note that character values of A_i (i = 5, 6, 7, 8) are zero and we omit them.

Suppose $p \nmid v$. Consider the central primitive idempotent corresponding to χ_1 :

$$e_{\chi_1} = \frac{1}{v} \left(A_1 + A_3 + A_2 + A_4 \right).$$

Then e_{χ_1} is also a central idempotent of FC. We can also quickly check that

$$e_{\chi_1}FCe_{\chi_1} \cong M_2(F).$$

Hence, there are two possibilities.

(A). The modular character table is

The decomposition and the Cartan matrices [4, 7] are

$$\mathcal{D} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \mathcal{C} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

In this case,

$$FC \cong M_2(F) \oplus M_2(F)$$

and this is semisimple.

(B). The modular character table is

A_1	A_3	A_2	A_4	multiplicity
1	v-1	1	v-1	1
1	-1	0	0	v-1
0	0	1	-1	v-1

The decomposition and the Cartan matrices are

$$\mathcal{D} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \ \mathcal{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

We can choose primitive idempotents $e_U = A_1 + A_2 + A_3 + A_4$, $e_V = A_3$ and $e_W = A_4$. Let us put $\alpha = A_5$ and $\beta = A_7$.

Then we have the following theorem.

Theorem 3.1. The adjacency algebra of Type (B) is isomorphic to

 $M_2(F) \oplus FQ/(\alpha\beta,\beta\alpha)$

where FQ is a path algebra, Q is the following quiver:

$$Q: \circ \overbrace{\beta}^{\alpha} \circ .$$

Suppose $p \mid v$. Modular character table of fibers are as follows:

$$\frac{\begin{vmatrix} A_1 & A_3 \\ \hline 1 & -1 \end{vmatrix} v}{1 & -1 \end{vmatrix} v}, \quad \frac{\begin{vmatrix} A_2 & A_4 \\ \hline 1 & -1 \end{vmatrix} v}{1 & -1 \end{vmatrix} v}.$$

Hence, there are two possibilities.

(C). The modular character table is

$$\frac{|A_1 \ A_3 \ A_2 \ A_4| \text{ multiplicity}}{|1 \ -1| \ 1 \ -1| \ v}.$$

The decomposition and the Cartan matrices are

$$\mathcal{D} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ \mathcal{C} = (2).$$

In this case,

$$FC \cong M_2(F) \otimes_F F[x]/(x^2).$$

84

(D). The modular character table is

$ A_1 $	A_3	A_2	A_4	multiplicity
1	-1	0	0	v
0	0	1	-1	v

The decomposition and the Cartan matrices are

$$\mathcal{D} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \ \mathcal{C} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}.$$

Only (D) is the non-trivial case. We can choose primitive idempotents $e_U = A_1$ and $e_V = A_2$. Put $\alpha_1 = A_1 + A_3$, $\alpha_2 = A_5$, $\alpha_3 = A_5 + A_6$, $\alpha_4 = A_7$, $\alpha_5 = A_7 + A_8$ and $\alpha_6 = A_2 + A_4$. We have the following theorem.

Theorem 3.2. The adjacency algebra of Type (D) is isomorphic to

$$FQ/(\{\alpha_i\alpha_j \mid 1 \le i, j \le 6\})$$

where FQ is a path algebra, Q is the following quiver:

$$Q: \alpha_1 \circ \overbrace{\alpha_4}^{\alpha_3} \circ \overbrace{\alpha_6}^{\alpha_3} \circ \overbrace{\alpha_6}^{\alpha_6}$$

It is difficult to determine the structure of the standard module and we could not do that.

3.1. Characterization of types by parameters of designs. Let (X, C) be a coherent configuration defined by a symmetric 2- (v, ℓ, λ) design. The Frame number [9] is

$$\mathcal{F}(C) = \frac{v^8 (v - \ell)^2 \ell^2}{(v - 1)^2}.$$

We show that the following theorem.

Theorem 3.3. Let (X, C) be a coherent configuration obtained from a symmetric 2- (v, ℓ, λ) design.

- (1) Type (A) if and only if $\mathcal{F}(C) \not\equiv 0 \pmod{p}$,
- (2) Type (B) if and only if $v \not\equiv 0 \pmod{p}$ and $\mathcal{F}(C) \equiv 0 \pmod{p}$,
- (3) Type (C) if and only if $v \equiv 0 \pmod{p}$ and $\ell \not\equiv \lambda \pmod{p}$,
- (4) Type (D) if and only if $v \equiv \ell \equiv \lambda \equiv 0 \pmod{p}$.

SHIMABUKURO

Proof. Statements (1) and (2) are clear. Suppose $v \equiv 0 \pmod{p}$. Suppose that $\ell \equiv \lambda \pmod{p}$. Then by $\lambda(v-1) = \ell(\ell-1)$, we have $v \equiv \ell \equiv \lambda \equiv 0 \pmod{p}$. In this case, $FC(c_1, c_2) \subset \operatorname{Rad}(FC)$ and FC is of type (D), where $\operatorname{Rad}(FC)$ is the Jacobson radical of FC. Suppose that $\ell \not\equiv \lambda \pmod{p}$. Then A_7A_5 is not nilpotent, and so is not in $\operatorname{Rad}(FC)$. So FC is of type (C).

3.2. Structure of FX of type (A). We will determine the structure of FC of type (A). There are two simple modules U and V with $\dim_F U = \dim_F V = 2$. The structure of the standard module is determined. We can write

$$FX \cong [U] \oplus (v-1)[V].$$

3.3. Structure of FX of type (B). We will determine the structure of FC of type (B). There are three simple modules U, V, and W with $\dim_F U = 2$, $\dim_F V = \dim_F W = 1$, and the Loewy structure of the projective covers is as follows:

$$P(U) = [U], \ P(V) = \begin{bmatrix} V \\ W \end{bmatrix}, \ P(W) = \begin{bmatrix} W \\ V \end{bmatrix}$$

The structure of the standard module is entirely determined. We can write

$$FX \cong [U] \oplus g_1[V] \oplus g_2 \begin{bmatrix} V \\ W \end{bmatrix} \oplus h_1[W] \oplus h_2 \begin{bmatrix} W \\ V \end{bmatrix}$$

for some non-negative g_1 , g_2 , h_1 and h_2 .

By multiplicities $m_V = m_W = v - 1$, we have

$$g_1 + g_2 + h_2 = v - 1, (3.1)$$

$$g_2 + h_1 + h_2 = v - 1, (3.2)$$

 $g_2 = rank(\alpha) = rank(A_5), h_2 = rank(\beta) = rank(A_7).$ Since ${}^tA_5 = A_7, g_2 = h_2.$ We put $w = rank(A_5),$

$$FX \cong [U] \oplus (v - 2w - 1)[V] \oplus w \begin{bmatrix} V \\ W \end{bmatrix} \oplus (v - 2w - 1)[W] \oplus w \begin{bmatrix} W \\ V \end{bmatrix}.$$

In this case, multiplicities must be a non-negative integer. Consequently, we know the upper ranks of N.

Corollary 3.4. Let N be an incidence matrix of a symmetric 2- (v, ℓ, λ) design with $v \neq 0 \pmod{p}$ and $\mathcal{F}(C) \equiv 0 \pmod{p}$. Then

$$rank_p(N) \le \frac{v-1}{2}.$$

3.4. Structure of FX of type (C). We determine the structure of FC of type (C). The module category of FC is Morita equivalent to the module category of $F[x]/(x^2)$. Hence, we know there are two isomorphic classes of indecomposable modules and $\dim_F \operatorname{Rad}(FC) = 4$. We know the fact that $A_1 + A_3$, $A_2 + A_4$, $A_5 + A_6$ and $A_7 + A_8$ are the basis of $\operatorname{Rad}(FC)$ and $\dim_F(FX)\operatorname{Rad}(FC) = 2$ by computation. According to these facts, we know the standard module FX structure. Then

$$FX \cong [U] \oplus (v-2)[V],$$

where $\dim_F U = 4$ and $\dim_F V = 2$.

Acknowledgments

The authors would like to thank the referee for careful reading.

References

- E. F. Assmus Jr and J.D. Key, *Designs and their codes*, Press Syndicate of the University of Cambridge, New York, 1992.
- E. Bannai and T. Ito, Algebraic Combinatorics I Association Schemes, The Benjamin/Cummings Publishing Company, Inc., Menlo Park, California, 1984.
- N. Hamada, On the p-rank of the incidence matix of a balanced or partially balanced incomplete block design and its applications to error correcting codes, Hiroshima Math. J. 3 (1973), 153–226.
- A. Hanaki, Y. Miyazaki, and O. Shimabukuro, Modular representation theory of BIB designs, Linear Algebra Appl. 514 (2017), 174–197.
- D. G. Higman, Coherent configurations Part I: Ordinary Representation Theory, Geom. Dedicata, 4 (1975), 1–32.
- 6. _____, Coherent algebras, Linear Algebra Appl. 93 (1987), no. C, 209–239.
- N. Hiroshi and T. Yukio, *Representation of Finite Groups*, Academic Press, INC., San Diego, CA, 1987.
- M. Klemm, Uber den p- Rang von Inzidenzmatrizen, J. Combin. Theory Ser. A, 43 (1986), 138–139.
- R. Sharafdini, Semisimplicity of adjacency algebras of coherent configurations, Electron. Notes Discrete Math. 45 (2014), 159–165.
- P. H. Zieschang, An algebraic approach to association schemes, Lecture Notes in Mathematics 1628, Springer Berlin, Germany, 1996.

Osamu Shimabukuro

Department of Mathematics, Faculty of Education, Gifu Shotoku University, 1-1 Takakuwanishi, Yanaizu-cho, Gifu, Japan

Email: shimabukuro@gifu.shotoku.ac.jp