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A NOTE ON GENERALIZED DERIVATIONS AND
LEFT IDEALS OF PRIME RINGS

G. S. SANDHU∗ AND A. BOUA

Abstract. Let R be a prime ring and Z(R) denotes the center
of R. In this study, we expose the commutativity of R as a conse-
quence of specific differential identities involving derivations acting
on left ideals of R. Finally, we give examples that demonstrate the
necessity of hypotheses taken in the theorems.

1. Motivation

The investigation of polynomial constraints on a ring that finally
imply commutativity has its roots in the first half of the twentieth cen-
tury. A well-organized survey of the commutativity theorems in rings
during 1950-2005 is given by James Pinter-Lucke [11]. These stud-
ies were stimulated by Jacobson’s famous result [10, Theorem 11] and
were extensively developed by Herstein, Bell, Yaqub, Quadri, Ashraf.
Perhaps motivated by the work of Jacobson and Herstein, Posner [15]
proved a surprising result called Posner’s Second Therem, which is ex-
pressed as: If a 2-torsion free prime ring R admits a nonzero derivation
d such that [d(x), x] ∈ Z(R) for all x ∈ R, then R is commutative.
In 1984, Mayne [12] obtained automorphism analogy of the Posner’s
result. Since then, many commutativity theorems in rings have been
obtained as a consequence of various identities involving mappings like
derivations, generalized derivations, automorphisms, endomorphisms
etc., for a good cross-section we refer the reader to [4], [5], [8], [9], [14],
[16], [17], [18].
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In 1997, Hongan [9] proved that if R is a 2-torsion free semiprime
ring, I a nonzero ideal of R and d : R → R is a derivation of R such
that d([x, y]) ± [x, y] ∈ Z(R) for all x, y ∈ I, then R is commutative.
Ashraf and Rehman [3] explored the commutativity of a prime ring R
that admits a nonzero derivation d satisfying the identities d(xy)±xy ∈
Z(R), d(xy) ± yx ∈ Z(R), d(x)d(y) ± xy ∈ Z(R) for all x, y ∈ I, a
nonzero ideal of R. In 2007, Ashraf et al. [4] extended these result by
taking a generalized derivation in place of derivation. Motivated by
these studies, many significant papers appeared in the recent literature
obtaining commutativity of rings in more general situations, see [1],
[7], [13], [19]. Recently, Al-Omary and Nauman [2] investigated the
following differential identities: (i) d(x) ◦ y = d(xy), (ii) F (x ◦ y) =
F (x)◦y−F (y)◦x, (iii) F ([x, y]) = F (x)◦y−F (y)◦x, (iv) F ([x, y]) =
[F (x), y]+[F (y), x]. Motivated from these studies, in this paper our aim
is to establish commutativity of prime rings and describe possible forms
of derivations satisfying the following identities: d1(xy) ± d2(x) ◦ y ∈
Z(R), F ([x, y])± ([G(x), y]± [x,H(y)]) ∈ Z(R) and F (x ◦ y)± (G(x) ◦
y ± x ◦ H(y)) ∈ Z(R) over a nonzero left ideal of R, where d1, d2 are
derivations of R and (F, d), (G, g), (H, h) are generalized derivations of
R.

2. Notions and preliminaries

A ring R is said to be prime (resp. semiprime) if aRb = {0} (resp.
aRa = {0}) implies a = 0 or b = 0 (resp. a = 0), for any a, b ∈ R. A
mapping d : R → R is a derivation of R if d is additive and satisfies
d(xy) = d(x)y + xd(y) for every x, y ∈ R. A more general mapping
F : R→ R is called generalized derivation if F is additive and satisfies
F (xy) = F (x)y+xd(y) for all x, y ∈ R, where d is a unique derivation of
R associated to F ; for the sake of brevity it can be denoted as an order
pair (F, d). Obviously, the concept of generalized derivations includes
the concept of derivations. A mapping ξ : R→ R is called a multiplier
if ξ(xy) = ξ(x)y = xξ(y) for all x, y ∈ R. The Lie product of any two
elements x, y ∈ R is denoted by [x, y] and defined by xy − yx; while
their Jordan product is denoted by x ◦ y and defined by xy + yx. The
basic identities related to Lie product and Jordan product as given as
follows:

[xy, z] = x[y, z] + [x, z]y, [x, yz] = y[x, z] + [x, y]z,

x ◦ yz = (x ◦ y)z − y[x, z] = y(x ◦ z) + [x, y]z,

xy ◦ z = x(y ◦ z)− [x, z]y = (x ◦ z)y + x[y, z].
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These identities along with the following Lemmas shall be used in the
sequel.

Lemma 2.1. [6, Lemma 3.1] Let R be a 2-torsion free semiprime ring
and λ is a nonzero left ideal of R. If a, b ∈ R such that axb + bxa = 0
for all x ∈ λ, then axb = 0 = bxa for all x ∈ λ.

Lemma 2.2. (Brauer’s trick) A group G cannot be written as
union of two of its proper subgroups.

Lemma 2.3. Let R be a 2-torsion free prime ring and λ be a nonzero
left ideal of R. If d is a derivation of R such that λ[d(λ), λ] = (0), then
d = 0 or R is commutative.

Proof. Assume that

u[d(x), y] = 0, ∀ x, y, u ∈ λ. (2.1)

Changing y with ry in (2.1) and using it, we find

ur[d(x), y] + u[d(x), r]y = 0, ∀ x, y, u ∈ λ, r ∈ R. (2.2)

Replacing r by ry in (2.2), we get

ur[d(x), y]y = 0, ∀ x, y, u ∈ λ, r ∈ R. (2.3)

Primeness of R forces [d(x), y]y = 0 for all x, y ∈ λ. Linearizing y in
the last relation, we find

[d(x), t]y + [d(x), y]t = 0, ∀ x, y, t ∈ λ. (2.4)

Substituting t for tu in (2.4), to obtain

[d(x), t]uy = 0, ∀ x, y, u, t ∈ λ.
Writing pu by u in the above relation, we get [d(x), t]Ruy = (0) for all
x, y, t, u ∈ λ. It forces [d(x), t] = 0 for all x, t ∈ λ. Replacing t by rt,
where r ∈ R, we find [d(x), r]t = 0 for all x, t ∈ λ and r ∈ R. Taking
st for t, where s ∈ R, we get [d(x), R]Rt = (0) for all x, t ∈ λ. It forces
[d(x), r] = 0 for all x ∈ λ and r ∈ R. Replacing x by sx, where s ∈ R
in the last expression, we get

[d(s)x, q] + [s, q]d(x) = 0, ∀ x ∈ λ, s, q ∈ R. (2.5)

Substituting q by sq in (2.5) and sing it, we obtain

[d(q)sx, q] = 0, ∀ x ∈ λ, s, q ∈ R. (2.6)

Replacing x by xt in (2.6), to get

d(q)sx[t, q] = 0, ∀ x, t ∈ λ, s, q ∈ R. (2.7)

That is, d(q)Rx[t, q] = 0 for all x, t ∈ λ and q ∈ R. It implies that for
each q ∈ R, we have either d(q) = 0 or λ[λ, q] = (0). Set A = {q ∈ R :
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d(q) = 0} and B = {q ∈ R : λ[λ, q] = (0)}. Note that A and B both are
additive subgroups of (R,+) and R = A ∪ B. Invoking Brauer’s trick
(Lemma 2.2), we conclude that either R = A or R = B, i.e., either
d(q) = 0 for all q ∈ R or x[y, q] = 0 for all x, y ∈ λ and q ∈ R, which
assures commutativity of R. �

3. Results

Proposition 3.1. Let R be a prime ring and λ be a nonzero left ideal
of R. If R admit derivations d1, d2 and nonzero multipliers %, ς such
that %(x)d1(y) ± ς(y)d2(x) ∈ Z(R) for all x, y ∈ λ, then one of the
following holds:

(i) R is commutative,
(ii) λd1(λ) = (0) = λd2(λ).

Proof. By our assumption, we have

%(x)d1(y)− ς(y)d2(x) ∈ Z(R), ∀ x, y ∈ λ. (3.1)

Case 1. Let Z(R) = (0). In this case our situation reduces to

%(x)d1(y)− ς(y)d2(x) = 0, ∀ x, y ∈ λ. (3.2)

Replacing x by rx in (3.2), we get

r%(x)d1(y)− (ς(y)rd2(x) + ς(y)d2(r)x) = 0, ∀ x, y ∈ λ, r ∈ R. (3.3)

Pre-multiplying (3.2) by r and subtracting from (3.3), it follows that

[r, ς(y)]d2(x)− ς(y)d2(r)x = 0, ∀ x, y ∈ λ, r ∈ R. (3.4)

Taking sy for y in (3.4), we get

[r, s]ς(y)d2(x) = 0, ∀ x, y ∈ λ, r, s ∈ R. (3.5)

It gives [r, s]Rς(y)d2(x) = (0) for all x, y ∈ λ and r, s ∈ R. In view of
primeness of R, we have either R is commutative or ς(λ)d2(λ) = (0).
In the latter case, our hypothesis (3.2) assures %(λ)d1(λ) = (0). Note
that since ς and % are nonzero multiplier, it is not difficult to obtain
λd2(λ) = (0) and λd1(λ) = (0). It completes our conclusion in this
case.
Case 2. Let Z(R) 6= (0). Then there exists 0 6= c ∈ Z(R). Replacing
y by cy = yc in (3.1), we see that

(%(x)d1(y)− ς(y)d2(x))c+ %(xy)d1(c)

= %(xy)d1(c) ∈ Z(R), ∀ x, y ∈ λ.
(3.6)

Since Z(R) is a domain, it forces %(xy) ∈ Z(R), i.e., [%(xy), r] = 0 for
all x, y ∈ λ and r ∈ R. Changing x by qx in the last expression, we get
[q, r]%(x)y = 0 for all x, y ∈ λ and r, q ∈ R. Replacing y by d1(w)sy
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in the last expression, we find [q, r]%(x)d1(w)Ry = 0 for all x, y ∈ λ
and r, q ∈ R. Since R is prime ring and λ is a nonzero left ideal of R,
we get [R,R]%(λ)d1(λ) = (0). It forces that either R is commutative
or %(λ)d1(λ) = (0). Clearly in view of the latter case, it follows from
our hypothesis that [ς(y)d2(x), r] = 0 for all x, y ∈ λ. Substituting py
for y in the last relation, we get [p, r]ς(y)d2(x) = 0 for all x, y ∈ λ
and p, r ∈ R. Hence primeness of R yields ς(λ)d2(λ) = (0). And hence
λd2(λ) = (0) and λd1(λ) = (0).

By repeating the same argument with slight variations, we can prove
the same conclusion for %(x)d1(y) + ς(y)d2(x) ∈ Z(R) for all x, y ∈
λ. �

Corollary 3.2. Let R be a prime ring and λ be a nonzero left ideal of
R. If R admit derivations d1 and d2 such that xd1(y)± yd2(x) ∈ Z(R)
for all x, y ∈ λ, then one of the following holds:

(i) R is commutative,
(ii) λd1(λ) = (0) = λd2(λ).

Corollary 3.3. Let R be a prime ring and I be a nonzero ideal of R.
If R admit nonzero derivations d1 and d2, then the following assertions
are equivalent:

(i) xd1(y)± yd2(x) ∈ Z(R) for all x, y ∈ I.
(ii) R is commutative.

Theorem 3.4. Let R be a 2-torsion free prime ring and λ be a nonzero
left ideal of R. If R admit derivations d1 6= 0 and d2 6= 0, then the
following assertions are equivalent:

(i) d1(xy)− d2(x) ◦ y ∈ Z(R) for every x, y ∈ λ.
(ii) d1(xy) + d2(x) ◦ y ∈ Z(R) for every x, y ∈ λ.

(iii) R is commutative.

Proof. (i)⇒ (iii): Let us suppose that

d1(xy)− d2(x) ◦ y ∈ Z(R), ∀ x, y ∈ λ. (3.7)

We split the proof into the following two parts:
Case 1. Let Z(R) = (0). Then our situation reduces to

d1(xy)− d2(x) ◦ y = 0, ∀ x, y ∈ λ. (3.8)

It implies

0 = d1(xyu)− d2(x) ◦ yu
= (d1(xy)− d2(x) ◦ y)u+ (xyd1(u) + y[d2(x), u])

= xyd1(u) + y[d2(x), u], ∀ x, y, u ∈ λ. (3.9)
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Taking ty in place of y in (3.9) and using it, we get

[t, x]yd1(u) = 0, ∀ x, y, u, t ∈ λ. (3.10)

Replacing y by ry in (3.10), where r ∈ R, we find [t, x]Ryd1(u) = (0)
for all x, t, y, u ∈ λ. It implies either [λ, λ] = (0) or λd1(λ) = (0).
in the first case, we have 0 = [rx, y] = [r, y]x for all x, y ∈ λ and
r ∈ R. Substituting sx for x in the last relation, where s ∈ R, we have
[r, y]Rx = (0) for all x, y ∈ λ. Since λ is a nonzero left ideal of R, we
find that [r, y] = 0 for all y ∈ λ and r ∈ R. Now replacing y by py,
we get 0 = [r, p]y for all y ∈ λ and r, p ∈ R. It forces [r, p] = 0 for all
r, p ∈ R, i.e., R is commutative.

On the other hand, we have λd1(λ) = (0). From (3.9), we have
λ[d2(λ), λ] = 0 for all x, y, u ∈ λ. Invoking Lemma 2.3, we have d2 = 0
or R is commutative. Consider d2 = 0, from (3.8) we obtain d1(xy) = 0
for all x, y ∈ λ. Substituting rx for x in the last relation, we find
d1(r)xy = 0 for all x, y ∈ λ and r ∈ R. It forces d1 = 0.
Case 2. Let Z(R) 6= (0). Replacing y by yc in (3.7), where 0 6= c ∈
Z(R), we get xyd1(c) ∈ Z(R) for all x, y ∈ λ. It yields [xy, r]d1(c) = 0
for all x, y ∈ λ and r ∈ R. But center of a prime ring is free from
zero divisors, therefore, we have [xy, r] = 0 for all x, y ∈ λ and r ∈ R.
Replacing x by px in the last relation, we get [p, r]xy = 0 for all x, y ∈ λ
and r, p ∈ R. It forces R commutative.
(ii)⇒ (iii): In the same way, we can prove implication. �

Corollary 3.5. Let R be a 2-torsion free prime ring and λ be a nonzero
left ideal of R. If R admit derivations d1 and d2 such that, then the
following assertions are equivalent:

(i) d1(xy) + d2(x) ◦ y = 0 for every x, y ∈ λ.
(ii) d1(xy)− d2(x) ◦ y = 0 for every x, y ∈ λ.

(iii) d1 = d2 = 0.

Proof. By Theorem 3.4, either d1 = d2 = 0 or R is commutative. Let
us assume that R is a commutative ring, then obviously λ becomes a
two-sided ideal of R. By the hypothesis, we have d1(xy)± 2d2(x)y = 0
for all x, y ∈ R. Replacing y by yr, we get xyd1(r) = 0 for all x, y ∈ λ.
It forces d1 = 0. Substituting d1 = 0 in the last expression, we find
2d2(x)y = 0 for all x, y ∈ λ. In light of assumption of torsion of R, we
find d2(x)y = 0 for all x, y ∈ λ and hence d2 = 0. �

Corollary 3.6. [2, Theorem 2.1] Let R be a prime ring. If R admits a
derivation d such that d(xy)±d(x)◦ y = 0 for all x, y ∈ R, then d = 0.

Theorem 3.7. Let R be a 2-torsion free prime ring and λ be a nonzero
left ideal of R. If (F, d), (G, g) and (H, h) are generalized derivations
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of R such that xg(y) 6= ±xh(y) for all x, y ∈ λ, then the following
assertions are equivalent:

(i) F ([x, y])− ([G(x), y]± [x,H(y)]) ∈ Z(R) for every x, y ∈ λ.
(ii) F ([x, y]) + ([G(x), y]± [x,H(y)]) ∈ Z(R) for every x, y ∈ λ.

(iii) R is commutative.

Proof. (i)⇒ (iii): Assume that

F ([x, y])− ([G(x), y]± [x,H(y)]) ∈ Z(R), ∀ x, y ∈ λ. (3.11)

Case 1. Let Z(R) = (0). Then our situation is

F ([x, y])− ([G(x), y]± [x,H(y)]) = 0, ∀ x, y ∈ λ. (3.12)

Replacing x by xt in (3.12) in order to get

[x, y]d(t) + F (x)[t, y] + xd([t, y])−
(
G(x)[t, y]

+[x, y]g(t) + x[g(t), y]± x[t,H(y)]

)
= 0, ∀ x, y, t ∈ λ.

(3.13)

In particular for t = y, we have

[x, y]d(y)−
(

[x, y]g(y) + x[g(y), y]± x[y,H(y)]

)
= 0, ∀ x, y ∈ λ.

Substituting rx for x in in the last expression, we see that

[r, y]x(d− g)(y) = 0, ∀ x, y ∈ λ, r ∈ R. (3.14)

It gives [r, y]Rx(d − g)(y) = (0) for all x, y ∈ λ and r ∈ R. Primeness
of R yields that for each y ∈ λ, either [R, y] = (0) or λ(d− g)(y) = (0).
An application of Brauer’s trick yields that either [R, λ] = (0), which
forces R is commutative or xd(y) = xg(y) for all x, y ∈ λ. Let us
consider xd(y) = xg(y) for all x, y ∈ λ. Using the fact xg([t, y]) =
x[g(t), y] + x[t, g(y)] for all x, t, y ∈ λ in (3.13), we get(

[x, y]d(t)− [x, y]g(t)

)
+ (F (x)−G(x))[t, y] +

(
xd([t, y])

−xg([t, y])

)
+ x[t, g(y)]∓ x[t,H(y)] = 0, ∀ x, y, t ∈ λ.

Our assumption reduces it to

(F (x)−G(x))[t, y] + x[t, g(y)]∓ x[t,H(y)] = 0, ∀ x, y, t ∈ λ. (3.15)

In particular, it implies

x[y, g(y)]∓ x[y,H(y)] = 0, ∀ x, y ∈ λ.
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That is, x[y, (g∓H)(y)] = 0 for all x, y ∈ λ. Linearizing this equation,
we get

x[y, (g ∓H)(t)] + x[t, (g ∓H)(y)] = 0, ∀ x, y, t ∈ λ. (3.16)

Changing y by yw in (3.16), we obtain

xy[w, (g ∓H)(t)] + x(g ∓H)(y)[t, w] + xy[t, (g ∓ h)(w)]

+x[t, y](g ∓ h)(w) = 0, ∀ x, y, t, w ∈ λ.
(3.17)

In particular, we have

xy[t, (g ∓ h)(t)] + x[t, y](g ∓ h)(t) = 0, ∀ x, y, t ∈ λ. (3.18)

Replacing y by xy in (3.18), we find x[t, x]y(g ∓ h)(t) = 0 for all
x, y, t ∈ λ. It yields x[t, x]Ry(g ∓ h)(t) = (0) for all x, y, t ∈ λ. It
implies that for each t ∈ λ, we have either x[t, x] = 0 for all x ∈ λ or
λ(g ∓ h)(t) = (0). Applying Brauer’s trick, we obtain either x[t, x] = 0
for all x, t ∈ λ or xg(y) = ±xh(y) for all x, y ∈ λ, which is not possible.

Thus, we have x[t, x] = 0 for all x, t ∈ λ. From this, one can easily
obtain λ[λ, λ] = (0). Replacing x by xu in (3.15), we find

xu[t, (g ∓H)(y)] = 0, ∀ x, y, t, u ∈ λ.

It can be seen as

u[x, θ(y)] = 0, ∀ x, y, u ∈ λ, (3.19)

where θ = g ∓ H is a generalized derivation of R with associated
derivation ϑ = g ∓ h. Replacing y by yt in (3.19), to get

uθ(y)[x, t] + uy[x, ϑ(t)] = 0, ∀ x, y, u, t ∈ λ. (3.20)

Replacing x by xk in (3.20) in order to obtain

uϑ(w)x[k, t] + uwx[k, ϑ(t)] = 0, ∀ x, u, t, w, k ∈ λ. (3.21)

Also replacing u by ux in (3.20) gives

uxϑ(w)[k, t] + uxw[k, ϑ(t)] = 0, ∀ x, u, t, w, k ∈ λ. (3.22)

Comparing (3.21) and (3.22), we get u[ϑ(w), x][k, t] = 0 for all x, u, t, k,
w ∈ λ. Putting k = rv, where r ∈ R and v ∈ λ in the last relation, we
find

0 = u[ϑ(w), x]r[v, t] + u[ϑ(w), x][r, t]v, ∀ x, u, t, w, v ∈ λ, r ∈ R.
(3.23)

Substituting tv for t in (3.23) and using it, we get

u[ϑ(w), x]t[r, v]v = 0, ∀ x, u, t, w, v ∈ λ, r ∈ R. (3.24)
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It forces that either u[ϑ(w), x] = 0 for all x, u, w ∈ λ or t[r, v]v = 0 for
all t, v ∈ λ and r ∈ R. Let us suppose that t[r, v]v = 0 for all t, v ∈ λ
and r ∈ R and linearizing it in order to get

t[r, u]v + t[r, v]u = 0, ∀ u, v, t ∈ λ, r ∈ R. (3.25)

Writing vw for v in (3.25), it follows that

t[r, v][w, u] + tv[r, w]u = 0, ∀ u, v, t, w ∈ λ, r ∈ R.

It implies

−tvr[w, u] + tv[r, w]u = 0, ∀ u, v, t, w ∈ λ, r ∈ R.

From this, we obtain

vr[w, u] = v[r, w]u, ∀ u, v, w ∈ λ, r ∈ R. (3.26)

Replacing u by su in (3.26), we see that

vrs[w, u] + vr[w, s]u = v[r, w]su, ∀ u, v, w ∈ λ, r, s ∈ R. (3.27)

On the other hand taking rs instead of r in (3.26), we find

vrs[w, u] = v[r, w]su+ vr[s, w]u, ∀ u, v, w ∈ λ, r, s ∈ R. (3.28)

Comparing (3.27) and (3.28), we have

vr[w, s]u = vr[s, w]u, ∀ u, v, w ∈ λ, r, s ∈ R.

It yields 2vr[w, s]u = 0 for all u, v, w ∈ λ and r, s ∈ R. Since R is
2-torsion free, we get λR[λ,R]λ = (0). It forces that [λ,R] = (0), hence
R is commutative, as desired.

On the other hand, we now consider y[ϑ(w), x] = 0 for all x, y, w ∈ λ.
By Lemma 2.3, we conclude that R is commutative.

Case 2. Let Z(R) 6= (0). In that case, there exists 0 6= c ∈ Z(R).
Replacing y by yc in (3.11), we find [x, y](d(c) ± h(c)) ∈ Z(R) for all
x, y ∈ λ. It implies [[x, y], r](d(c)±h(c)) = 0 for all x, y ∈ λ and r ∈ R.
Since Z(R) is a domain, we obtain [[x, y], r] = 0. Substituting xy for
x in the last relation to get [x, y][y, r] = 0 for all x, y ∈ λ and r ∈ R.
It implies [x, y]R[y, r] = (0) for all x, y ∈ λ and r ∈ R. Primeness of
R implies that either λ is commutative or λ ⊆ Z(R). Thus, it is not
difficult to see that both of these cases imply commutativity of R.
(ii)⇒ (iii): In the same way, we can prove this assertion. �

The following example justifies our hypotheses:

(i) R is 2-torsion free,
(ii) xg(y) 6= ±xh(y) for all x, y ∈ λ in the above theorem.
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Example 3.8. Let R =

{(
x y
t z

)
: x, y, t, z ∈ Z2

}
and

λ =

{(
0 u
0 v

)
: u, v ∈ Z2

}
.

Note that R is a prime ring with nonzero left ideal λ.

• Let F = 0, G = id and H = id be the generalized derivations
with associated derivations d = 0, g = 0 and h = 0 respectively.
Then one can check that the conditions F ([x, y])− ([G(x), y] +
[x,H(y)]) ∈ Z(R), F ([x, y])+([G(x), y]+[x,H(y)]) ∈ Z(R) are
satisfied on λ, but R is not commutative.
• Let F = 0, G = id and H = id be the generalized derivations

with associated derivations d = 0, g = 0 and h = 0 respectively.
Then one can check that the conditions F ([x, y])− ([G(x), y]−
[x,H(y)]) ∈ Z(R), F ([x, y]) + ([G(x), y] − [x,H(y)]) ∈ Z(R)
are satisfied on λ, but R is not commutative.

Thus, we conclude that the assumptions taken are not superfluous in
Theorem 3.7.

Corollary 3.9. Let R be a 2-torsion free prime ring and I be a nonzero
ideal of R. If (F, d) and (G, g 6= 0) are generalized derivations of R,
then the following assertions are equivalent:

(i) F ([x, y])− [G(x), y] ∈ Z(R) for every x, y ∈ I.
(ii) F ([x, y]) + [G(x), y] ∈ Z(R) for every x, y ∈ I.

(iii) R is commutative.

Corollary 3.10. Let R be a 2-torsion free prime ring and I be a
nonzero ideal of R. If (G, g 6= 0) and (H, h 6= 0) are generalized deriva-
tions of R, then the following assertions are equivalent:

(i) [G(x), y]− [x,H(y)] ∈ Z(R) (g 6= −h) for every x, y ∈ I.
(ii) [G(x), y] + [x,H(y)] ∈ Z(R) (g 6= h) for every x, y ∈ I.

(iii) R is commutative.

Corollary 3.11. Let R be a 2-torsion free prime ring and I be a
nonzero ideal of R. If (G, g 6= 0) is a generalized derivation of R,
then the following assertions are equivalent:

(i) [G(λ), λ] ⊆ Z(R).
(ii) R is commutative.

Theorem 3.12. Let R be a 2-torsion free prime ring and λ be a
nonzero left ideal of R. If (F, d), (G, g) and (H, h) are generalized
derivations of R such that xg(y) 6= ±xh(y) for all x, y ∈ λ, then the
following assertions are equivalent:



A NOTE ON GENERALIZED DERIVATIONS AND LEFT IDEALS 99

(i) F (x ◦ y)−G(x) ◦ y ± x ◦H(y) ∈ Z(R) for every x, y ∈ λ.
(ii) F (x ◦ y) +G(x) ◦ y ± x ◦H(y) ∈ Z(R) for every x, y ∈ λ.

(iii) R is commutative.

Proof. (i)⇒ (iii): Assume that

F (x ◦ y)− (G(x) ◦ y ± x ◦H(y)) ∈ Z(R), ∀ x, y ∈ λ. (3.29)

Case 1. Let Z(R) = (0). Then our situation is

F (x ◦ y)− (G(x) ◦ y ± x ◦H(y)) = 0, ∀ x, y ∈ λ. (3.30)

Replacing x by xt in (3.30) in order to get

(x ◦ y)d(t) + F (x)[t, y] + xd([t, y])− (G(x)[t, y] + (x ◦ y)g(t) + x[g(t), y]

±x[t,H(y)]) = 0, ∀ x, y, t ∈ λ.
(3.31)

In particular for t = y, we have

(x ◦ y)d(y)− ((x ◦ y)g(y) + x[g(y), y]± x[y,H(y)]) = 0, ∀ x, y ∈ λ.
Substituting rx for x in the last expression, we see that

[r, y]x(d− g)(y) = 0, ∀ x, y ∈ λ, r ∈ R. (3.32)

As Theorem 3.7, it implies R commutative or λ(d− g)(λ) = (0). Using
the latter case in (3.31), we find

F (x)[t, y] + xd([t, y])− (G(x)[t, y] + x[g(t), y]

±x[t,H(y)]) = 0, ∀ x, y, t ∈ λ.
(3.33)

That is,

(F (x)−G(x))[t, y] + x[t, g(y)]∓ x[t,H(y)] = 0, ∀ x, y, t ∈ λ,
and hence the conclusion follows from Theorem 3.7.
Case 2. Let Z(R) 6= (0). In that case, there exists 0 6= c ∈ Z(R).
Replacing y by yc in (3.29), we find (x ◦ y)(d(c)± h(c)) ∈ Z(R) for all
x, y ∈ λ. It implies [x ◦ y, r](d(c)± h(c)) = 0 for all x, y ∈ λ and r ∈ R.
Since Z(R) is a domain, we obtain [x ◦ y, r] = 0. Substituting xy for x
in the last relation to get (x ◦ y)[y, r] = 0 for all x, y ∈ λ and r ∈ R.
It implies (x ◦ y)R[y, r] = (0) for all x, y ∈ λ and r ∈ R. Now it is not
difficult to see that either λ is commutative or λ ⊆ Z(R), and hence R
is commutative in each case.
(ii)⇒ (iii): In the same way, we can prove this assertion. �

The following example justifies our hypotheses:

(i) R is 2-torsion free,
(ii) xg(y) 6= ±xh(y) for all x, y ∈ λ in the above theorem.
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Example 3.13. Let R =

{(
x y
t z

)
: x, y, t, z ∈ Z2

}
and

λ =

{(
0 u
0 v

)
: u, v ∈ Z2

}
.

Note that R is a prime ring with nonzero left ideal λ.

• Define F = 0 and

G

(
x y
t z

)
= H

(
x y
t z

)
=

(
t+ y z
z 0

)
with associated derivation d = 0 and

g

(
x y
t z

)
= h

(
x y
t z

)
=

(
y 0

z − x −y

)
respectively. Then we see that the conditions F (x◦y)− (G(x)◦
y+ x ◦H(y)) ∈ Z(R), F (x ◦ y) + (G(x) ◦ y+ x ◦H(y)) ∈ Z(R)
are satisfied on λ, but R is not commutative.
• Define F = 0,

G

(
x y
t z

)
=

(
t+ y z
z 0

)
and H = −G with associated derivation d = 0,

g

(
x y
t z

)
=

(
y 0

z − x −y

)
and h = −g respectively. Then we see that the conditions
F (x ◦ y)− (G(x) ◦ y−x ◦H(y)) ∈ Z(R), F (x ◦ y) + (G(x) ◦ y−
x ◦H(y)) ∈ Z(R) are satisfied on λ, but R is not commutative.

Thus, we conclude that the assumptions taken are not superfluous in
Theorem 3.12.

Corollary 3.14. Let R be a 2-torsion free prime ring and I be a
nonzero ideal of R. If (F, d) and (G, g 6= 0) are generalized deriva-
tions of R, then the following assertions are equivalent:

(i) F (x ◦ y)− (G(x) ◦ y) ∈ Z(R) for every x, y ∈ I.
(ii) F (x ◦ y) +G(x) ◦ y) ∈ Z(R) for every x, y ∈ I.

(iii) R is commutative.

Corollary 3.15. Let R be a 2-torsion free prime ring and I be a
nonzero ideal of R. If (G, g 6= 0) and (H, h 6= 0) are generalized deriva-
tions of R, then the following assertions are equivalent:

(i) G(x) ◦ y − x ◦H(y) ∈ Z(R) for every x, y ∈ I.
(ii) G(x) ◦ y + x ◦H(y) ∈ Z(R) for every x, y ∈ I.

(iii) R is commutative.
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Corollary 3.16. Let R be a 2-torsion free prime ring and I be a
nonzero ideal of R. If (G, g 6= 0) is a generalized derivation of R,
then the following assertions are equivalent:

(i) G(λ) ◦ λ) ⊆ Z(R).
(ii) R is commutative.

We conclude this paper with the following example which exhibits
that the hypothesis of primeness in Theorem 3.7 and Theorem 3.12 is
essential.

Example 3.17. Let R =

{ 0 a b
0 0 c
0 0 0

 : a, b, c ∈ Z
}

and

λ =

{ 0 k 0
0 0 0
0 0 0

 : k ∈ Z
}
.

It can be easily seen that λ is a nonzero left ideal of R, and R is not
a prime ring as 0 0 0

0 0 1
0 0 0

 0 a b
0 0 c
0 0 0

 0 1 0
0 0 0
0 0 0

 =

 0 0 0
0 0 0
0 0 0

 .

Define (F, d), (G, g), (H, h) : R→ R as

F

 0 a b
0 0 c
0 0 0

 =

 0 0 −b
0 0 0
0 0 0

 , d

 0 a b
0 0 c
0 0 0

 =

 0 a b
0 0 −c
0 0 0

 ,

G

 0 a b
0 0 c
0 0 0

 =

 0 0 a
0 0 c
0 0 0

 , g

 0 a b
0 0 c
0 0 0

 =

 0 a b
0 0 0
0 0 0

 ,

and

H

 0 a b
0 0 c
0 0 0

 =

 0 a b
0 0 0
0 0 0

 , h

 0 a b
0 0 c
0 0 0

 =

 0 0 c
0 0 0
0 0 0

 ;

one may verify that (F, d), (G, g) and (H, h) are generalized derivations
which satisfy the identities:

• F ([x, y])− ([G(x), y]± [x,H(y)]) ∈ Z(R),
• F ([x, y]) + ([G(x), y]± [x,H(y)]) ∈ Z(R),
• F (x ◦ y)− (G(x) ◦ y ± x ◦H(y)) ∈ Z(R),
• F (x ◦ y) + (G(x) ◦ y ± x ◦H(y)) ∈ Z(R)
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for all x, y ∈ λ and xg(y) 6= ±xh(y) for all x, y ∈ λ. But R is not
commutative.
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